
Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Maintaining Verified Software

Joe Leslie-Hurd

Intel Corp.
joe.leslie-hurd@intel.com

Haskell Symposium
23 September 2013

Joe Leslie-Hurd Maintaining Verified Software 1 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Talk Plan

1 Haskell Package Dependencies

2 Logical Theory Dependencies

3 Verified Haskell Packages

4 Summary

Joe Leslie-Hurd Maintaining Verified Software 2 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Code Reuse Using Haskell Packages

The Haskell language and platform conspire to make it easy
for developers to build on the work of others.

Example: Consider a Haskell package foo that pulls in useful
functionality from packages bar and baz:

foo

bar baz

Warning! The behaviour (and thus correctness) of foo
depends on the behaviour of bar and baz.

Joe Leslie-Hurd Maintaining Verified Software 3 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Package Dependency Graphs

Packages bar and baz

may also depend on other
packages.

Recursively expand these
dependencies to construct
the package dependency
graph.

Correctness of foo
depends on the behaviour
of every reachable
package.

foo

bar baz

quux wibble

thud

Joe Leslie-Hurd Maintaining Verified Software 4 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Evolving Package Dependencies

New versions of packages
are constantly being
released.

Package foo has no direct
control over which version
of quux it is built upon.

Correctness of foo may
depend on the behaviour
of future versions of
reachable packages.

You are now in Haskell
dependency hell.

foo

bar baz

quux wibble

thud

Joe Leslie-Hurd Maintaining Verified Software 5 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

OpenTheory Project

The OpenTheory project aims to bring the benefits of
software engineering to theorem proving.1

OpenTheory logical theory packages offer an alternative to
Haskell dependency hell:

1 Formally verified Haskell packages can be automatically
synthesized from OpenTheory logical theory packages.

2 Haskell package dependencies can be automatically
synthesized by reasoning on logical theory packages.

This Talk: We will present this technique in two parts:
1 Checking dependencies between logical theories.
2 Instantiating to formally verified Haskell packages.

1Theory engineering, or “proving in the large.”
Joe Leslie-Hurd Maintaining Verified Software 6 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Talk Plan

1 Haskell Package Dependencies

2 Logical Theory Dependencies

3 Verified Haskell Packages

4 Summary

Joe Leslie-Hurd Maintaining Verified Software 7 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Logical Theory Packages

A theory Γ . ∆ of higher order logic consists of:
1 A set Γ of assumptions.
2 A set ∆ of theorems.
3 A formal proof that the theorems in ∆ logically derive from

the assumptions in Γ.

The OpenTheory standard package format for higher order
logic theories allows us to:

Liberate theories from the theorem proving system in which
they were created.
Compose theories from different origins.
Process theories with a diverse array of tools.

Joe Leslie-Hurd Maintaining Verified Software 8 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Proof Articles

TINY EXAMPLE ARTICLE

#

Construct the hypothesis list

nil

Construct the conclusion term

"T"

const

"bool"

typeOp

nil

opType

constTerm

1

def

Import an assumption: ` T

axiom

Export a theorem: ` T

nil

1

remove

thm

Higher order logic proofs are
encoded as standard article files.

Articles are executed by a
stack-based virtual machine.

Articles can import assumptions
Γ and export theorems ∆.

The result is a theory Γ . ∆.

Theory (Tiny example result)

1 external type operator: bool

1 external constant: T

1 assumption:

` T

1 theorem:

` T

Joe Leslie-Hurd Maintaining Verified Software 9 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Basic Theory Packages

A basic theory package wraps a proof article with some
meta-data.

We depict theory packages Γ . ∆ as named proof boxes that
build up from an assumption set Γ to a theorem set ∆.

Theory (Basic theory package)

name: foo-thm

version: 1.0

author: Joe Leslie-Hurd <joe@gilith.com>

main {

article: "foo-thm.art"

}

theory theorems

foo-thm

theory assumptions

Joe Leslie-Hurd Maintaining Verified Software 10 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Required Theory Packages

Theorems of required theories listed in a package must
collectively satisfy all theory assumptions.

In this way we can specify and check logical dependencies
between a collection of theory packages.

Theory (Required theories)

name: foo-thm

version: 1.0

author: JLH <joe@gilith.com>

requires: foo-def

requires: foo-lem

main {

article: "foo-thm.art"

}

foo-def foo-lem

foo-thm

Joe Leslie-Hurd Maintaining Verified Software 11 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Nested Theory Packages

Theory (Nested theories)

name: foo

version: 1.0

author: JLH <joe@gilith.com>

def {

package: foo-def-1.0

}

lem {

package: foo-lem-1.0

}

thm {

import: def

import: lem

package: foo-thm-1.0

}

main {

import: thm

}

Theory packages can contain
nested theories.

Proofs of nested theories are
replayed (with optional
renaming of symbols).

foo

foo-def foo-lem

foo-thm

Joe Leslie-Hurd Maintaining Verified Software 12 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Building Logical Theories

Importing a theory Γ . ∆ into a theorem set Θ means:
1 Grounding all external symbols with defined symbols in Θ
 results in a substitution σ

2 Satisfying all assumptions Γ[σ] with theorems in Θ
 results in a theorem set ∆[σ]

Building a theory package Γ . ∆ means proving all of its
theorems ‘from scratch’:

1 Recursively build every required theory package Γi . ∆i

 results in a theorem set Θi

2 Import the theory Γ . ∆ into
⋃

i Θi

 results in a theorem set ∆[σ]

Joe Leslie-Hurd Maintaining Verified Software 13 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

What Can Go Wrong?

Circular Reasoning: Theory package dependency graphs
must not contain any loops!

Theory packages are representations of proofs, which are
directed acyclic graphs.

Inconsistent Definitions: The same symbol name must not
be defined in multiple required theory packages.

Example: The two theories

∅ . {` c = 0} and ∅ . {` c = 1}

are individually fine, but must never be required by the same
theory package.

Joe Leslie-Hurd Maintaining Verified Software 14 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Theory Dependency Checking

A theory dependency graph is up-to-date if the following pass:

Global Checks of the Theory Graph
1 No cycles.
2 Definitional consistency.

Local Checks of Required Theories
1 No unsatisfied assumptions.
2 No ungrounded external symbols.

foo

bar c = 1

c = 0

Spoiler Alert! Cabal package selection will take care of everything
except no unsatisfied assumptions.

Joe Leslie-Hurd Maintaining Verified Software 15 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Incremental Theory Dependency Checking

There is an efficient incremental algorithm for local
dependency checking of a theory package:

1 Initialize by carrying out local dependency checking with the
latest versions of the required theory packages.

2 Suppose for each required theory package we have found a
version range such that every version selection is guaranteed to
pass local dependency checking.

3 Efficiently test whether adding an earlier version of a required
theory package will preserve local dependency checking.

In this way we can automatically compute maximal version
ranges of required theory packages.

Joe Leslie-Hurd Maintaining Verified Software 16 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Talk Plan

1 Haskell Package Dependencies

2 Logical Theory Dependencies

3 Verified Haskell Packages

4 Summary

Joe Leslie-Hurd Maintaining Verified Software 17 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

The Logical Theory of a Haskell Package

defined symbols
satisfying properties

foo

external symbols
satisfying assumptions

Explicit: Symbols and their types.

Build tools can use them to
automatically match dependencies.
Explains propensity of Haskellers
to encode all properties in types.

Implicit: All other properties.

Invisible to build tools.
Some properties can be encoded as
tests (assertions/QuickCheck).
Package assumptions must be
encoded as version ranges.

Idea: Automatically match dependencies between formally verified
Haskell packages where all properties are explicit.

Joe Leslie-Hurd Maintaining Verified Software 18 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Formal Verification of Haskell Packages

There is a well-known correspondence between higher order
logic functions and a pure subset of the Haskell language.2

Developing Formally Verified Haskell:
1 Manually define type operators and constants in higher order

logic, and prove properties of them.
2 Automatically synthesize Haskell from these properties using a

shallow embedding.

The synthesis tool operates at the package level:

[OpenTheory package] 7→ [Haskell package]

Important: The theory dependencies of the OpenTheory
package must faithfully model the Haskell package.

2Haftmann, From Higher-Order Logic to Haskell, PEPM 2010.
Joe Leslie-Hurd Maintaining Verified Software 19 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Inside the OpenTheory Package

Consider the OpenTheory package haskell-foo:

haskell-foo

haskell-
foo-def

haskell-
foo-src

haskell-
foo-test

1 def: Defining ‘Haskell’ symbols in terms of higher order logic.

2 src: Deriving computational forms for the Haskell symbols.

3 test: Deriving executable properties of the Haskell symbols.

Joe Leslie-Hurd Maintaining Verified Software 20 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Example OpenTheory Package: haskell-prime

1 haskell-prime-def: Define the Haskell symbols:

` H.Prime.all = Prime.all

Defining new symbols ensures theory dependencies will be
traced back to this package.

2 haskell-prime-src: Derive computational forms:

` H.Prime.all = H.unfold H.Prime.next H.Prime.initial

These proofs depend on theories of all Haskell symbols that
appear in the computational forms.

3 haskell-prime-test: Derive executable properties:

` H.nth H.Prime.all 0 6= 0

Joe Leslie-Hurd Maintaining Verified Software 21 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Automatically Synthesizing a Haskell Package

1 The Haskell source code is generated by pretty-printing the
computational forms in the src nested package:

all :: [OpenTheory.Natural]

all = OpenTheory.unfold next initial

2 A QuickCheck test suite is generated from the executable
properties in the test nested package:

assertion0 :: Bool

assertion0 = not (OpenTheory.nth all 0 == 0)

3 Most of the Haskell package meta-data is derived from the
OpenTheory package meta-data:

name: opentheory-prime

version: 1.25

Joe Leslie-Hurd Maintaining Verified Software 22 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Verified Haskell Package Dependencies

Problem: Even a verified Haskell package will not work
correctly in a bad environment.

Key Idea: Check verified software dependencies by formal
reasoning on logical theories.

Cabal package selection already takes care of the necessary
global dependency checks.

Use logical theories to generate version ranges of required
packages that satisfy local dependency checks.

Solution: Call the incremental algorithm for theory
dependency checking to automatically synthesize the Haskell
package build-depends meta-data.

Joe Leslie-Hurd Maintaining Verified Software 23 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Verified Haskell Package Examples

The synthesis scheme
was tested on some
example packages.

They are all available
on Hackage.

Code (opentheory-prime)

build-depends:

base >= 4.0 && < 5.0,

random >= 1.0.1.1 && < 2.0,

QuickCheck

>= 2.4.0.1 && < 3.0,

opentheory-primitive

>= 1.0 && < 2.0,

opentheory >= 1.73 && <= 1.74

opentheory-primitive, QuickCheck, random, base

opentheory

opentheory-
parser

opentheory-
char

opentheory-
prime

Joe Leslie-Hurd Maintaining Verified Software 24 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Packaging Verified Software

Using theory packages for verified software addresses many of the
logistical needs:

Distribution: Download software from repos, check the
proofs, and install on your local machine.

Versioning: Developers can release new versions of software,
obsolete packages can be marked.

Upgrade: Can statically guarantee that an upgrade will be
safe, so long as the required properties still hold of the new
version.

Joe Leslie-Hurd Maintaining Verified Software 25 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Theory Repository

Joe Leslie-Hurd Maintaining Verified Software 26 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Talk Plan

1 Haskell Package Dependencies

2 Logical Theory Dependencies

3 Verified Haskell Packages

4 Summary

Joe Leslie-Hurd Maintaining Verified Software 27 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Summary

This talk demonstrated how to perform verified software
dependency checking by formal reasoning on logical theories.3

The Haskell instantiation of this technique was greatly
simplified by the language and platform.

One obstacle was the absence of a built-in Natural type of
infinite precision non-negative integers—could this be added?

3“Bringing the benefits of logical theories back to software engineering!”
Joe Leslie-Hurd Maintaining Verified Software 28 / 30

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Any Questions?

joe.leslie-hurd@intel.com @gilith

gilith.com/research/opentheory

Joe Leslie-Hurd Maintaining Verified Software 29 / 30

joe.leslie-hurd@intel.com
@gilith
gilith.com/
re
sear
ch/opentheory

Haskell Package Dependencies Logical Theory Dependencies Verified Haskell Packages Summary

Ungrounded External Symbols

Consider the theory package divides-def:

Γ . { ` ∀m, n. divides m n ⇐⇒ ∃ k . k ∗m = n}

The external constant ∗ appears in the theorem but not in the
assumptions Γ.

There’s no logical problem because no properties of ∗ are
assumed in this theory.

But during theory import all external symbols must be
grounded to defined ones.

To prevent ∗ from being an ungrounded symbol, it must
appear in the theorems of at least one required theory.

Joe Leslie-Hurd Maintaining Verified Software 30 / 30

	Haskell Package Dependencies
	Logical Theory Dependencies
	Verified Haskell Packages
	Summary

