Assertion Based Verification

Joe Hurd
joe.hurd@comlab.ox.ac.uk

CARD Group
Computing Laboratory
Oxford University
Contents

- Introduction
- Verified Checkers
- An Example Formula
- Conclusion
Assertion Based Verification

- Verification takes 70% of the hardware design cycle.
- Producing a specification of a circuit can be hard.
- Often much easier to write formulas (assertions) that describe error conditions.
 - **Testing** can simulate the circuit, and report a bug if an error occurs. *This talk.*
 - **Formal verification** can prove that these errors can never happen.
- This is **Assertion Based Verification**.
- Need a logic in which to write assertions.
IBM’s Sugar 2.0 language won a competition run by Accellera to find an industry standard assertion language.

It was then renamed Accellera Property Specification Language (PSL).

“PSL is an intuitive, declarative language for describing behaviour over time.” [IBM]

This talk: the Temporal Layer of PSL, essentially LTL with regular expressions:
Inside Temporal PSL

- Boolean Expressions
 - Evaluated on a single state.
- Sequential Extended Regular Expressions (SEREs)
 - Evaluated on a finite sequence of states.
- Foundation Language Formulas
 - Evaluated on a finite or infinite path of states.
 - This talk: will only consider infinite paths.
Verilog Checkers

- Suppose we have a circuit written in Verilog,
- and a PSL formula that we would like to hold of every simulation run of the circuit.
 - Think of a simulation run as an infinite path of states.
- We can code up the formula as a Verilog module that monitors the circuit.
 - But how to avoid bugs?
- Using HOL4, we can verify a translation from the PSL formula to a deterministic finite automaton.
 - The DFA is guaranteed to produce an error iff the PSL formula is violated on the simulation path.
 - Thanks to Mike Gordon’s formalization of PSL.
Safety Violations

- Given a checking automaton for the PSL formula f,
- and an infinite path p,
- when can the automaton report a property violation?

$$\text{safety_violation } p \ f \equiv \exists n. \ \forall q. \ |q| = \infty \Rightarrow \neg (p^{0,n} q \models f)$$

If the bad prefixes form a regular language, then we can detect safety violations with a finite state automaton.
Verified Checkers

- This is what we proved about checker automata:

\[\vdash \forall f, p. \]
\[|p| = \infty \land \text{simple } f \Rightarrow \]
\[(\text{safety_violation } p \ f \iff \exists n. p^{0,n} \models \text{checker } f) \]

- checker maps a PSL formula to a PSL SERE.

- Not enough to have an implication, because otherwise a trivial checker \top or \bot would suffice.

- Condition 1: p is an infinite path.

- Condition 2: f is a simple formula.
The next operator ‘postpones’ a formula by one step:

\[\vdash w \models \text{next } f \iff |w| > 0 \land w^1 \models f \]

Next formulas are simple:

\[\vdash \forall f. \text{simple } f \Rightarrow \text{simple (next } f) \]

Next checkers just prepend the SERE \{\top\}:

\[\vdash \text{checker (next } f) = \{\top\}; \{\text{checker } f\} \]
Checkers: Until

- The weak until operator is defined thus:

\[
\vdash w \models f \text{ until } g \iff \\
\forall j \in [0..|w|). \ w^j \models f \Rightarrow \exists k \in [0..j + 1). \ w^k \models g
\]

- The condition for weak until formulas to be simple:

\[
\vdash \forall f, g. \ \text{simple } f \land \text{boolean } g \Rightarrow \text{simple } (f \text{ until } g)
\]

- Weak until checkers are defined as

\[
\vdash \text{checker } (f \text{ until } g) \equiv \\
\{ (\text{boolean_checker } g)[*] \}; \{ \{ \text{checker } f \} \land \{ \text{boolean_checker } g \} \}
\]
Creating Verilog Checkers

- Take the SERE output of the checker, and lazily convert to a nondeterministic finite automaton (NFA).
- Compute the reachable states of the deterministic finite automaton (DFA) via transition theorems:

\[\forall c. \quad \text{REQ} \notin c \land \text{ACK} \in c \Rightarrow \text{transition}_D \quad [6] \quad c = [2; 4] \]

- Finally, print the whole DFA as a Verilog module.
 - An informal step, could introduce bugs :-(

Assertion Based Verification – Joe Hurd – p.12/18
Example: PSL Formula

From page 45 of the Accellera PSL Reference Manual:

\[c \land \text{next}(a \text{ until } b) \]

Their example actually uses strong until, we’ll use weak until instead.
Example: SERE

|- checker (...example PSL formula...) =
 S_OR
 (S_BOOL (B_NOT (B_PROP c)),
 S_CAT
 (S_BOOL B_TRUE,
 S_CAT
 (S_REPEAT (S_BOOL (B_NOT (B_PROP b)))))
 S_OR
 (S_AND
 (S_BOOL (B_NOT (B_PROP a)),
 S_CAT
 (S_BOOL (B_NOT (B_PROP b))),
 S_REPEAT (S_BOOL B_TRUE))
 S_AND
 (S_CAT
 (S_BOOL (B_NOT (B_PROP a))),
 S_REPEAT (S_BOOL B_TRUE)
 S_BOOL (B_NOT (B_PROP b))))
module Checker (a, b, c);
 input a, b, c;
 reg [2:0] state;
 initial state = 0;
 always @ (a or b or c)
 begin
 case (state)
 0: if (c) state = 5; else state = 1;
 1: begin $display ("Checker: property violated!"); $finish; end
 2: begin $display ("Checker: property violated!"); $finish; end
 3: state = 3;
 4: if (a) if (b) state = 3; else state = 4;
 else if (b) state = 3; else state = 2;
 5: if (a) if (b) state = 3; else state = 4;
 else if (b) state = 3; else state = 2;
 default: begin $display ("Checker: unknown state"); $finish; end
 endcase
 begin $display ("Checker: unknown state"); $finish; end
 end
endmodule
Contents

- Introduction
- Verified Checkers
- An Example Formula
- Conclusion
Conclusion

- An interesting exercise that covers a wide range of formulas while staying within PSL.
- Real world applications of the Verilog checkers?
 - Require (verified) state minimization to be practical.
- **Future Work:** To extend our coverage, must drop SEREs as intermediate language.
 - Would like to implement weak suffix implication \(\{ \cdot \} \rightarrow \{ \cdot \} \) which is in the Accellera simple subset.