
Applications of Polytypism in Theorem Proving

Konrad Slind1 and Joe Hurd2

1 School of Computing, University of Utah
2 Computer Laboratory, University of Cambridge

Abstract. Polytypic functions have mainly been studied in the con-
text of functional programming languages. In that setting, applications
of polytypism include elegant treatments of polymorphic equality, pret-
typrinting, and the encoding and decoding of high-level datatypes to and
from low-level binary formats. In this paper, we discuss how polytyp-
ism supports some aspects of theorem proving: automated termination
proofs of recursive functions, incorporation of the results of metalan-
guage evaluation, and equivalence-preserving translation to a low-level
format suitable for propositional methods. The approach is based on an
interpretation of higher order logic types as terms, and easily deals with
mutual and nested recursive types.

1 Introduction

When a new datatype is declared in a functional language, or a higher order
logic proof system, many functions on that type can be automatically defined.
Prime examples of this are maps and folds, of course, but there are also many
others: if we think of a datatype declaration facility as a way of introducing a
particular shape of tree, common tree operations become immediately definable
once such a shape is introduced. Examples include computing the number of
nodes in a tree, substitution, hashing, marshalling, etc. Such a function is said
to be polytypic, since its algorithm is the same, modulo the shape of the tree.

We discuss three applications of polytypism to theorem proving:

1. Size functions, which support automated termination proofs.
2. Functions for transporting values from meta-language to object-language.
3. Encoding and decoding functions, which support automated translation from

high-level HOL formulas to equivalent boolean formulas.

Our approach is based on an interpretation [[]]Θ,Γ of higher order logic types
into terms. The interpretation is parameterized by two maps: Θ, which maps
type variables; and Γ , which maps type operators.

[[v]]Θ,Γ = Θ(v), if v is a type variable
[[(τ1, ..., τn)c]]Θ,Γ = Γ (c) [[τ1]]Θ,Γ · · · [[τn]]Θ,Γ , otherwise

This interpretation is similar to the semantics of HOL types given by
Pitts [15]. Although the interpretation is not itself expressible in the HOL logic,
it is expressible in the meta-language (which for us is ML), and uses definitions
made in the object logic each time a datatype is defined.

D. Basin and B. Wolff (Eds.): TPHOLs 2003, LNCS 2758, pp. 103–119, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

104 K. Slind and J. Hurd

2 Notation and Background Definitions

We use the HOL logic [15] to develop our ideas. The syntax of HOL is based
on signatures for types and terms. The type signature Ω assigns arities to type
operators. The set of HOL types is the least set closed under the following rules:

type variable. There is a countable set of type variables. Greek letters, e.g.,
α, β, etc. will be used to stand for type variables.

compound type. If c in Ω has arity n, and each of τ1, . . . τn is a type, then
(τ1, . . . , τn)c is a type.

A type constant is represented by a 0-ary compound type. The initial types
found in Ω: truth values (bool), function space (written α → β), and ind, an
infinite set of individuals, can be used to definitionally construct a large collection
of types. Readers interested in the details of the definition principle used to
extend Ω may can consult [15].
Datatypes. A inductive datatype τ declared as an instance of the scheme

(α1, . . . , αm)τ ≡ C1 ty11 . . . ty1k1 | . . . | Cn tyn1 . . . tynkn
,

where all the type variables in ty11 . . . tynkn
are in {α1, . . . , αm}, denotes the

set of all values that can be finitely built up by application of the constructors
C1, . . . , Cn. Constructors are injective, and applications of different constructors
always yield different values. The type is recursive if any tyij in the type decla-
ration is (α1, . . . , αm)τ . A characterizing theorem of the following form can be
derived for inductive types [21]:

∀f1 . . . fn. ∃!H : (α1, . . . , αm)τ → β.
∀x11 . . . x1k1 . H(C1 x11 . . . x1k1) = f1(H x11) . . . (H x1k1) x11 . . . x1k1 ∧

... ∧
∀xn1 . . . xnkn

. H(Cn xn1 . . . xnkn
) = fn(H xn1) . . . (H xnkn

) xn1 . . . xnkn
.

This theorem embodies the primitive recursion principle for functions over the
specified type. More complex datatypes, featuring mutual and nested recursion,
allow similar theorems to be proved for them [17,18,5]. We will make use of the
following types (given in SML syntax):

1. datatype ’a option = NONE | SOME of ’a
2. datatype ’a list = [] | :: of ’a * ’a list
3. datatype ’a tree = Node of ’a * ’a tree list
4. datatype (’a,’b)exp = Var of ’a

| Cond of (’a,’b)bexp * (’a,’b)exp * (’a,’b)exp
| App of ’b * (’a,’b)exp list

and (’a,’b)bexp = Less of (’a,’b)exp * (’a,’b)exp
| And of (’a,’b)bexp * (’a,’b)bexp
| Not of (’a,’b)bexp

The first two declaration are for the well-known types of options and poly-
morphic lists, the third is a type of finitely branching trees, and the fourth is a
mutually recursive type of expressions and boolean expressions.

Applications of Polytypism in Theorem Proving 105

Miscellaneous definitions. The K combinator is defined K ≡ λxy.x. The first
and second components of a pair are selected by fst(x, y) ≡ x and snd(x, y) ≡ y
respectively; and the (SOME x) ≡ x returns the element from an option. The
function I applies an interpretation to a term:

IΘ,Γ (M : τ) = [[τ]]Θ,Γ (M) .

Note. Although constructors in ML take a single argument tuple, by default
constructors in HOL are curried.

3 Wellfounded Relations for Datatypes

In a logic of total functions such as HOL, the termination of recursive function
definitions must be proved. A simple and yet effective approach is to show that
the arguments of all recursive calls decrease in size. Therefore, it is common
practice to define size measures on datatypes. The following formal definitions
and theorems provide justification (where WF : (α → α → bool) → bool is a
predicate that singles out the wellfounded relations):

inv image R f ≡ λx y. R (f x) (f y) � WF(R) ⊃ WF (inv image R f)
measure ≡ inv image (<) � ∀f : α → num. WF (measure f)

Thus termination of a recursive function over a type τ may be proved by
showing that the recursive calls are in the relation measure(sizeτ). Thinking of
an element of a datatype as a tree, it is standard to define its size as one plus
the sum of the sizes of the subtrees (leaves are assigned a size of zero).1 We now
encounter a problem: how to define size for polymorphic datatypes? For example,
it would be easy, natural, and unsatisfactory—for our notion of size, which is
the number of internal nodes in a tree—to define the size of a list as its length:
length does not capture the size of a list of numbers, or a list of lists. Moreover,
how are we to capture, in a single definition, the sizes of lists of elements of types
not yet defined? It seems that the notion of size for a polymorphic type would
have to know about all types that have been defined in the past, and also all
types that could be defined in the future!

We solve this polymorphic quandry by mapping each type variable in the type
to a term variable representing a size function. Thus, we intend to define the size
of elements of datatype (α1, . . . , αn)τ as a higher order function parameterized
by n size functions, one for each type variable:

τ size (f1 :α1 →num) . . . (fn :αn →num) (x : (α1, . . . , αn)τ) ≡ . . .

A general way to construct such definitions uses [[]]Θ,Γ . The idea is to tra-
verse the type, and build a term by replacing type operators by size functions
(by use of Γ), and type variables by parameters (by use of Θ). Thus Γ maps
previously defined type operators to their associated size functions, and Θ maps
α1, . . . , αn to f1, . . . , fn.
1 This seems to be motivated by the desire to have the size of Peano numerals be the

identity function.

106 K. Slind and J. Hurd

Definition 1 (Datatype size).
Suppose datatype (α1, . . . , αn)τ has been defined, with constructors C1, . . . , Ck

in size context Γ . Create function variables (f1 :α1 →num), . . . , (fn :αn →num),
and let Θ be {α1 �→ f1, . . . , αn �→ fn}. Extend Γ with a binding for size τ :

∆ = λtyop. if tyop = τ then size τ else Γ (tyop).

Then define

size τ f1 . . . fn Ci ≡ 0, if Ci is nullary; otherwise,
size τ f1 . . . fn (Ci x1 . . . xm) ≡ 1 +

∑m
i=1 IΘ,∆(xi)

Example 1. Size definitions for our example types:

– Lists:
list size f [] = 0
list size f (h :: t) = 1 + f h + list size f t.

– Trees:

tree size f (Node x tlist) = 1 + fx + list size (tree size f) tlist .

– Expressions, boolean expressions, and expression lists:

esize f g (Var a) = 1 + f a
esize f g (Cond b e1 e2) = 1 + bsize f g b + esize f g e1 + esize f g e2
esize f g (App fn �) = 1 + g fn + elsize f g �
bsize f g (Less e1 e2) = 1 + esize f g e1 + esize f g e2
bsize f g (And e1 e2) = 1 + bsize f g e1 + bsize f g e2
bsize f g (Not b) = 1 + bsize f g b
elsize f g [] = 0
elsize f g (h :: t) = 1 + esize f g h + elsize f g t

This approach to defining the size of datatype elements becomes particu-
larly useful when dealing with functions defined over instances of polymorphic
datatypes.

Example 2. Consider a polymorphic function flat : α list list → α list for removing
a level of bracketing from a list:

flat [] ≡ []
flat ([] :: �) ≡ flat �

flat ((h :: t) :: �) ≡ h :: flat (t :: �).

Note that simply measuring the length of the argument will not prove termina-
tion. To show that flat terminates, we first ensure that Γ contains list �→ list size,
and that Θ ≡ {α �→ K 0}. Then

[[α list list]]Θ,Γ = list size (list size (K 0)),

Applications of Polytypism in Theorem Proving 107

and proving termination of flat can be done by showing that the recursive calls of
flat lie in the relation measure (list size (list size (K 0))), i.e., making the informal
abbreviation M ≡ list size (K 0), by showing

1. list size M � < list size M ([] :: �)
= 1 + M [] + list size M �

2. list size M (t :: �) = 1 + M t + list size M �
< list size M ((h :: t) :: �)
= 1 + M (h :: t) + list size M �
= 1 + (1 + (K 0) h + M t) + list size M �
= 1 + (1 + M t) + list size M �

This kind of derivation is straightforward to automate: [[−]] is used to con-
struct a measure on the sizes of recursive calls and then the resulting problem
is reduced via rewriting to a problem in linear arithmetic. This has been imple-
mented for several years in the HOL-4 system. Such termination proofs fail either
because the termination relation is wrong or because the automated termination
condition prover is too weak. For example, termination of the following ‘higher
order recursion’ fails to be proved automatically: the size measure is correct but
the termination prover is currently too weak, since it doesn’t attempt induction.

Example 3. Consider a function for accumulating the node elements of a tree
into a set (using ‘foldl’, a fold on lists):

Nodeset (Node v �) = foldl (λacc t. acc ∪ Nodeset t) {v} �

The size measure for this definition is measure (tree size (K 0)), and the synthe-
sized termination requirement [25, pages 131-133] is

∃R. WF R ∧ ∀v � t. mem t � ⊃ R t (Node v �).

Using the size measure as a witness results in a goal

∀� t. mem t � ⊃ tree size(K 0) t < list size (tree size (K 0)) � + 1

which is provable by induction on �.

A typical Γ would include at least the following:

type size definition
τ1 ∗ τ2 prod size f g (x, y) ≡ f x + g y
τ1 + τ2 sum size f g (INL x) ≡ f x

sum size f g (INR y) ≡ g y
bool bool size x ≡ 0
num num size x ≡ x
option option size f NONE ≡ 0

option size f (SOME x) ≡ 1 + (f x)

108 K. Slind and J. Hurd

Remarks. The size of a pair is just the sum of the sizes of the two projections:
since pairs are not recursive, it is not useful (for the purposes of termination
proofs) to add one to the sum. The size of an element of a sum type is just the
size of the injected item: since sum constructors are used as discriminatory tags,
any nesting of INL and INR should be ignored in the computation of an object’s
size. We have found this to be a useful approach when proving termination of
mutually recursive functions, which are modelled using sum types [6]. As a map,
Γ is partial: if a type constructor is not in Γ , then all elements of that type are
deemed to be of a fixed size. For example, functions have a fixed size (zero).

Summary. In this section we have examined a way to automatically generate
size measures for datatypes, and sketched a method for automated termination
proofs of recursive functions. The approach is naive, especially compared to the
work in [11,12]. However, our size measures automatically prove termination for
a relatively large class of functions and can be used as the base relation in more
powerful relations (multiset, rpo, etc), so our work is of general utility.

4 Lifting of Metalanguage Values

Although evaluation by means of deductive steps can be implemented in HOL
in an asymptotically efficient way [2], it is still very attractive to be able to
execute ground terms—when possible—with a more efficient engine, such as
the ML implementation underlying HOL. A recent example of this is [4], in
which ML is used to evaluate recursive functions and (some) inductive relations
defined in Isabelle/HOL. Other systems that exploit the speed of evaluation in
the implementation language are ACL2 and PVS [22,24]. These two systems are
based in LISP, the reflective capabilities of which make for a smooth passage
back and forth between meta- and object- languages.

However, current logic implementations with an ML-evaluation feature have
the drawback that answers computed at the ML level are not automatically lifted
back into object-language terms. This is somewhat unsatisfying since we’d like
to make use of the following diagram:

HOL M �
Deductive evaluation

� M = N

ML M �
ML evaluation

N
�

drop
�

lift

Such a system—mapping HOL terms to ML expressions, performing ML eval-
uation, and lifting the result back to HOL—is useful with large formalizations.
For example, in a recent model of the ARM [9,10], deductive evaluation of ARM
assembly programs achieves a speed of a few tens of instructions per second.

Applications of Polytypism in Theorem Proving 109

In contrast, much higher execution speeds for hardware models have been re-
ported with ACL2, which compiles and evaluates formal definitions directly in
the underlying LISP implementation. We would like to attain similar speeds in
HOL.

It is relatively easy to drop HOL terms—it is just a matter of prettyprinting
to ML syntax—but lifting is more difficult, because the lifter depends on the type
of the data to be lifted and so can’t be written once and forall as an ML function.
Of course, if the results of ML execution aren’t needed in the object logic, the
lifting step can be dispensed with. However, it may be that results computed
in ML can find other application, e.g., existential witnesses or counterexamples
may be found by external tools, and then lifted to terms in proofs.

Our approach is to interpret a HOL type2 �τ� into an ML program which
will lift an ML value M : τ to a HOL term �M : τ�. We will have to modify our
interpretation so that it explicitly passes the type. This allows, for example, the
lifting of [] : num list.

[[τ]]Θ,Γ = Θ(τ), if τ is a type variable
[[τ]]Θ,Γ = Γ (c) τ [[τ1]]Θ,Γ · · · [[τn]]Θ,Γ where τ = (τ1, ..., τn)c

This is analogous to the difference between primitive recursion and iteration,
an issue explored in a slightly different context by Weirich [26].

Definition 2 (Datatype lifting). Suppose datatype (α1, . . . , αn)τ has been
defined in HOL, with constructors C1, . . . , Ck in lifter context Γ . Also assume
that the same datatype has been declared in ML. Create ML function variables
(f1 : α1 → term), . . . , (fn : αn → term), and let Θ be {α1 �→ f1, . . . , αn �→ fn}.
Extend Γ with a binding for lift τ :

∆ = λtyop. if tyop = τ then lift τ else Γ (tyop).

Then define the ML function

lift τ τ f1 . . . fn (Ci (x1, . . . , xm)) ≡ �Ci (IΘ,∆(x1)) . . . (IΘ,∆(xm)) : τ�.

Example 4. The lifter lift list : hol type → (α → term) → α list → term for the
datatype of lists is :

lift list ty f [] ≡ �[] : ty�
lift list ty f (h :: t) ≡ �f h :: lift list ty f t�.

The actual definition made in our implementation is more contorted, mainly in
order to avoid type instantiations at each node in the list.

An inference rule ML EVAL that reduces ground HOL terms by ML evaluation
can be easily implemented by dropping the given term M : τ , evaluating M in
2 The notation �−� is used to distinguish HOL types and terms from ML types and

expressions.

110 K. Slind and J. Hurd

ML, and then using τ to synthesize and apply a lifter to the result, yielding a
HOL term N . The result is then asserted as an oracle theorem � M = N having
an attached tag that attests to the ML excursion [23]. Thus theorems generated
by ML EVAL are weakened by the meta-language excursion, but the speed-up
may be worth it in some cases.

Example 5. The improvement of execution speed for ground formulas is as ex-
pected: deductively evaluating (with EVAL) the standard factorial function over
the first twenty-one numbers takes 3.6 seconds and 123,520 primitive inference
steps.

- Count.apply EVAL (Term ‘Map Fact (iota 0 20)‘);
runtime: 3.625s, gctime: 0.331s, systime: 3.625s.
HOL primitive inference steps: 123520.
> val it = |- Map Fact (iota 0 20) =

[1; 1; 2; 6; 24; 120; 720; 5040; 40320; 362880; 3628800; 39916800;
479001600; 6227020800; 87178291200; 1307674368000; 20922789888000;
355687428096000; 6402373705728000; 121645100408832000;
2432902008176640000] : thm

In contrast, the expression sent to ML by ML EVAL

lift list �: num list� (lift num �: num�)
(Map Fact (iota (numML.fromString”0”)(numML.fromString”20”)))

wraps the lifter generated from the type num list around the ML expression
generated from the HOL term Map Fact (iota 0 20) and takes 0.03 seconds and
one inference step.

5 Encoding and Decoding

It is common in computer science to create operations that package up high-level
data as flat strings of bits, and corresponding operations to unpack strings of
bits and recover the high-level data. When this is done to send data over a com-
munication network, it is called marshalling/unmarshalling, but we will use the
general terminology encoding/decoding or just coding. An advantage of encoding
high-level data as strings of bits is that operations such as encryption or com-
pression can be uniformly applied to any kind of data. An interesting application
of coding in HOL is the mapping of high-level formulas into equivalent quantified
boolean formulas suitable for input to the powerful SAT implementations that
have recently become popular.

5.1 Encoders

Intuitively, an encoding function can be thought of simply as an injective function
τ → bool list mapping elements of type τ to lists of booleans. The injectivity
condition prevents two elements of τ being encoded as the same list of booleans,
and so guarantees that if a list can be decoded then the decoding will be unique.

Encoding functions can be automatically defined when a new datatype is
declared, in exactly the same way as the size functions of Section 3.

Applications of Polytypism in Theorem Proving 111

Definition 3 (Datatype encoding).
Suppose datatype (α1, . . . , αn)τ has been defined, with k constructors

C1, . . . , Ck in encoding context Γ . Create function variables (f1 : α1 →
bool list), . . . , (fn : αn → bool list), and let Θ be {α1 �→ f1, . . . , αn �→ fn}. Ex-
tend Γ with a binding for encode τ :

∆ = λtyop. if tyop = τ then encode τ else Γ (tyop).

Then define

encode τ f1 . . . fn (Ci (x1 :τ1) . . . (xm :τm))
≡ marker k i @ (IΘ,∆(x1)) @ · · · @ (IΘ,∆(xm))

where @ represent the list append function, and marker k i is the ith boolean list
of length N (N is the smallest natural number satisfying k ≤ 2N .)

Example 6. The encoding function for the datatype of lists:

encode list f [] ≡ [⊥] ∧
encode list f (h :: t) ≡ :: f h @ encode list f t

Lists have two constructors, which are distinguished in each case of encode list
by the prepending of marker 2 0 = [⊥] and marker 2 1 = [].

The marker lists are designed to be just long enough to be able to distin-
guish between the datatype constructors. Lists have two constructors, and so
the marker lists have length one. A datatype with eight constructors would need
marker lists of length three. As the next example shows, nothing needs to be
altered in the special case of a datatype with a single constructor.

Example 7. The encoding function for the datatype of trees:

encode tree e (Node a b) ≡ e a @ encode list (encode tree e) b

Since the tree datatype has only one constructor, the encoding function prepends
marker 1 0 = [] to the result (and this gets simplified away).

The final example we present shows the definition of a custom encoder. Al-
though encoders are automatically defined for every datatype declared, the user
may wish to override the automatic definition with an alternative version, or to
provide an encoder for a non-datatype.

Example 8. The encoding function for the type num of natural numbers:

encode num n ≡ if n = 0 then [;]
else if even n then ⊥ :: encode num ((n − 2) div 2)
else :: ⊥ :: encode num ((n − 1) div 2)

Note that in the even case, recursing with (n − 2) div 2 instead of n div 2 leads
to a more compact encoding.

112 K. Slind and J. Hurd

A typical environment Γ for encoding functions would include at least:

type encoder
τ1 ∗ τ2 encode prod f g (x, y) ≡ f x @ g y
τ1 + τ2 encode sum f g (INL x) ≡ ⊥ :: f x

encode sum f g (INR y) ≡ :: g y
bool encode bool x ≡ [x]
option encode option f NONE ≡ [⊥]

encode option f (SOME x) ≡ :: f x
num encode num (defined above)
τ list encode list (defined above)

As can be seen, function spaces are omitted completely from this list; we cannot
simply return a default value (as we did for size functions) because we require
that all encoders are injective functions. On the other hand, we include the list
type because lists play such a fundamental role in encoding.

5.2 Decoders: Existence

A decoder for type τ is an algorithm that takes as input a list of booleans and
returns an element of type τ . The strategy we will present makes it possible to
build decoders in a type-directed way. The key is to think of a decoder for type
τ as a function

decode τ : bool list → (τ × bool list) option

This function tries to ‘parse’ an input list of booleans into an element of type τ ,
and if it succeeds then it returns the element of τ together with the list of booleans
that were left over. If it fails to parse the input list, it signals this by returning
NONE. A standard decoding function of type bool list → τ can be recovered from
decode τ using the function 〈·〉, defined as 〈decode τ〉 ≡ fst ◦ the ◦ decode τ .

Given some datatype (α1, . . . , αn)τ , we would like to specify decode τ as the
inverse of encode τ . For a given domain predicate P , the coder P e d property
requires that the encoder e and decoder d are mutually inverse:

coder P e d ≡ ∀ l, x, t. P x ⊃ ((l = e x@ t) ⇐⇒ (d l = SOME (x, t)))

This allows us to use encode τ to define the specification of decode τ :

coder P1 e1 d1 ∧ · · · ∧ coder Pn en dn ⊃
coder (all τ P1 . . . Pn) (encode τ e1 . . . en) (decode τ d1 . . . dn)

The function all τ lifts the predicates Pi : αi → bool to a predicate of the datatype
(α1, . . . , αn)τ , and has type

all τ : (α1 → bool) → · · · → (αn → bool) → (α1, . . . , αn)τ → bool

Similarly to size τ and encode τ functions, we can use polytypism to define an
all τ function whenever a new datatype is declared.

Applications of Polytypism in Theorem Proving 113

It turns out that there exists a decode τ satisfying the above specification
precisely when encode τ is prefix-free on domain all τ P1 . . . Pn, where

prefixfree P e ≡ ∀x, y. P x ∧ P y ∧ is prefix (e x) (e y) ⊃ x = y

Since every list l satisfies is prefix l l, being prefix-free is a stronger property on
encode τ than being an injective function. Therefore, the following theorem is all
we need to show the existence of a decode τ satisfying the above specification:

prefixfree P1 e1 ∧ · · · ∧ prefixfree Pn en ⊃
prefixfree (all τ P1 . . . Pn) (encode τ e1 . . . en)

Our scheme of defining encoders using marker lists means that it would not be
difficult to provide a polytypic tactic that proves this theorem automatically for
every new datatype.

Once we have proved the existence of decoder functions satisfying the above
specification, the final step is to pick an arbitrary one (using the axiom of choice)
to define a new constant called decode τ .

5.3 Decoders: Recursion Equations

Given a new datatype (α1, . . . , αn)τ , we have shown how to use polytypism to
define decode τ as the inverse of encode τ . This is a useful sanity check, demon-
strating that it is always possible to uniquely decode an element of τ that was
previously encoded as a boolean list.

Unfortunately, the specification of decode τ is not in a form that allows us to
directly execute it on a boolean list. However, using polytypism once again we
can write down a set of recursion equations for decode τ , and then use logical
inferences to show that they follow from the specification.

Example 9. The recursion equations for decode bool:

decode bool [] ≡ NONE ∧
decode bool (h :: t) ≡ SOME (h, t)

In other words, the only time we fail to decode an element of type bool is when
we are given the empty list.

Deriving the recursion equations for a decoder proceeds by case analysis
on the input list, followed by application of the decoder specification and the
definition of the corresponding encoder. This proof strategy also works when the
recursion equations for a decoder are recursive, as is the case for the list type.

Example 10. The recursion equations for decode list:

reducing d ⊃
decode list d [] ≡ NONE ∧
decode list d (⊥ :: l) ≡ SOME ([], l) ∧
decode list d (:: l) ≡

case d l of NONE → NONE
| SOME (h, l′) → case decode list d l′ of NONE → NONE

| SOME (t, l′′) → SOME (h :: t, l′′)

114 K. Slind and J. Hurd

Termination of the recursion equations is ensured by the reducing d side-
condition, which requires that the boolean list returned by d is always a sublist
of its input (all decoders will satisfy this property).

From the previous example we can see that in general the recursion equa-
tions for decode τ will be co-recursive and have side-conditions requiring the sub-
decoders d1, . . . , dn to satisfy reducing. Such definitions combined with higher-
order recursion can produce some entertaining problems, and we finish with a
particularly tricky example.

Example 11. The recursion equations for decode tree:

reducing d ⊃
decode tree d l ≡

case d l of NONE → NONE
| SOME (a, l′) → case decode list (decode tree d) l′ of NONE → NONE

| SOME (b, l′′) → SOME (Node a b, l′′)

Because we defined decode tree as the inverse of encode tree, we can first prove
that reducing (decode tree d) holds, and then make use of the decode list recursion
equations to derive the decode tree recursion theorems. However, without such a
back door it appears to be difficult to define this kind of function in HOL, and
we present decode tree as a challenge example for termination proving.

Example 12. Executing an encoder followed by a decoder.

encode list encode num [1; 2] = [; ; ⊥; ; ; ; ⊥; ; ; ⊥]
decode list decode num [; ; ⊥; ; ; ; ⊥; ; ; ⊥] = SOME ([1; 2], [])

5.4 Converting Formulas to Boolean Form

Up to this point we have only applied encoders to ground datatype terms, but
to create versions of problems suitable for SAT solvers or model checkers we
need to convert whole formulas to boolean form, in particular handling variables
properly. Our translation methodology has much in common with that used
in bounded model checking to map temporal logic formulas to propositional
logic [1]. We first define the boolean propagation theorems which we use to replace
the functions and predicates in the formula with boolean versions.

Definition 4 (Boolean propagation theorems). For every function

f : τ1 → · · · → τn → τ

of arity n that occurs in formulas to be converted to boolean form, we must define
a version

f̂ : bool list → · · · → bool list → bool list

that operates on boolean lists. The boolean propagation theorem for f is

f (〈decode τ1〉 x1) . . . (〈decode τn〉 xn) = 〈decode τ〉 (f̂ x1 . . . xn).

Applications of Polytypism in Theorem Proving 115

Similarly, for each predicate P : τ1 → · · · → τn → bool,
we define a boolean version P̂ : bool list → · · · → bool list → bool
and prove the theorem P (〈decode τ1〉 x1) . . . (〈decode τn〉 xn)= P̂ x1 . . . xn.

Secondly, we show how to convert quantifiers over high-level datatypes to
quantifiers over boolean variables.

Definition 5 (Boolean variable introduction). We define two predicates:
the first selects elements of a type τ that encode to a particular length of boolean
list, and the second selects boolean lists that are decodable.

width d n x ≡ ∃ l. (length l = n) ∧ (d l = SOME (x, []))
decodable d l ≡ ∃x. d l = SOME (x, [])

Now we can prove the following quantifier conversion theorems:

(∀x. width d n x ⊃ P x) ≡ ∀ l. (length l = n) ∧ decodable d l ⊃ P (〈d〉 l)
(∃x. width d n x ∧ P x) ≡ ∃ l. (length l = n) ∧ decodable d l ∧ P (〈d〉 l)

We assume that all quantifiers over type τ are restricted by a width decode τ n
predicate where n is a concrete natural number.

By repeatedly applying boolean variable introduction and the boolean prop-
agation theorems throughout a formula over high-level datatypes, it will be con-
verted into a formula over boolean lists. Only the subformulas containing free
variables will be left in their original form. The final step is to reduce the quanti-
fiers over boolean lists to quantifiers over boolean variables, and we do this with
the following rewrites:

(∀ l. length l = 0 ⊃ P l) ≡ P []
(∀ l. length l = suc n ⊃ P l) ≡ ∀ l. length l = n ⊃ ∀ b. P (b :: l)
(∃ l. length l = 0 ∧ P l) ≡ P []
(∃ l. length l = suc n ∧ P l) ≡ ∃ l. length l = n ∧ ∃ b. P (b :: l)

5.5 Example: Missionaries and Cannibals

We end our discussion of encoding and decoding with a classic example: three
missionaries and three cannibals initially stand on the left bank of a river, and
there is a boat available that can carry two people. The aim is get the whole
party to the right bank of the river, without ever getting in the situation where
the cannibals outnumber the missionaries on either bank. Gordon [13] solved
a generalized version of this problem using an embedding of a BDD package
into HOL-4. Here we show how to convert the transition relation of the standard
problem into boolean form. Following Gordon, we will represent the state as
a triple (m, c, b) where m ≤ 3 is the number of missionaries on the left bank,
c ≤ 3 is the number of cannibals on the left bank, and b is a boolean that is true

116 K. Slind and J. Hurd

whenever the boat is on the left bank. A transition is possible between states s
and s′ whenever the following formula holds:3

∃m. m ≤ 3 ∧ ∃ c. c ≤ 3 ∧ ∃ b. ∃m′. m′ ≤ 3 ∧ ∃ c′. c′ ≤ 3 ∧ ∃ b′.
(s = (m, c, b)) ∧ (s′ = (m′, c′, b′)) ∧ [the states are well-formed]
b′ = ¬b ∧ [the boat switches banks]
(m′ = 0 ∨ c′ ≤ m′) ∧ [left bank not outnumbered]
(m′ = 3 ∨ m′ ≤ c′) ∧ [right bank not outnumbered]
if b then

m′ ≤ m ∧ c′ ≤ c ∧
m′ + c′ + 1 ≤ m + c ≤ m′ + c′ + 2

if the boat starts on
the left, 1 or 2 people
travel from left to right

else
m ≤ m′ ∧ c ≤ c′ ∧
m + c + 1 ≤ m′ + c′ ≤ m + c + 2

else if the boat starts on
the right, 1 or 2 people
travel from right to left

To convert this formula to boolean form, we fix an encoding bnum of numbers
as fixed-length bitstrings, and for concrete numbers n permit ∃x. x ≤ n ∧ p x as
syntactic sugar for ∃x. width (decode bnum k) k x ∧ p x, where k is the smallest
number satisfying n < 2k. Then we apply our conversion algorithm to obtain

∃m0, m1. [m0; m1] ≤̂ [;] ∧ ∃ c0, c1. [c0; c1] ≤̂ [;] ∧
∃m′

0, m
′
1. [m′

0; m′
1] ≤̂ [;] ∧ ∃ c′

0, c
′
1. [c′

0; c′
1] ≤̂ [;] ∧ ∃ b′.

s = (〈decode bnum〉 [m0; m1], 〈decode bnum〉 [c0; c1], ¬b′) ∧
s′ = (〈decode bnum〉 [m′

0; m′
1], 〈decode bnum〉 [c′

0; c′
1], b′) ∧

([m′
0; m′

1] =̂ [] ∨ [c′
0; c′

1] ≤̂ [m′
0; m′

1]) ∧
([m′

0; m′
1] =̂ [;] ∨ [m′

0; m′
1] ≤̂ [c′

0; c′
1]) ∧

if ¬b′ then
[m′

0; m′
1] ≤̂ [m0; m1] ∧ [c′

0; c′
1] ≤̂ [c0; c1] ∧

[m′
0; m′

1] +̂ [c′
0; c′

1] <̂ [m0; m1] +̂ [c0; c1] ∧
[m0; m1] +̂ [c0; c1] ≤̂ [m′

0; m′
1] +̂ [c′

0; c′
1] +̂ [⊥;]

else
[m0; m1] ≤̂ [m′

0; m′
1] ∧ [c0; c1] ≤̂ [c′

0; c′
1] ∧

[m0; m1] +̂ [c0; c1] <̂ [m′
0; m′

1] +̂ [c′
0; c′

1] ∧
[m′

0; m′
1] +̂ [c′

0; c′
1] ≤̂ [m0; m1] +̂ [c0; c1] +̂ [⊥;]

The only non-boolean parts are the subformulas containing the free s, s′ vari-
ables. The variable b is no longer present, since it was simplified away to ¬b′

during the boolean conversion. If we wanted to take this formula a step further,
then we could use Gordon’s HolBddLib to symbolically execute these boolean
versions of the arithmetic operations, and end up with a BDD representing the
transition relation as a pure propositional formula.

6 Related Work

Polytypism has been investigated in the functional programming world for about
a decade, in various guises. Hinze [20] gives a nice introduction of an approach
3 We use the convention that primed variables refer to the state after the transition.

Applications of Polytypism in Theorem Proving 117

similar to ours. One thrust of research into polytypism is to provide user-level
interfaces for polytypic functions; recently, also polytypic datatypes such as tries
have been investigated [19]. Another avenue of research investigates the use of
polytypism in compilation of advanced language features [26]. Our approach to
size function definitions appeared in [25].

Capretta [7] showed how to encode datatypes internally in Type Theory, after
which polytypic functions may be defined over the encoding. Melham’s approach
to datatypes [21] could also be cast in this mode: when a single ‘large’ type of
trees is used to encode a class of ‘small’ types, one could hope that general
functions over the large type might be customized to versions over the small
types.

Our work on lifting ML values to HOL terms is similar in spirit to work on
Normalization by Evaluation, initiated by Berger and Schwichtenberg [3]. This
surprising work showed that functions may also be lifted (this is called readback
in the literature). This work has been taken up by researchers in Type Directed
Partial Evaluation [8]. In recent work, Grégoire and Leroy modify the OCAML
interpreter so that it implements strong reduction for proof checking in Coq [16].
This relies on a readback function that doesn’t follow the structure of types.

Work in model checking has stimulated much interest in automated boolean
encodings of temporal logic formulas and transition relations [1]. A handcrafted
propositional encoding in HOL of formulas over high-level types e.g., finite sets
of pairs of numbers, can be found in [14].

7 Conclusions and Future Work

We have shown how an interpretation of HOL types into terms supports some
useful proof automation activities in the HOL-4 system. The interpretation is
simple, easy to apply, and deals with all types definable by our datatype pack-
age. In our approach, a polytypic function is represented as a derived definition
principle.

We have not as yet attempted to provide a user-level interface for defining
polytypic functions. However, it seems plausible to let the user instantiate G in
the following scheme:

Fn (Ci (x1, ..., xn)) = G Ci [IΘ,∆(x1), . . . , IΘ,∆(xn)]

Thus G would be an ML function expecting a constructor term and a list of
terms (the result of applying the interpretation to the arguments of the construc-
tor) and returning a term. This could be used to build each clause in a primitive
recursive definition over a datatype. Unfortunately, this scheme would not be
general enough to automatically define encoders, which need to know how many
constructors a type has.

Acknowledgements. Thanks to Mike Gordon for comments on an intermedi-
ate draft. Hurd is supported by EPSRC project GR/R27105/01.

118 K. Slind and J. Hurd

References

1. A.Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, Bounded model checking,
To appear in Advances in Computers, Number 58.

2. Bruno Barras, Proving and computing in HOL, Theorem Proving in Higher Order
Logics, 13th International Conference, TPHOLs 2000, Portland, Oregon, USA,
August 14-18, 2000, Proceedings (Mark Aagaard and John Harrison, eds.), Lecture
Notes in Computer Science, vol. 1869, Springer, 2000, pp. 17–37.

3. U. Berger and H. Schwichtenberg, An inverse of the evaluation functional for typed
λ-calculus, Proceedings of the Sixth Annual IEEE Symposium on Logic in Com-
puter Science LICS’91 (Amsterdam), IEEE Computer Society Press, July 1991,
pp. 203–211.

4. Stefan Berghofer and Tobias Nipkow, Executing higher order logic, Types for Proofs
and Programs (TYPES 2000) (P. Callaghan, Z. Luo, J. McKinna, and R. Pollack,
eds.), Lecture Notes in Computer Science, vol. 2277, Springer Verlag, 2002, pp. 24–
40.

5. Stefan Berghofer and Markus Wenzel, Inductive datatypes in HOL - lessons learned
in Formal-Logic Engineering, Proceedings of the 12th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs’99) (Nice) (Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, eds.), LNCS, no. 1690,
Springer-Verlag, 1999.

6. Richard Boulton and Konrad Slind, Automatic derivation and application of in-
duction schemes for mutually recursive functions, Proceedings of the First Inter-
national Conference on Computational Logic (CL2000) (London, UK), July 2000.

7. Venanzio Capretta, Recursive families of inductive types, Theorem Proving in
Higher Order Logics: 13th International Conference, TPHOLs 2000 (J. Harrison
and M. Aagaard, eds.), Lecture Notes in Computer Science, vol. 1869, Springer-
Verlag, 2000, pp. 73–89.

8. A. Filinski, Normalization by evaluation for the computational lambda calculus,
Typed Lambda Calculi and Applications 5th International Conference, TLCA 2001
(Krakow, Poland) (S. Abramsky, ed.), LNCS, vol. 2044, Springer Verlag, May 2001.

9. A. Fox, A HOL specification of the ARM instruction set architecture, Tech. Report
545, University of Cambridge Computer Laboratory, June 2001.

10. , Formal verification of the ARM6 micro-architecture, Tech. Report 548,
University of Cambridge Computer Laboratory, November 2002.

11. Juergen Giesl, Termination analysis for functional programs using term orderings,
Proceedings of the 2nd International Static Analysis Symposium (Glasgow, Scot-
land), Springer-Verlag, 1995.

12. Jürgen Giesl, Automatisierung von terminieringsbeweisen für rekursiv defininierte
algorithmen, Ph.D. thesis, Technische Hochshule Darmstadt, 1995.

13. Michael J. C. Gordon, Programming combinations of deduction and BDD-based
symbolic calculation, LMS Journal of Computation and Mathematics 5 (2002),
56–76.

14. Mike Gordon, PuzzleTool: an example of programming computation and deduc-
tion, Theorem Proving in Higher Order Logics, 15th International Conference,
TPHOLs 2002, Hampton, Virginia, USA, August 2002, Proceedings (V. A Car-
reno, C. A. Munoz, and S. Tahar, eds.), Lecture Notes in Computer Science, vol.
2410, Springer, 2002, pp. 214–229.

15. Mike Gordon and Tom Melham, Introduction to HOL, a theorem proving environ-
ment for higher order logic, Cambridge University Press, 1993.

Applications of Polytypism in Theorem Proving 119

16. Benjamin Grégoire and Xavier Leroy, A compiled implementation of strong re-
duction, International Conference on Functional Programming 2002, ACM Press,
2002.

17. E. L. Gunter, A broader class of trees for recursive type definitions for HOL, Higher
Order Logic Theorem Proving and its Applications: 6th International Workshop
(HUG’93) (J. J. Joyce and C.-J. H. Seger, eds.), Lecture Notes in Computer Sci-
ence, no. 780, Springer-Verlag, Vancouver, B.C., August 11-13 1994, pp. 141–154.

18. John Harrison, Inductive definitions: automation and application, Proceedings of
the 1995 International Workshop on Higher Order Logic theorem proving and its
applications (Aspen Grove, Utah) (E. Thomas Schubert, Phillip J. Windley, and
James Alves-Foss, eds.), LNCS, no. 971, Springer-Verlag, 1995, pp. 200–213.

19. R. Hinze, J. Jeuring, and A. Loeh, Type-indexed data types, Mathematics of
Program Construction 6th International Conference, MPC 2002 Proceedings
(Dagstuhl Castle, Germany) (E.A. Boiten and B. Moeller, eds.), LNCS, no. 2386,
Springer Verlag, July 2002, pp. 98–114.

20. Ralf Hinze, A new approach to generic functional programming, 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’00) (Boston, Massachusetts), ACM Press, 2000.

21. Tom Melham, Automating recursive type definitions in higher order logic, Cur-
rent Trends in Hardware Verification and Automated Theorem Proving (Graham
Birtwistle and P.A. Subrahmanyam, eds.), Springer-Verlag, 1989, pp. 341–386.

22. J Moore, Symbolic simulation: An ACL2 approach, Proceedings of the Second
International Conference on Formal Methods in Computer-Aided Design (FM-
CAD’98) (G. Gopalakrishnan and P. Windley, eds.), vol. LNCS 1522, Springer-
Verlag, November 1998, pp. 334–350.

23. M. Norrish and K. Slind, A thread of HOL development, The Computer Journal
45 (2002), no. 1, 37–45.

24. N. Shankar, Static analysis for safe destructive updates in a functional language,
Logic Based Program Synthesis and Transformation, 11th International Workshop,
LOPSTR 2001, Paphos, Cyprus, November 28-30, 2001, Selected Papers (Alberto
Pettorossi, ed.), Lecture Notes in Computer Science, vol. 2372, Springer Verlag,
2001, pp. 1–24.

25. Konrad Slind, Reasoning about terminating functional programs, Ph.D.
thesis, Institut für Informatik, Technische Universität München, 1999,
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/1999/slind.html.

26. Stephanie Weirich, Higher-order intensional type analysis, Programming Lan-
guages and Systems: 11th European Symposium on Programming, ESOP 2002
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2002 Grenoble, France, April 8-12, 2002 (Daniel Le Métayer, ed.),
2002, pp. 98–114.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/1999/slind.html

	Introduction
	Notation and Background Definitions
	Wellfounded Relations for Datatypes
	Lifting of Metalanguage Values
	Encoding and Decoding
	Encoders
	Decoders: Existence
	Decoders: Recursion Equations
	Converting Formulas to Boolean Form
	Example: Missionaries and Cannibals

	Related Work
	Conclusions and Future Work

