Formally Verified ARM Code

Joe Hurd
Computing Laboratory
University of Oxford

High Confidence Software and Systems
Thursday 10 May 2007

Joint work with Anthony Fox (Cambridge), Mike Gordon (Cambridge) and Konrad Slind (Utah)
Talk Plan

1. Introduction
2. Elliptic Curve Cryptography
3. Formalized ARM Code
4. Verified Implementations
5. Summary
Motivation: How to ensure that low level cryptographic software is both correct and secure?

- Critical application, so need to go beyond bug finding to assurance of correctness.

Project goal: Create formally verified ARM implementations of elliptic curve cryptographic algorithms.

- This talk will recap project material presented at HCSS last year, followed by work done this year.
Illustrating the Verification Flow

- Elliptic curve ElGamal encryption
- Key size = 320 bits

- Verified ARM machine code
Assumptions and Guarantees

- **Assumptions** that must be checked by humans:
 - **Specification:** The formalized theory of elliptic curve cryptography is faithful to standard mathematics.
 - **Model:** The formalized ARM machine code is faithful to the real world execution environment.

- **Guarantee** provided by formal methods:
 - The resultant block of ARM machine code faithfully implements an elliptic curve cryptographic algorithm.
 - Functional correctness + a security guarantee.

- Of course, there is also an implicit assumption that the HOL4 proof assistant is working correctly.
Developed by Mike Gordon’s Hardware Verification Group in Cambridge, first major release was HOL88.

Latest release called HOL4, developed jointly by Cambridge, Utah and ANU.

Models written in a functional language.

Reasoning in Higher Order Logic.
Elliptic Curve Cryptography
Elliptic Curve Cryptography

- First proposed in 1985 by Koblitz and Miller.
- Part of the 2005 NSA Suite B set of cryptographic algorithms.
- Certicom the most prominent vendor, but there are many implementations.

Advantages over standard public key cryptography:
- Known theoretical attacks much less effective,
- so requires much shorter keys for the same security,
- leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:
- Patent uncertainty surrounding many implementation techniques.
- The algorithms are more complex, so it’s harder to implement them correctly.
Formalized Elliptic Curve Cryptography

- Formalized theory of elliptic curve cryptography mechanized in the HOL4 proof assistant.
- The definitions of elliptic curves, rational points and elliptic curve arithmetic come from the textbook *Elliptic Curves in Cryptography*, by Ian Blake, Gadiel Seroussi and Nigel Smart.
- Designed to be easy for an evaluator to see that the formalized definitions are a faithful translation of the textbook definitions.
Example Elliptic Curve: $Y^2 + Y = X^3 - X$
Blake, Seroussi and Smart define negation of elliptic curve points using affine coordinates:

“Let E denote an elliptic curve given by

$$E : Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6$$

and let $P_1 = (x_1, y_1)$ [denote a point] on the curve. Then

$$-P_1 = (x_1, -y_1 - a_1 x_1 - a_3).$$"
Assurance of the Specification

How can evidence be gathered to check whether the formal specification of elliptic curve cryptography is correct?

1. Comparing the formalized version to a standard mathematics textbook.
2. Deducing properties known to be true of elliptic curves.
3. Deriving checkable calculations for example curves.

The elliptic curve cryptography specification can be checked using all three methods.
Negation is formalized by cases on the input point, which smoothly handles the special case of O:

Constant Definition

```plaintext
curve_neg e = 
let f = e.field in
...
let a3 = e.a3 in
curve_case e (curve_zero e)
  (λx1 y1.
    let x = x1 in
    let y = ~y1 - a1 * x1 - a3 in
    affine f [x; y])
```

"$-P_1 = (x_1, -y_1 - a_1x_1 - a_3)$"
Checking the Spec 2: Deducing Known Properties

Negation maps points on the curve to points on the curve.

Theorem

\[\forall e \in \text{Curve}. \forall p \in \text{curve_points } e. \text{curve_neg } e \ p \in \text{curve_points } e \]
Example elliptic curve from a textbook exercise (Koblitz 1987).

Example

```plaintext
ec = curve (GF 751) 0 0 1 750 0

⊢ ec ∈ Curve

⊢ affine (GF 751) [361; 383] ∈ curve_points ec

⊢ curve_neg ec (affine (GF 751) [361; 383]) = affine (GF 751) [361; 367]

⊢ affine (GF 751) [361; 367] ∈ curve_points ec
```
Our compiler is a hybrid of traditional compiler verification and translation validation.

- Verified compiler \equiv proving the compiler correct.
- Translation validation \equiv proving each compilation correct.

Source language is an executable subset of higher order logic.

- The only supported types are tuples of word32s.
- A fixed set of supported word operations.
- Functions must be first order and tail recursive.

Target language is ARM machine code.

- Behaviour of instructions determined by operational semantics formalized in higher order logic.
Compiler Overview

- Front end is entirely source-to-source translation (by proof).
 - Terms are not *visible* in the logic.
 - No AST representation of programs in front end.
- Translate source (recursive) function to combinator form, and then to ANF (administrative normal form).
 - These translations are *semantic* versions of the standard syntax manipulations for CPS.
 - Register allocation done by standard graph-colouring algorithm. Nice trick from Hickey and Nogin delivers an α-convertible version of the function.
- Back end proof uses Hoare Logic to orchestrate the *synthesis* of a program that is provably equal to the combinatory form.
 - Further into the back end, is pretty conventional compiler verification technology.
Theorem

\[
\forall s : \text{arm_state}.
\quad (\text{run_arm} \ <\text{instructions}>\ s)\langle r2 \rangle = \text{Fact32} (s\langle r0 \rangle, s\langle r1 \rangle)
\]

and we can extract the instructions to a more readable form:

Code

- **Name**: Fact32
- **Arguments**: (r0, r1)
- **Returns**: r2
- **Body**:
 0: cmp r0, #0iw
 1: beq + (6)
 2: sub r3, r0, #1iw
 3: mul r2, r0, r1
 4: mov r0, r3
 5: mov r1, r2
 6: bal - (6)
 7: mov r2, r1
ARM6 Datapath
ARM6 Verification Project

- ARMv3 Instruction Set Architecture (ISA) modelled in functional subset of higher order logic.
- ARM6 microarchitecture also modelled in higher order logic.
- Models proved equivalent using the HOL4 proof assistant.
 - Took a year, but would be much quicker now.
 - Infrastructure developed (e.g., for reasoning about words).
- CPU and memory separately modelled.
 - Simple memory model currently used for software execution.
 - More realistic models possible (future research).
Formalized ARM Instruction Set

- Started from formal model of ARMv3 ISA verified against a model of the ARM6 microarchitecture.
- Upgraded ISA model to ARMv4 (ARMv5, Thumb planned).
 - Can formally reason about a wider range of ARM programs.
 - **Caution:** Upgrades are not verified against a processor model.
 - An ML processor simulator can be automatically extracted from the ISA model; executes 10,000 instructions per second.
- **Central problem:** How to reason about real ARM programs?
 - Exceptions, finite memory, and status flags.
 - Must specify the processor state changed by an instruction.
 - **Worse:** Must specify the state *not changed* by an instruction.
Specifications for ARM Code

- Myreen uses the \star operator of separation logic to create Hoare triples for ARM code that obey the frame rule:

$$\frac{\{P\} \ C \ \{Q\}}{\{P \star R\} \ C \ \{Q \star R\}}$$

- This avoids having to specify all the processor state that the code C doesn’t change.

- Specifications of the ARM move and store instructions:

 $\{R \ a \ x \ \star \ R \ b \ _\}$ $\{R \ a \ x \ \star \ R \ b \ (addr \ y) \ \star \ M \ y \ _\}$

 MOV b, a STR a, [b]

 $\{R \ a \ x \ \star \ R \ b \ x\}$ $\{R \ a \ x \ \star \ R \ b \ (addr \ y) \ \star \ M \ y \ x\}$

- Instruction specifications are derived from the processor model.
Show that the decrement-and-store instruction

$$\{ R \ a \ x \ \ast \ R \ b \ (addr \ y) \ \ast \ M \ (y - 1) _ \}$$

STR \(a, \ [b, \# - 4]! \)

$$\{ R \ a \ x \ \ast \ R \ b \ (addr \ (y - 1)) \ \ast \ M \ (y - 1) _x \}$$

can be used as a stack push, where

$$stack \ y \ [x_0, \ldots, x_{m-1}] \ n \equiv R \ 13 \ (addr \ y) \ast \ M \ (y + m - 1) \ x_{m-1} \ \ast \ldots \ast \ M \ y \ x_0 \ \ast \ M \ (y - 1) _ \ast \ldots \ast \ M \ (y - n) _$$

\[[x_{m-1}, \ldots, x_0] \quad \text{empty slots} \]
Example: Deriving Specifications

Show that the decrement-and-store instruction

\[
\{ R a \times R b (addr \ y) \times M (y - 1) \times P \} \\
STR a, [b, \# - 4]! \\
\{ R a \times R b (addr (y - 1)) \times M (y - 1) \times P \}
\]

can be used as a stack push, where

\[
\begin{align*}
\text{stack } y \ [x_0, \ldots, x_{m-1}] \ n & \equiv R 13 (addr \ y) \times \\
M (y + m - 1) x_{m-1} \cdot \cdots \cdot M y x_0 \times & M (y - 1) \cdot \cdots \cdot M (y - n) \cdot \\
[x_{m-1}, \ldots, x_0] & \underbrace{\text{empty slots}}
\end{align*}
\]
Example: Deriving Specifications

Show that the decrement-and-store instruction

\[
\{ R \ a \ x * \ \text{stack} \ y \ \text{xs} \ (n + 1) \} \\
\text{STR} \ a, \ [13, \# - 4]!
\{ R \ a \ x * \ \text{stack} \ (y - 1) \ (x :: \text{xs}) \ n \}
\]

can be used as a stack push, where

\[
\text{stack} \ y \ [x_0, \ldots, x_{m-1}] \ n \equiv R \ 13 \ (\text{addr} \ y) * \\
\underbrace{M \ (y + m - 1) \ x_{m-1} * \cdots * M \ y \ x_0 \ * \ M \ (y - 1) \ _{\cdots}^* M \ (y - n) _{\text{empty slots}}}_{[x_{m-1}, \ldots, x_0]}
\]
The Verification Flow

- A formal specification of elliptic curve cryptography derived from mathematics (Hurd, Cambridge).
- A verifying compiler from higher order logic functions to a low level assembly language (Slind & Li, Utah).
- A verifying back-end targeting ARM code (Tuerk, Cambridge).
- A specification language for ARM code (Myreen, Cambridge).
- A high fidelity model of the ARM instruction set derived from a processor model (Fox, Cambridge).

The whole verification takes place in the HOL4 proof assistant.
Elliptic Curve Cryptography: Example 0

Test the machinery with a tiny elliptic curve cryptography library implementing ElGamal encryption using the example curve

\[Y^2 + Y = X^3 - X \]

over the field GF(751).

The first step of the verification flow is the subset of higher order logic:

Constant Definition

```plaintext
add_mod_751 (x : word32, y : word32) =
let z = x + y in
if z < 751 then z else z - 751
```
Tuerk has created a prototype that emits a set of functions in the HOL subset as a C library, for testing purposes.

```c
word32 add_mod_751 (word32 x, word32 y) {
    word32 z;
    z = x + y;
    word32 t;
    if (z < 751) {
        t = z;
    } else {
        t = z - 751;
    }
    return t;
}
```
Using Slind & Li’s compiler with Tuerk’s back-end targeting Myreen’s Hoare triples for Fox’ ARM machine code:

Theorem

\[\forall x \; y. \quad \text{ARM_SPEC} \]

\[(R \; 0w \; x \; * \; R \; 1w \; y \; * \; \neg \; S) \]

\[(\text{MAP assemble} \]

\[\begin{align*}
\text{ADD} \; \text{AL} \; \text{F} \; 0w \; 0w \; (\text{Dp}_\text{shift}_\text{immediate} \; (\text{LSL} \; 1w) \; 0w); \\
\text{MOV} \; \text{AL} \; \text{F} \; 1w \; (\text{Dp}_\text{immediate} \; 0w \; 239w); \\
\text{ORR} \; \text{AL} \; \text{F} \; 1w \; 1w \; (\text{Dp}_\text{immediate} \; 12w \; 2w); \\
\text{CMP} \; \text{AL} \; 0w \; (\text{Dp}_\text{shift}_\text{immediate} \; (\text{LSL} \; 1w) \; 0w); \; \text{B} \; \text{LT} \; 3w;
\end{align*} \]

\[\begin{align*}
\text{MOV} \; \text{AL} \; \text{F} \; 1w \; (\text{Dp}_\text{immediate} \; 0w \; 239w); \\
\text{ORR} \; \text{AL} \; \text{F} \; 1w \; 1w \; (\text{Dp}_\text{immediate} \; 12w \; 2w); \\
\text{SUB} \; \text{AL} \; \text{F} \; 0w \; 0w \; (\text{Dp}_\text{shift}_\text{immediate} \; (\text{LSL} \; 1w) \; 0w); \\
\text{B} \; \text{AL} \; 16777215w \\
\end{align*} \]

\[(R \; 0w \; (\text{add}_\text{mod}_\text{751} \; (x, y)) \; * \; \neg \; R \; 1w \; * \; \neg \; S) \]
Iyoda has a verifying hardware compiler that accepts the same HOL subset as Slind & Li’s compiler.

It generates a formally verified netlist ready to be synthesized:

Theorem

\[\forall clk \vdash \text{InfRise} \]
\[(\exists v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}. \)
\[\text{DTYPE} (\text{clk}, \text{load}, v_3) \land \text{COMB} (\neg (v_3, v_2)) \land \]
\[\text{COMB} (\text{UNCURRY} (\land) (v_2 \leftrightarrow \text{load}, v_1)) \land \text{COMB} (\neg (v_1, \text{done})) \land \]
\[\text{COMB} (\text{UNCURRY} (\lor) (v_1 \leftrightarrow \text{inp1}, v_2, v_8)) \land \text{CONSTANT} 751w v_7 \land \]
\[\text{COMB} (\text{UNCURRY} (\land) (v_{10} \leftrightarrow v_9, v_4)) \land \]
\[\text{COMB} ((\lambda (sw, in_1, in_2). (\text{if} \ sw \ \text{then} \ in_1 \ \text{else} \ in_2)) \)
\[(v_6 \leftrightarrow v_5 \leftrightarrow v_4, v_0) \land \exists v. \text{DTYPE} \ v (\text{clk}, v_0, \text{out})) \implies \]
\[\text{DEV add_mod_751} \]
\[(\text{load at clk}, (\text{inp1} \leftrightarrow \text{inp2}) \text{ at clk}, \text{done at clk}, \text{out at clk}) \]
Results So Far

- So far only initial results—both verifying compilers need extending to handle full elliptic curve cryptography examples.
- The ARM compiler can compile simple 32 bit field operations.
- The hardware compiler can compile field operations with any word length, but with 320 bit numbers the synthesis tool runs out of FPGA gates.
This talk has given an overview of the project to generate formally verified elliptic curve cryptography in ARM code.

There's much work still to be done to generate, say, a formally verified ARM code implementation of ECDSA.

It would be interesting to extend the C output to generate reference implementations in other languages (e.g., Cryptol).