Formal Verification of Probabilistic Programs: Two Approaches

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South Wales)
Contents

- Introduction
 - Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
 - Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - \(wlp \) Verification Condition Generator
 - Example Verifications
- Conclusion
Introduction

Probabilistic programs are useful for many applications:

- Symmetry breaking
 - Rabin’s mutual exclusion algorithm
- Eliminating pathological cases
 - Miller-Rabin primality test
- Algorithm complexity
 - Sorting nuts and bolts
- Defeating a powerful adversary
 - Mixed strategies in game theory
- Solving a problem in an extremely simple way
 - Finding minimal cuts
Introduction

- Quicksort Algorithm (Hoare, 1962):


  ```ml
  fun quicksort elements =
    if length elements <= 1 then elements
    else
      let
        val pivot = choose_pivot elements
        val (left, right) = partition pivot elements
      in
        quicksort left @ [pivot] @ quicksort right
      end;
  ```

- Usually $O(n \log n)$ comparisons, unless choice of pivot interacts badly with data.
Introduction

- Example of bad behaviour when pivot is first element:

 input: [5, 4, 3, 2, 1]
 pivot 5: [4, 3, 2, 1]--5--[
 pivot 4: [3, 2, 1]--4--[
 pivot 3: [2, 1]--3--[
 pivot 2: [1]--2--[
 output: [1, 2, 3, 4, 5]

- Lists in reverse order take $O(n^2)$ comparisons.
- So do lists that are in the right order!
Introduction

- Solution: Introduce randomization into the algorithm itself.
- Pick pivots uniformly at random from the list of elements.
- Every list has exactly the same performance profile:
 - Expected number of comparisons is $O(n \log n)$.
 - Small class $C \subset S_n$ of lists with guaranteed bad performance has been replaced with a small probability $|C|/n!$ of bad performance on any input.
Introduction

- Broken procedure for choosing a pivot:

  ```haskell
  fun choose_pivot elements =
    if length elements = 1 orelse coin_flip ()
    then hd elements
    else choose_pivot (tl elements);
  ```

- Not a uniform distribution when length of elements > 2.
- Actually reinstates a bad class of input lists taking $O(n^2)$ (expected) comparisons.
- Would like to verify probabilistic programs in a theorem prover.
The HOL Theorem Prover

- Developed by Mike Gordon’s Hardware Verification Group in Cambridge, first release was HOL88.
- Latest release in mid-2002 called HOL4, developed jointly by Cambridge, Utah and ANU.
- Implements classical Higher-Order Logic with Hindley-Milner polymorphism.
- Sprung from the Edinburgh LCF project, so has a small logical kernel to ensure soundness.
- Links to external proof tools, either as oracles (e.g., SAT solvers) or by translating their proofs (e.g., Gandalf).
- Comes with a large library of theorems contributed by many users over the years, including theories of lists, real analysis, groups etc.
Contents

- Introduction
- **Approach 1: Monads**
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- **Approach 2: pGCL**
 - Formalizing Probabilistic Guarded Commands
 - \(\text{wlp} \) Verification Condition Generator
 - Example Verifications
- Conclusion
Introduction: Monads

To verify a probabilistic program in HOL:

- Must be able to formalize its probabilistic specification;

\[\mathcal{E} : \mathcal{P}(\mathcal{P}(\mathbb{B}^\infty)), \quad \mathbb{P} : \mathcal{E} \to \mathbb{R} \]

- and model the probabilistic program in the logic;

\[\text{prob}_{\text{program}} : \mathbb{N} \to \mathbb{B}^\infty \to \{\text{success, failure}\} \times \mathbb{B}^\infty \]

- then finally prove that the program satisfies its specification.

\[\vdash \forall n. \mathbb{P} \{ s \mid \text{fst (prob}_{\text{program}} n s) = \text{failure} \} \leq 2^{-n} \]
Contents

- Introduction
- Approach 1: Monads
 - **Formalizing Probability**
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - ωlp Verification Condition Generator
 - Example Verifications
- Conclusion
Need to construct a probability space of Bernoulli\(\left(\frac{1}{2} \right) \) sequences, to give meaning to specifications like

\[
P \{ s \mid \text{fst (prob_program n s)} = \text{failure} \}
\]

To ensure soundness, would like it to be a purely definitional extension of HOL (no axioms).

Use measure theory, and end up with a set \(\mathcal{E} \) of events and a probability function \(P \):

\[
\mathcal{E} = \{ S \subset \mathcal{B}^\infty \mid S \text{ is a measurable set} \}
\]

\[
P(S) = \text{the probability measure of } S \text{ (for } S \in \mathcal{E})
\]
Formalizing Probability

- Formalized some general measure theory in HOL, including Carathéodory’s extension theorem.
- Next defined the measure of prefix sets (or cylinders):

 \[\forall l. \mu \{ s_0 s_1 s_2 \cdots \mid [s_0, \ldots, s_{n-1}] = l \} = 2^{-(\text{length } l)} \]

- Finally extended this measure to a \(\sigma \)-algebra:

 \[\begin{align*}
 \mathcal{E} &= \sigma(\text{prefix sets}) \\
 \mathbb{P} &= \text{Carathéodory extension of } \mu \text{ to } \mathcal{E}
 \end{align*}\]

- Similar to the definition of Lebesgue measure.
Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - ωlp Verification Condition Generator
 - Example Verifications
- Conclusion
Modelling Probabilistic Programs

- Given a probabilistic ‘function’:
 \[\hat{f} : \alpha \rightarrow \beta \]

- Model \(\hat{f} \) with a higher-order logic function
 \[f : \alpha \rightarrow \mathbb{B}^\infty \rightarrow \beta \times \mathbb{B}^\infty \]

 that passes around ‘an infinite sequence of coin-flips.’

- The probability that \(\hat{f}(a) \) meets a specification
 \(B : \beta \rightarrow \mathbb{B} \) can then be formally defined as
 \[\mathbb{P} \{ s \mid B(\text{fst}(f \ a \ s)) \} \]
Modelling Probabilistic Programs

- Can use state-transformer monadic notation to express HOL models of probabilistic programs:

\[
\begin{align*}
\text{unit } a &= \lambda s. (a, s) \\
\text{bind } f g &= \lambda s. \text{let } (x, s') \leftarrow f(s) \text{ in } g x s' \\
\text{coin_flip } f g &= \lambda s. \text{if shd } s \text{ then } f \text{ else } g, \text{ stl } s
\end{align*}
\]

- For example, if \texttt{dice} is a program that generates a dice throw from a sequence of coin flips, then

\[
\text{two_dice} = \text{bind dice} (\lambda x. \text{bind dice} (\lambda y. \text{unit } (x + y)))
\]

generates the sum of two dice.
Example: The Binomial($n, \frac{1}{2}$) Distribution

- Definition of a sampling algorithm for the Binomial($n, \frac{1}{2}$) distribution:

 \[\Downarrow \quad \text{bit} = \text{coin_flip (unit 1)} (\text{unit 0}) \]
 \[\Downarrow \quad \text{binomial 0} = \text{unit 0} \land \]
 \[\forall n. \quad \text{binomial (suc } n) = \]
 \[\text{bind bit (} \lambda x. \text{bind (binomial } n) (\lambda y. \text{unit (} x + y)) \)) \]

- Correctness theorem:

 \[\Downarrow \quad \forall n, r. \quad \mathbb{P}\{s \mid \text{fst (binomial } n s) = r\} = \binom{n}{r} \left(\frac{1}{2}\right)^n \]
Probabilistic Termination

- The Binomial\((n, \frac{1}{2}) \) sampling algorithm is guaranteed to terminate within \(n \) coin-flips.
- The following algorithm generates dice throws from coin-flips (Knuth and Yao, 1976):

\begin{itemize}
 \item The backward loops introduce the possibility of looping forever.
 \item But the probability of this happening is 0.
 \item \textbf{Probabilistic termination:} the program terminates with probability 1.
\end{itemize}
Probabilistic Termination

- Probabilistic termination is more expressive than guaranteed termination.
- No coin-flip algorithm that is guaranteed to terminate can sample from the following distributions:
 - Uniform\((\frac{1}{3}) \): choosing one of \(0, 1, 2\) each with probability \(\frac{1}{3}\).
 - Geometric\((\frac{1}{2}) \): choosing \(n \in \mathbb{N}\) with probability \((\frac{1}{2})^{n+1}\). The index of the first head in a sequence of coin-flips.
- We model probabilistic termination in HOL using a probabilistic while loop:

\[
\forall c, b, a. \quad \text{while } c \cdot b \cdot a = \text{if } c(a) \text{ then bind } (b \cdot a) \text{ (while } c \cdot b) \text{ else unit } a
\]
Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
- Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - ωLP Verification Condition Generator
 - Example Verifications
- Conclusion
Example: The Uniform(3) Distribution

- First make a raw definition of \textit{unif3}:

 \[\vdash \text{unif3} = \]

 \[\text{while } (\lambda n. n = 3) \]

 \[(\text{coin_flip } (\text{coin_flip } (\text{unit } 0) \ (\text{unit } 1)) \ (\text{coin_flip } (\text{unit } 2) \ (\text{unit } 3))) \ 3 \]

- Next prove \textit{unif3} satisfies probabilistic termination.

- This allows us to derive a recursive definition of \textit{unif3}:

 \[\vdash \text{unif3} = \text{coin_flip } (\text{coin_flip } (\text{unit } 0) \ (\text{unit } 1)) \ (\text{coin_flip } (\text{unit } 2) \ \text{unif3}) \]

- The correctness theorem also follows:

 \[\vdash \forall n. \ P\{s \mid \text{fst } (\text{unif3 } s) = n\} = \text{if } n < 3 \text{ then } \frac{1}{3} \text{ else } 0 \]
Example: Optimal Dice

A probabilistic finite state automaton:

dice =
coin_flip
(prob_repeat
 (coin_flip
 (coin_flip
 (coin_flip
 (unit none)
 (unit (some 1)))
 (mmap some
 (coin_flip
 (unit 2)
 (unit 3)))))
 (prob_repeat
 (coin_flip
 (mmap some
 (coin_flip
 (unit 4)
 (unit 5)))
 (coin_flip
 (unit (some 6))
 (unit none))))
Example: Optimal Dice

- Correctness theorem:

\[\forall n. \mathbb{P}\{ s \mid \text{fst}(\text{dice } s) = n\} = \text{if } 1 \leq n \land n \leq 6 \text{ then } \frac{1}{6} \text{ else } 0 \]

- The dice program takes $3\frac{2}{3}$ coin flips (on average) to output a dice throw.

- Knuth and Yao (1976) show this to be optimal.

- To generate the sum of two dice throws, is it possible to do better than $7\frac{1}{3}$ coin flips?
Example: Optimal Dice

On average, this program takes \(\frac{47}{18} \) coin flips to produce a result, and this is also optimal.

\[
\forall n. \quad P\{s \mid \text{fst (two_dice s)} = n\} = \\
\text{if } n = 2 \lor n = 12 \text{ then } \frac{1}{36} \\
\text{else if } n = 3 \lor n = 11 \text{ then } \frac{2}{36} \\
\text{else if } n = 4 \lor n = 10 \text{ then } \frac{3}{36} \\
\text{else if } n = 5 \lor n = 9 \text{ then } \frac{4}{36} \\
\text{else if } n = 6 \lor n = 8 \text{ then } \frac{5}{36} \\
\text{else if } n = 7 \text{ then } \frac{6}{36} \\
\text{else 0}
\]
Example: Random Walk

- A drunk exits a pub at point n, and lurches left and right with equal probability until he hits home at point 0.

- Will the drunk always get home?
Example: Random Walk

- Perhaps surprisingly, the drunk does always get home.
 - We formalize the proof of this in HOL.
 - Thus the formalized random walk satisfies probabilistic termination.

- This allows us to derive a natural definition of walk:

\[
\begin{align*}
\vdash \ \forall n, k. \\
& \text{walk } n \ k = \\
& \quad \text{if } n = 0 \text{ then unit } k \text{ else} \ \\
& \quad \text{coin_flip (walk } (n+1) \ (k+1)) \ (\text{walk } (n-1) \ (k+1))
\end{align*}
\]

- And prove some neat properties:

\[
\begin{align*}
\vdash \ \forall n, k. \ \forall^* s. \
& \text{even } (\text{fst (walk } n \ k \ s)) = \text{even } (n + k)
\end{align*}
\]
Example: Random Walk

- Can extract walk to ML and simulate it.
 - Use high-quality random bits from `/dev/random`.
- A typical sequence of results from random walks starting at level 1:

 57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, …

- Record breakers:
 - 34th simulation yields a walk with 2645 steps
 - 135th simulation yields a walk with 603787 steps
 - 664th simulation yields a walk with 1605511 steps
- Expected number of steps to get home is infinite!
Example: Miller-Rabin Primality Test

The Miller-Rabin algorithm is a probabilistic primality test, used by commercial software such as Mathematica.

We formalize the test as a HOL function \texttt{miller}, and prove:

\[
\vdash \forall n, t, s. \text{prime } n \Rightarrow \text{fst (miller } n \ t \ s) = \top
\]
\[
\vdash \forall n, t. \neg \text{prime } n \Rightarrow 1 - 2^{-t} \leq \Pr \{s \mid \text{fst (miller } n \ t \ s) = \bot\}
\]

Here \(n \) is the number to test for primality, and \(t \) is the maximum number of iterations allowed.
Example: Miller-Rabin Primality Test

- Can define a pseudo-random number generator in HOL, and interpret `miller` in the logic to prove numbers composite:

\[\vdash \lnot \text{prime}(2^{26} + 1) \land \lnot \text{prime}(2^{27} + 1) \land \lnot \text{prime}(2^{28} + 1) \]

- Or can manually extract `miller` to ML, and execute it using `/dev/random` and calls to GMP:

<table>
<thead>
<tr>
<th>bits</th>
<th>El,n</th>
<th>MR</th>
<th>Gen time</th>
<th>MR1 time</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>99424</td>
<td>99458</td>
<td>0.0443</td>
<td>0.2498</td>
</tr>
<tr>
<td>1000</td>
<td>99712</td>
<td>99716</td>
<td>0.0881</td>
<td>0.7284</td>
</tr>
<tr>
<td>2000</td>
<td>99856</td>
<td>99852</td>
<td>0.3999</td>
<td>4.2910</td>
</tr>
</tbody>
</table>
Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - \textit{wlp} Verification Condition Generator
 - Example Verifications
- Conclusion
Introduction: pGCL

- pGCL stands for probabilistic Guarded Command Language.
- It’s Dijkstra’s GCL extended with probabilistic choice

\[c_1 \ p \oplus \ c_2 \]

- Like GCL, the semantics is based on weakest preconditions.
- **Important:** retains demonic choice

\[c_1 \ \boxslash \ c_2 \]

- Developed by Morgan et al. in the Programming Research Group, Oxford, 1994–
Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - \texttt{wp} Verification Condition Generator
 - Example Verifications
- Conclusion
pGCL Semantics

- Given a standard program C and a postcondition Q, let P be the weakest precondition that satisfies

$$[P]C[Q]$$

- Precondition P is weaker than P' if $P' \Rightarrow P$.

- Such a P will always exist and be unique, so think of C as a function that transforms postconditions into weakest preconditions.

- pGCL generalizes this to probabilistic programs:
 - Conditions $\alpha \rightarrow \mathbb{B}$ become expectations $\alpha \rightarrow \text{posreal}$.
 - Expectation P is weaker than P' if $P' \sqsubseteq P$.
 - Think of programs as expectation transformers.
Model pGCL commands with a HOL datatype:

\[
\text{command} \equiv \text{Assert of } (\text{state} \rightarrow \text{posreal}) \times \text{command} \\
\mid \text{Abort} \\
\mid \text{Skip} \\
\mid \text{Assign of string } \times (\text{state} \rightarrow \mathbb{Z}) \\
\mid \text{Seq of command } \times \text{command} \\
\mid \text{Demon of command } \times \text{command} \\
\mid \text{Prob of } (\text{state} \rightarrow \text{posreal}) \times \text{command} \times \text{command} \\
\mid \text{While of } (\text{state} \rightarrow \mathbb{B}) \times \text{command}
\]

Note: the probability in Prob can depend on the state.
Derived Commands

Define the following *derived commands* as syntactic sugar:

\[
\begin{align*}
v & := e & \equiv & \text{Assign } v e \\
c_1 \; ; \; c_2 & \equiv & \text{Seq } c_1 \; c_2 \\
c_1 \; \triangleright \; c_2 & \equiv & \text{Demon } c_1 \; c_2 \\
c_1 \; p \oplus \; c_2 & \equiv & \text{Prob } (\lambda s. \; p) \; c_1 \; c_2 \\
\text{Cond } b \; c_1 \; c_2 & \equiv & \text{Prob } (\lambda s. \; \text{if } b \; s \; \text{then } 1 \; \text{else } 0) \; c_1 \; c_2 \\
v & := \{e_1, \ldots, e_n\} & \equiv & v := e_1 \; \triangleright \; \cdots \; \triangleright \; v := e_n \\
v & := \langle e_1, \ldots, e_n \rangle & \equiv & v := e_1 \; 1/n \oplus \; v := \langle e_2, \ldots, e_n \rangle \\
p_1 \rightarrow c_1 \mid \cdots \mid p_n \rightarrow c_n & \equiv & \\
& \begin{cases}
\text{Abort} & \text{if none of the } p_i \text{ hold on the current state} \\
\prod_{i \in I} c_i & \text{where } I = \{ i \mid 1 \leq i \leq n \land p_i \text{ holds} \}
\end{cases}
\end{align*}
\]

In addition, we write \(v := n + 1 \) instead of \("v" := \lambda s. \; s \; "n" \; + \; 1 \).
Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

\[
\vdash (wp \ (\text{Assert} \ p \ c) = wp \ c) \\
\land (wp \ \text{Abort} = \lambda r. \ \text{Zero}) \\
\land (wp \ \text{Skip} = \lambda r. \ r) \\
\land (wp \ (\text{Assign} \ v \ e) = \lambda r, s. \ r \ (\lambda w. \ \text{if} \ w = v \ \text{then} \ e \ s \ \text{else} \ s \ w)) \\
\land (wp \ (\text{Seq} \ c_1 \ c_2) = \lambda r. \ wp \ c_1 \ (wp \ c_2 \ r)) \\
\land (wp \ (\text{Demon} \ c_1 \ c_2) = \lambda r. \ \text{Min} \ (wp \ c_1 \ r) \ (wp \ c_2 \ r)) \\
\land (wp \ (\text{Prob} \ p \ c_1 \ c_2) = \\
\quad \lambda r, s. \ \text{let} \ x \leftarrow \lfloor p \ s \rfloor \leq 1 \ \text{in} \ x(wp \ c_1 \ r \ s) + (1 - x)(wp \ c_2 \ r \ s)) \\
\land (wp \ (\text{While} \ b \ c) = \\
\quad \lambda r. \ \text{expect}_\text{lfp} \ (\lambda e, s. \ \text{if} \ b \ s \ \text{then} \ wp \ c \ e \ s \ \text{else} \ r \ s))
\]
Weakest Preconditions: Example

- The goal is to end up with variables i and j containing the same value:

\[\text{post} \equiv \text{if } i = j \text{ then } 1 \text{ else } 0. \]

- First program:

\[\text{pd} \equiv i := \langle 0, 1 \rangle \land j := \{0, 1\} \]
\[\vdash \wp \text{ pd } \text{post} = \text{Zero} \]

- Second program:

\[\text{dp} \equiv j := \{0, 1\} \land i := \langle 0, 1 \rangle \]
\[\vdash \wp \text{ dp } \text{post} = \lambda s. 1/2. \]
Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - \(\text{wlp Verification Condition Generator} \)
 - Example Verifications
- Conclusion
Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

\[\vdash (wlp \ (Assert \ p \ c) = wlp \ c) \]
\[\land (wlp \ \text{Abort} = \lambda r. \ Magic)\]
\[\land (wlp \ \text{Skip} = \lambda r. \ r)\]
\[\land (wlp \ (Assign \ v \ e) = \lambda r, s. \ r \ (\lambda w. \ \text{if} \ w = v \ \text{then} \ e \ s \ \text{else} \ s \ w))\]
\[\land (wlp \ (Seq \ c_1 \ c_2) = \lambda r. \ wlp \ c_1 \ (wlp \ c_2 \ r))\]
\[\land (wlp \ (Demon \ c_1 \ c_2) = \lambda r. \ \text{Min} \ (wlp \ c_1 \ r) \ (wlp \ c_2 \ r))\]
\[\land (wlp \ (Prob \ p \ c_1 \ c_2) = \]
\[\quad \lambda r, s. \ \text{let} \ x \leftarrow [p \ s]_{\leq 1} \ \text{in} \ x(wlp \ c_1 \ r \ s) + (1 - x)(wlp \ c_2 \ r \ s))\]
\[\land (wlp \ (While \ b \ c) = \]
\[\quad \lambda r. \ \text{expect}_\text{gfp} \ (\lambda e, s. \ \text{if} \ b \ s \ \text{then} \ wlp \ c \ e \ s \ \text{else} \ r \ s))\]
Weakest Liberal Preconditions: Example

- We illustrate the difference between \(wp \) and \(wlp \) on the simplest infinite loop:

\[
\text{loop} \equiv \text{While } (\lambda s. \top) \text{ Skip}
\]

- For any postcondition \(post \), we have

\[
\vdash wp \text{ loop } post = \text{Zero} \land wlp \text{ loop } post = \text{Magic}
\]

- These correspond to the Hoare triples

\[
[\bot] \text{ loop } [post] \quad \{\top\} \text{ loop } \{post\}
\]

as we would expect from an infinite loop.
Calculating wlp Lower Bounds

- Suppose we have a pGCL command c and a postcondition q.
- We wish to derive a lower bound on the weakest liberal precondition.
- Can think of this as the first-order query $P \sqsubset wlp\ c\ q$.
- **Idea:** use a Prolog interpreter to solve for the variable P.
Calculating wlp: Rules

Example Rules:

- Magic $\sqsubseteq \text{wlp} \text{ Abort } Q$
- $Q \sqsubseteq \text{wlp} \text{ Skip } Q$
- $R \sqsubseteq \text{wlp} \ C_2 \ Q \ \land \ \ P \sqsubseteq \text{wlp} \ C_1 \ R \ \Rightarrow$
 \[P \sqsubseteq \text{wlp} \ (\text{Seq} \ C_1 \ C_2) \ Q \]
- $P_1 \sqsubseteq \text{wlp} \ C_1 \ Q \ \land \ \ P_2 \sqsubseteq \text{wlp} \ C_2 \ Q \ \Rightarrow$
 \[\text{Min} \ P_1 \ P_2 \sqsubseteq \text{wlp} \ (\text{Demon} \ C_1 \ C_2) \ Q \]

Note: the Prolog interpreter automatically calculates the ‘middle condition’ in a Seq command.
Calculating wlp: While Loops

- We use the following theorem about While loops:

$$\vdash \forall P, Q, b, c. \quad P \sqsubseteq \text{If } b \ (wlp \ c \ P) \ Q \Rightarrow P \sqsubseteq wlp \ (\text{While } b \ c) \ Q$$

- Cannot use in this form, because of the repeated occurrence of P in the premise.

- Instead, provide a rule that requires an assertion:

$$R \sqsubseteq wlp \ C \ P \ \land \ P \sqsubseteq \text{If } b \ R \ Q \ \Rightarrow$$

$$P \sqsubseteq wlp \ (\text{Assert } P \ (\text{While } b \ c)) \ Q$$

- The second premise generates a verification condition as an extra subgoal.

- It is left to the user to provide a useful loop invariant in the Assert around the while loop.
Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - \(wlp \) Verification Condition Generator
- Example Verifications
- Conclusion
Example: Monty Hall

contestant \textit{switch} \equiv \begin{align*}
 pc &:= \{1, 2, 3\} ; \\
c c &:= \langle 1, 2, 3 \rangle ; \\
 & \quad \text{if } pc \neq 1 \land cc \neq 1 \quad \rightarrow \quad ac := 1 \\
 | & \quad \text{if } pc \neq 2 \land cc \neq 2 \quad \rightarrow \quad ac := 2 \\
 | & \quad \text{if } pc \neq 3 \land cc \neq 3 \quad \rightarrow \quad ac := 3 ; \\
 & \text{if } \neg \text{switch} \text{ then Skip else} \\
 c c &:= (\text{if } cc \neq 1 \land ac \neq 1 \text{ then } 1 \\
 & \quad \text{else if } cc \neq 2 \land ac \neq 2 \text{ then } 2 \text{ else } 3) \\
\end{align*}

The postcondition is simply the desired goal of the contestant, i.e.,

\[\text{win} \equiv \text{if } cc = pc \text{ then } 1 \text{ else } 0. \]
Example: Monty Hall

- Verification proceeds by:
 1. Rewriting away all the syntactic sugar.
 2. Expanding the definition of wp.
 3. Carrying out the numerical calculations.

- After 22 seconds and 250536 primitive inferences in the logical kernel:

 $\vdash wp \text{(contestant } switch) \text{ win } \equiv \lambda s. \text{ if } switch \text{ then } 2/3 \text{ else } 1/3$

- In other words, by switching the contestant is twice as likely to win the prize.

- Not trivial to do by hand, because the intermediate expectations get rather large.
Example: Rabin Mutual Exclusion

- Suppose N processors are executing concurrently, and from time to time some of them need to enter a critical section of code.

- The mutual exclusion algorithm of Rabin (1982, 1992) works by electing a leader who is permitted to enter the critical section:
 1. Each of the waiting processors repeatedly tosses a fair coin until a head is shown
 2. The processor that required the largest number of tosses wins the election.
 3. If there is a tie, then have another election.

- Could implement the coin tossing using

 $$n := 0 ; \ b := 0 ; \ While \ (b = 0) \ (n := n + 1 ; \ b := \langle 0, 1 \rangle)$$
Example: Rabin Mutual Exclusion

For our verification, we do not model \(i \) processors concurrently executing the above voting scheme, but rather the following data refinement of that system:

1. Initialize \(i \) with the number of processors waiting to enter the critical section who have just picked a number.
2. Initialize \(n \) with 1, the lowest number not yet considered.
3. If \(i = 1 \) then we have a unique winner: return SUCCESS.
4. If \(i = 0 \) then the election has failed: return FAILURE.
5. Reduce \(i \) by eliminating all the processors who picked the lowest number \(n \) (since certainly none of them won the election).
6. Increment \(n \) by 1, and jump to Step 3.
Example: Rabin Mutual Exclusion

The following pGCL program implements this data refinement:

\[
\text{rabin} \equiv \text{While } (1 < i) (\\
\quad n := i ; \\
\quad \text{While } (0 < n) \\
\quad \quad (d := \langle 0, 1 \rangle ; i := i \mod d ; n := n - 1) \\
\quad)
\]

The desired postcondition representing a unique winner of the election is

\[
\text{post} \equiv \text{if } i = 1 \text{ then 1 else 0}
\]
Example: Rabin Mutual Exclusion

- The precondition that we aim to show is

\[pre \equiv \text{if } i = 1 \text{ then } 1 \text{ else if } 1 < i \text{ then } 2/3 \text{ else } 0 \]

“For any positive number of processors wanting to enter the critical section, the probability that the voting scheme will produce a unique winner is 2/3, except for the trivial case of one processor when it will always succeed.”

- Surprising: The probability of success is independent of the number of processors.

- We formally verify the following statement of partial correctness:

\[pre \sqsubseteq \text{wp rabin } post \]
Example: Rabin Mutual Exclusion

- Need to annotate the While loops with invariants.
- The invariant for the outer loop is simply `pre`.
- For the inner loop we used

 \[
 \begin{align*}
 \text{if } 0 \leq n \leq i \text{ then } & (2/3) \times \text{invar1 } i \ n + \text{invar2 } i \ n \text{ else } 0 \\
 \text{where } \\
 \text{invar1 } i \ n & \equiv 1 - (\text{if } i = n \text{ then } (n + 1)/2^n \text{ else if } i = n + 1 \text{ then } 1/2^n \text{ else } 0) \\
 \text{invar2 } i \ n & \equiv \text{if } i = n \text{ then } n/2^n \text{ else if } i = n + 1 \text{ then } 1/2^n \text{ else } 0
 \end{align*}
 \]

- Coming up with these was the hardest part of the verification.
Example: Rabin Mutual Exclusion

The verification proceeded as follows:

1. Create the annotated program annotated_rabin.
2. Prove $\text{wlp rabin} = \text{wlp annotated_rabin}$
3. Use this to reduce the goal to

 $$\text{pre} \sqsubseteq \text{wlp annotated_rabin post}$$

4. This is in the correct form to apply the VC generator.
5. Finish off the VCs with 58 lines of HOL-4 proof script.

|-$\text{Leq}\ (\	ext{s. if s"i" = 1 then 1 else if 1 < s"i" then 2/3 else 0})$

\(\text{(wlp rabin (\text{s. if s"i" = 1 then 1 else 0}))}\)
Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - \(\mu p \) Verification Condition Generator
 - Example Verifications
- Conclusion
Conclusion

Advantages of Monad Approach

- Grounded in measure theory.
 - Probabilities more than real numbers.
- More suitable for verifying functional programs.
 - Simple to lift verified HOL functions to ML.
- Can reason about the distinction between probabilistic and guaranteed termination.
 - Practical difference: operating systems typically provide a source of random bits.
Conclusion

Advantages of pGCL Approach

- Supports the demonic choice programming construct.
 - Can be used to verify distributed algorithms.
- Verification easier to carry out than monad approach.
 - Modelling programs with expectation transformers is a useful abstraction.
- Deep embedding: can quantify over all programs.
 - May be useful for modelling a ‘spy’ in a security protocol verification.

Future Work: combine these approaches to get the best of both worlds.
Related Work

- Formal methods for probabilistic programs:
 - Probabilistic invariants for probabilistic machines, Hoang et. al., 2003.
 - Christine Paulin’s work in Coq, 2002.
 - Prism model checker, Kwiatkowska et. al., 2000–

- Mechanized program semantics:
 - Mechanizing program logics in higher order logic, Gordon, 1989.
Related Work

- Semantics of Probabilistic Programs:
 - Probabilistic predicate transformers, Morgan, Mclver, Seidel and Sanders, 1994–
 - *Proof Rules for Probabilistic Loops*, Morgan, 1996