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Abstract

Using the HOL theorem prover, we apply our formalization of probability theory to specify and
verify the Miller–Rabin probabilistic primality test. The version of the test commonly found in al-
gorithm textbooks implicitly accepts probabilistic termination, but our own verified implementation
satisfies the stronger property of guaranteed termination. Completing the proof of correctness re-
quires a significant body of group theory and computational number theory to be formalized in the
theorem prover. Once verified, the primality test can either be executed in the logic (using rewriting)
and used to prove the compositeness of numbers, or manually extracted to standard ML and used to
find highly probable primes.
© 2002 Elsevier Science Inc. All rights reserved.

Keywords: Formal verification; Random algorithms; Primality test

1. Introduction

In the 1970s a handful of probabilistic algorithms were introduced that demonstrated
two practical advantages over deterministic alternatives: simplicity of expression and
efficiency of execution. An algorithm of Berlekamp [3] uses randomization to factor poly-
nomials; Solovay and Strassen [18] introduced a probabilistic primality test based on
the Jacobi symbol; and Rabin [16] presented two probabilistic algorithms: the first finds
the nearest neighbours of a set S ⊂ Rn, and the second uses a number theory result of
Miller [14] to test numbers for primality.

This last algorithm has subsequently become known as the Miller–Rabin probabilistic
primality test, and is a fast way to test large numbers for primality. In his 1976 paper,
Rabin evaluates the algorithm by finding the largest (probable) prime less than 2400 (it
takes less than a minute to return the result 2400 − 593), and reports that “the algorithm
was also used to find twin primes by far larger than any hitherto known pair.” Today the
probabilistic primality test is used in computer algebra systems such as Mathematica, and it
is also relevant to public key cryptography software (the RSA algorithm requires a modulus
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of the form n = pq where p and q are primes). Surprisingly, the popular email encryp-
tion program PGP (and the Gnu version GPG) use the Fermat test to check numbers for
primality, although the Miller–Rabin test is stronger and involves no extra computation.

In this paper we report on using the HOL theorem prover to formally prove correctness
of the Miller–Rabin probabilistic primality test. Concretely, we define in HOL a function
miller_rabin that implements the probabilistic test, and formally prove the following two
properties.

Theorem 1. Correctness of the Miller–Rabin primality test

�∀ n, t, s. prime n ⇒ fst (miller_rabin n t s) = � (1)

�∀ n, t. ¬prime n ⇒ 1− 2−t � P {s : fst (miller_rabin n t s) = ⊥} (2)

The fst in the statements simply picks out the result of the test (see Section 3.1 for a
description of our model of probabilistic programs). The miller_rabin test takes two natural
number parameters n and t (in addition to a source s of random bits), where n is the
number that we wish to test for primality and t determines the amount of computation that
the test is allowed to perform. If n is prime then the test is guaranteed to return �; if n is
composite then it will return ⊥ with probability at least 1− 2−t . Thus for a given value of
n if miller_rabin n t s returns ⊥ then n is definitely composite, but if it returns � then all
we know is that n is probably prime. 2 However, setting t = 50 we see that the probability
of the algorithm returning � for an n that is actually composite is � 2−50 < 10−15.

The verification of the Miller–Rabin primality test was checked using the HOL theo-
rem-prover. This is the first published verification in a theorem prover of a commercially
used algorithm with a probabilistic specification. We build on earlier work [11] and show
that the formal probability framework we laid out there is up to the challenge. In addi-
tion, the verified implementation of the primality test that we describe here improves on
the more abstract version commonly found in algorithm textbooks. There, a generator is
generally assumed that can produce uniformly distributed random numbers in the range
{0, . . . , n−1}, while we assume only a generator of random bits. 3 The difference is that
while high quality random bits are provided by most operating systems (e.g., in Linux
from /dev/random), the generation of uniformly distributed random numbers from these
random bits is slightly delicate and requires termination with probability 1. In contrast, our
implementation is guaranteed to terminate on all inputs.

Completing the proof of correctness requires a significant body of group theory and com-
putational number theory to be formalized in the theorem prover, and Section 2 shows how
the classical results fit together in the verification. This formalization actually constituted the
bulk of the effort and provided the testing ground for a new automatic proof procedure; we
briefly report on this experience. Section 3 describes the somewhat easier task of interfacing
the number theory with the probability theory to produce the result, and we also give an im-
mediate application in the form of a procedure for formally proving that numbers are com-
posite. Finally, we highlight the software engineering benefit of this formal methods research
by manually extracting our Miller–Rabin primality test to the ML programming language. In

2 Making precise that “probably” is a hard problem: the probability that n is prime given that miller_rabin n t s

returned � depends on the set S from which n was chosen and the distribution of primes in S.
3 In this paper, a “generator of random bits” means an infinite sequence of IID Bernoulli(1/2) random vari-

ables.
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Section 4 we examine the correctness issues in extracting the algorithm to ML, and profile its
performance. Finally in Sections 5 and 6 we conclude and look at related work.

1.1. Notation

We use sans serif font to notate higher-order logic constants, such as the function fst
that picks the first component of a pair, the natural number predicate prime, the greatest
common divisor function gcd, and the group predicate cyclic. For standard mathematical
functions we use mathematical font: examples are addition (a + b), the remainder function
(a mod b), function composition (g ◦ f ) and Euler’s totient function (φ(n)). We rely on
context to disambiguate |S| to mean the cardinality of the set S, |g| to mean the order of
the group element g, and a | b | c to mean that both a divides b and b divides c. Note also
that a � | b means that a does not divide b. When doing informal mathematics, we follow
the convenient custom of confusing the group G with its carrier set; in HOL theorems we
explicitly write set G for the carrier set (and ∗G for the operation).

2. Computational Number Theory

2.1. Definitions

Our HOL implementation of the Miller–Rabin algorithm is (almost) a functional transla-
tion of the version presented in Cormen et al. [6]. To prepare, we define functions to factor
out powers of 2 and perform modular exponentiation. We omit the definitions, but here are
the correctness theorems for these functions:

�∀ n, r, s. (3)

0 < n ⇒ (factor_twos n = (r, s) ⇐⇒ odd s ∧ 2r s = n)

�∀ n, a, b. 1 < n ⇒ modexp n a b = (ab mod n) (4)

We use these two functions to define a (non-probabilistic) function witness a n, that
returns � if the base a can be used to provide a quick proof that n is composite, and ⊥
otherwise. We assume that a and n satisfy 0 < a < n. The witness function uses a helper
function witness_tail to calculate an−1 mod n, performing some tests for primality along
the way; a more detailed explanation follows the definitions.

Definition 2. The Miller–Rabin witness function

�∀ n, a, r. (5)

witness_tail n a 0 = a /= 1 ∧
witness_tail n a (suc r) =

let a′ ← a2 mod n

in if a′ = 1 then a /= 1 ∧ a /= n− 1 else witness_tail n a′ r
�∀ n, a. (6)

witness n a =
let (r, s)← factor_twos (n− 1) in witness_tail n (modexp n a s) r
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The witness function calls factor_twos to find r, s such that s is odd and 2r s = n− 1,
then uses modexp and witness_tail to calculate the sequence

(
a20s mod n, a21s mod n, . . . , a2r s mod n

)
This sequence provides two tests for the primality of n:

(1) a2r s mod n = 1.
(2) If a2j s mod n = 1 for some 0 < j � r , then either a2j−1s mod n = 1 or a2j−1s mod

n = n− 1.
Verifying the correctness of the witness function requires us to prove that if n is a

prime then both these tests will always be passed. Test 1 is equivalent to aφ(n) mod n = 1
(since 2r s = n− 1 = φ(n) for n prime), and this is exactly Fermat’s little theorem. For
this reason this test for primality is called the Fermat test. Test 2 is true since for every
x, if 0 = (x2 − 1) mod n = (x + 1)(x − 1) mod n, then if n is prime we must have that
either (x + 1) mod n = 0 or (x − 1) mod n = 0. We thus obtain the following correctness
theorem for witness:

� ∀ n, a. 0 < a < n ∧ witness n a ⇒ ¬prime n (7)

2.2. Underlying mathematics

A composite number n that passes a primality test for some base a is called a pseudo-
prime. In the case of the Fermat test, there exist numbers n that are pseudoprimes for all
bases a coprime to n. These numbers are called Carmichael numbers, and the two smallest
examples are 561 and 1729. 4 Testing Carmichael numbers for primality using the Fermat
test is just as hard as factorizing them, since the only bases that fail the test are multiples
of divisors.

A theorem of Miller [14] implies that by also performing Test 2, the number of bases that
are witnesses for any composite n will be at least (n− 1)/2. 5 Therefore combining both
tests completely eliminates Carmichael numbers, and Rabin made use of this to implement
a probabilistic primality test which tests many bases chosen at random [16]. This algorithm
was published in 1976, and is now known as the Miller–Rabin primality test.

In Section 3 we will show how to formally model the probabilistic element of the test.
For the rest of the present section, we will describe the formalization of Miller’s result that
underlies the correctness of the primality test. We first present the informal mathematical
proof that the formalization followed, stating along the way the classical results of number
theory that are necessary for the result. Then, in Section 2.3, we will examine the interesting
problems that arose in the formalization of this number theory result.

4 1729 is also famous as the Hardy–Ramanujan number, explained by Snow in the foreword to Hardy’s A
Mathematician’s Apology [9]: “Once, in the taxi from London, Hardy noticed its number, 1729. He must have
thought about it a little because he entered the room where Ramanujan lay in bed and, with scarcely a hello,
blurted out his disappointment with it. It was, he declared, ‘rather a dull number,’ adding that he hoped that
was not a bad omen. ‘No, Hardy,’ said Ramanujan, ‘it is a very interesting number. It is the smallest number
expressible as the sum of two cubes in two different ways’.” (103 + 93 = 1729 = 123 + 13).

5 In fact, Miller proved the stronger result that the number of nonwitnesses must be at most φ(n)/4, and fur-
thermore this bound can be attained (an example is the Carmichael number 8911).
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So first, the formal statement, together with an informal proof:

Theorem 3. Cardinality of Miller–Rabin witnesses

�∀ n. (8)

1 < n ∧ odd n ∧ ¬(prime n) ⇒
n− 1 � 2

∣∣{a : 0 < a < n ∧ witness n a}∣∣
Proof. We begin with some necessary terminology and some useful properties. Euler’s
totient function φ(n) returns the size of the set

{m < n : m is coprime to n}
For a prime power pa , it is the case that φ(pa) = pa−1(p − 1). The multiplicative

group Z∗n has as elements the numbers 0 < i < n coprime to n, and the operation is multi-
plication mod n. The Chinese remainder theorem states that for every coprime p, q there
is an isomorphism between Zpq

∗ and Z∗p × Z∗q (i.e., for every pair of equations (x mod
p) = a and (x mod q) = b there is a solution for x, and that solution will be unique
mod pq).

The proof aims to find a proper subgroup B of the multiplicative group Z∗n which con-
tains all the nonwitnesses. This will then imply the result, since by Lagrange’s theorem
the size of a subgroup must divide the size of the group, and so |B| � |Z∗n|/2 = φ(n)/2 �
(n− 1)/2.

Firstly, assume that there exists an x ∈ Z∗n such that xn−1 mod n /= 1. In this case we
choose B = {x ∈ Z∗n : xn−1 mod n = 1}. The Fermat test ensures that all nonwitnesses are
members of B, and since B is closed under multiplication it is a proper subgroup of Z∗n.
Therefore in this case the proof is finished.

Secondly, assume that for every x ∈ Z∗n we have that xn−1 mod n = 1. We next
show by contradiction that n cannot be a prime power. If n = pa (with p prime), then
a textbook number theory result shows that the group Z∗n is cyclic. This means that there
exists an element g ∈ Z∗n with order |Z∗n| = φ(n) = φ(pa) = pa−1(p − 1). But gn−1 mod
n = 1, and so pa−1(p − 1) | pa − 1. However, this is the required contradiction, since
p |pa−1(p− 1) but p � | pa − 1.

Since n is composite but not a prime power, we can therefore find two numbers 1 < a, b

with gcd(a, b) = 1 and ab = n. Find r, s satisfying 2r s = n− 1, with s odd. Next we find
a maximal j ∈ {0, . . . , r} such that there exists a v ∈ Z∗n with v2j s mod n = n− 1. Such a
j must exist, because since s is odd we can set j = 0 and v = n− 1. Now choose

B = {x ∈ Z∗n : x2j s mod n = 1 ∨ x2j s mod n = n− 1}
B is closed under multiplication and so is a subgroup of Z∗n; also the maximality of j

ensures that B must contain all nonwitnesses. It remains only to show that B /= Z∗n. By the
Chinese remainder theorem there exists w ∈ Z∗n such that

w mod a = v mod a ∧ w mod b = 1

and so

w2j s mod a = a − 1 ∧ w2j s mod b = 1
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Fig. 1. The dependency relation between the theories of the HOL formalization. Boxes indicate pre-existing HOL
theories, and circles are theories created for this development.

Hence by the Chinese remainder theorem w2j s mod n cannot be equal to either 1 or
n− 1, so w /∈ B and the proof is complete. ��

2.3. Formalization

Formalizing this proof in HOL was a long but mostly routine task, resulting in the theory
hierarchy depicted in Fig. 1. 6 The high-level steps in the formal proofs closely follow the
textbook proofs, but inevitably the bulk of the work was the low-level manipulation re-
quired to bridge between high-level steps or finish off subgoals that the textbooks regarded
as sufficiently obvious as to not require any more explanation.

As we saw in the previous section, the informal proof depends heavily on groups, and
the most time-consuming activity of the formalization was a thorough development of
group theory. Starting from the initial axioms, we created several HOL theories of to sup-
port the classical results that were necessary for the proof, including: Lagrange’s theo-

6 The underlying probability theory in Fig. 1 is described in an earlier publication [11], and is also included in
the latest release of the HOL theorem prover.
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rem (9), Fermat’s little theorem for groups (10) and the structure theorem for Abelian
groups (11):

�∀G ∈ finite_group. ∀H ∈ subgroup G. |set H | ∣∣ |set G| (9)

�∀G ∈ finite_group. ∀ g ∈ set G. g|set G| = e (10)

�∀G ∈ finite_group. (11)

abelian G⇒ ∃ g ∈ set G. ∀h ∈ set G. h|g| = e

This development also allowed some classical arithmetic theorems to be rendered in the
language of groups, including the Chinese remainder theorem (12) and the result that the
multiplicative group for a prime power is cyclic (13):

�∀p, q. (12)

1 < p ∧ 1 < q ∧ gcd p q = 1 ⇒
(λ x. (x mod p, x mod q)) ∈

group_iso (mult_group pq)

(prod_group (mult_group p) (mult_group q))

�∀p, a. (13)

odd p ∧ prime p ∧ 0 < a ⇒ cyclic (mult_group pa)

As well as making the arithmetic theorems more concise, this rendering also allowed the
main proof to proceed entirely in the language of groups, eliminating the burden of switch-
ing mathematical context in the middle of a mechanical proof and incidentally mirroring
the informal proof in Section 2.2.

The most difficult part of the whole formalization was theorem (13), guaranteeing that
the multiplicative group of a prime power pa is cyclic. This proceeds by induction on
a, and required creating whole new theories of natural number polynomials and Abelian
groups for the a = 1 case, and a subtle argument from Baker [1] for the step case.

One surprising difference between the informal mathematics and the formalization in-
volved the use of the fundamental theorem of arithmetic. This states that every natural
number can be uniquely factorized into primes, and many informal mathematical proofs be-
gin by applying this to some variable mentioned in the goal (e.g., by saying “let pa1

1 · · ·pak
k

be the prime factorization of n”). However, although we had previously formalized the
fundamental theorem and it was ready to be applied, in the mechanical proofs we always
chose what seemed to be an easier proof direction and so never needed it. Two exam-
ples of this phenomenom occur in the structure theorem for Abelian groups (11), and the
cardinality of the witness set (3): the former theorem we formalized using least common
multiples which proves the goal more directly; and in the latter all we needed was a case
split between n being a prime power or being a product of coprime p, q, so we separately
proved this lemma.

Finally, this development provided a testing ground for a new proof tactic described in
a recent paper [10]. The tactic simulates predicate subtypes in higher-order logic, taking
a term t and deriving particular sets S such that t ∈ S can be proved in the current log-
ical context. It works by first recursively deriving sets for the subterms ti of t , and then
using this information to derive sets for the term t . For example, consider the set P =
{m ∈ Z : 0 < m} of positive integers, where the following theorems allow membership t ∈
P to be deduced from knowledge of ti ∈ P :
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� t1 ∈ P ∧ t2 ∈ P ⇒ t1 + t2 ∈ P

� t1 ∈ P ∧ t2 ∈ P ⇒ t1t2 ∈ P

So, for instance,

m ∈ P ∧ n ∈ P ∧ p ∈ P ⇒ m+mn+mnp ∈ P

The set membership t ∈ P is clearly equivalent to the property 0 < t , and there are
many more properties that can be phrased more or less directly as set memberships. These
include group membership (e.g., g ∗G h ∈ set G) and nonemptiness properties of lists and
sets (e.g., l /= [ ]). The predicate subtype tactic can be used to robustly prove all of these
simple properties, which come up time and again as side-conditions that must be proved
during term rewriting. As a consequence, this new automatic proof procedure lent itself
to more efficient development of the theories that needed to be formalized in this verifi-
cation, particularly the group theory where almost every theorem has one or more group
membership side-conditions.

If the predicate subtype tactic had not been available, it would have been possible to use
a first-order prover to show most of the side-conditions, but there are three reasons why
this would have been a less attractive proposition: firstly it would have required effort to
choose the right ‘property propagation’ theorems needed for the each goal; secondly the
explicit invocations would have led to more complicated tactics; and thirdly some of the
goals that can be proved using our specialized tool would simply have been out of range of
a more general first-order prover.

3. Probability theory

3.1. Modelling probabilistic programs in higher-order logic

In earlier work [11], we laid out a framework for modelling probabilistic programs in
higher-order logic, in which we can specify and verify any program equipped with a source
of random bits. In the language of probability theory, these random bits are assumed to be
IID Bernoulli(1/2) random variables, as defined in De Groot [7, page 145]. 7 Suppose we
have a probabilistic ‘function’

f̂ : α→ β

with an associated (deterministic) specification B : α × β → B, where a particular func-
tion application f̂ (a) satisfies the specification if B(a, f̂ (a)) = �. Of course, since f̂ is
probabilistic, the application f̂ (a) may meet the specification on one instance and fail it
on another.

We model f̂ with a higher-order logic function

f : α→ B∞ → β × B∞

which explicitly takes as input a sequence s : B∞ of random bits in addition to an argument
a : α, uses some of the random bits in a calculation exactly mirroring f̂ (a), and then passes
back a sequence of ‘unused’ bits with the result.

7 As is common, IID is introduced as a property of a finite collection of random variables. We extend this to our
infinite sequence by insisting that every initial segment is IID.
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Mathematical measure theory is then used to define a probability measure function

P : P(B∞)→ [0, 1]
from sets of sequences to real numbers between 0 and 1. The natural question “for a given
a, with what probability does f̂ satisfy the specification?” then becomes “for a given a,
what is the probability measure of the set of sequences {s : B(a, fst (f a s))}?”

This model of probabilistic functions in higher-order logic has a number of advantages:
• probabilistic programs can be represented as higher-order logic functions; we do not

have to formalize another programming language in which to express the programs;
• since our modelling of probabilistic functions is the same as that used in pure func-

tional programming languages, we can both borrow their monadic notation [21] to el-
egantly express our programs, and easily transfer programs to and from an execution
environment;

• when applying the theory to the verification of probabilistic programs, instead of cater-
ing for myriad probability spaces we need only concern ourselves with one: sequences
of IID Bernoulli(1/2) bits.
To understand the probabilistic programs that follow, we now introduce the operators of

the state-transformer monad. This notation allows us to reduce clutter by define probabilis-
tic programs without directly referring to the underlying sequence of random bits; instead
the unit and bind operators pass it around behind the scenes.

Definition 4. The state-transformer monadic operators unit and bind.

�∀ a, s. unit a s = (a, s)

�∀ f, g, s. bind f g s = let (x, s′)← f (s) in g x s′

The unit operator is used to lift values to the monad, and bind is the monadic analogue
of function application.

3.2. Guaranteeing the termination of the Miller–Rabin test

In most algorithm textbooks this is how the Miller–Rabin test is defined:

Given an odd integer n greater than 1, we pick a base a at random from the set
{1, . . . , n− 1} and call witness n a. Suppose n is composite: since at least (n− 1)/2
of the bases in the set are guaranteed to be witnesses, the probability that the procedure
errs is at most ((n− 1)/2)/(n− 1) = 1/2.

As mentioned in the introduction, this abstract version requires a generator of uniform
random numbers, but most operating systems provide only a generator of random bits.
Furthermore, we have previously shown [11] that a terminating 8 algorithm to generate uni-
form random numbers in the range {0, . . . , n− 1} from random bits does not exist unless
n is a power of 2. We therefore cannot directly implement this version of the Miller–Rabin
test that is guaranteed to terminate, and it seems that we shall have to settle for termina-
tion with probability 1. However, a single observation allows the textbook algorithm to be

8 Here we are referring to guaranteed termination on every input sequence, not termination with probability 1.
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tweaked slightly, so that it satisfies the same probabilistic specification and additionally is
guaranteed to terminate.

The observation is that the base 1 is always going to be a nonwitness for every n, so to
find witnesses we can pick bases from the subset {2, . . . , n− 1}. Now if we can guarantee
that the probability of picking each element from this subset is at least 1/(n− 1), then the
probability that we pick a witness is still at least (1/(n− 1))((n− 1)/2) = 1/2.

Using this observation relaxes the requirement for perfectly uniform random numbers,
allowing any distribution that satisfies the lower bound. However, it is possible [11] to
generate arbitrarily close approximations to uniform random numbers from random bits.
This was done by introducing an extra parameter t , allowing us to prove the following
theorem about the terminating algorithm uniform:

� ∀ t, n, k. k < n ⇒ ∣∣P {s : fst (uniform t n s) = k} − 1/n
∣∣ � 2−t (14)

Thus if we use the natural number function log2 that is related to calculating logarithms
to the base 2

�∀ n. log2 n = if n = 0 then 0 else suc (log2 (n div 2)) (15)

�∀ n, t. 0 < n ∧ 2(log2 (n+ 1)) � t ⇒ 2−t � 1/n− 1/(n+ 1) (16)

then the following theorem holds:

�∀ t, n, k. (17)

k < n ∧ 2(log2 (n+ 1)) � t ⇒
1/(n+ 1) � P {s : fst (uniform t n s) = k}

Therefore, if we set the threshold t to be at least 2(log2(n+ 1)), then for each k ∈
{0, . . . , n− 1} the probability that uniform t n s yields the result k is at least 1/(n+ 1).
Coupled with the observation above, this approximation to the uniform distribution is suf-
ficient to implement a version of Miller–Rabin that is guaranteed to terminate.

3.3. Implementing the Miller–Rabin probabilistic primality test

Having established that guaranteed termination is possible, we are now in a position to
define (one iteration of) the Miller–Rabin probabilistic primality test.

Definition 5. A single iteration of the Miller–Rabin primality test

�∀ n. (18)

miller_rabin_1 n =
if n = 2 then unit �
else if n = 1 ∨ even n then unit ⊥
else

bind (uniform (2(log2 (n− 1))) (n− 2))

(λ a. unit (¬witness n (a + 2)))
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This satisfies the correctness theorems

�∀ n, s. prime n ⇒ fst (miller_rabin_1 n s) = � (19)

�∀ n. ¬prime n ⇒ 1/2 � P {s : fst (miller_rabin_1 n s) = ⊥} (20)

In order to define the full Miller–Rabin test using several bases, we create a new (state-
transformer) monadic operator many. The intention of many p n is a test that repeats n

times the test p using different parts of the random bit stream, returning true if and only
if each evaluation of p returned true. For instance, sdest is the destructor function for a
stream, and so the function many sdest 10 tests that the next 10 booleans in the random
stream are all �. Here is the definition of many and basic properties:

�∀ f, n. (21)

many f 0 = unit � ∧
many f (suc n) = bind f (λ x. if x then many f n else unit ⊥)
�∀ f, n. P {s : fst (many f n s)} = (P {s : fst (f s)})n (22)

Using the new many monadic operator it is simple to define the Miller–Rabin function
miller_rabin

�∀ n, t. miller_rabin n t = many (miller_rabin_1 n)t (23)

and finally Theorem 1 from the introduction follows from (19)–(23).

3.4. A compositeness prover

For any input prime p, Theorem 1 gives us a very strong guarantee: for any t and any
sequence s, our implementation of the Miller–Rabin test will always output�. 9 Therefore,
given a number n and a sequence s, if miller_rabin n 1 s can be rewritten to ⊥, then we
can immediately deduce the higher-order logic theorem � ¬prime n. Such rewriting of
programs in the logic can take place using either the standard HOL rewriting tools, or the
computeLib tool of Barras [2] which is guaranteed to match the complexity of execution
in ML. 10

All that is required is an input sequence containing the ‘random’ bits that the Miller–
Rabin test will use in its execution. This is easily created by defining a pseudo-random bit
generator in the logic, and for this we just need an initial seed d :α and an iteration function
i : α→ B× α. For example, we can adapt to our purpose the linear congruence method of
generating pseudo-random numbers [13]:

d=0

i=λ n. (even n, An+ B mod (2N + 1))

9 Such a strong result is a consequence of guaranteed termination (as opposed to termination with probability 1),
which is why in Section 3.2 we took such care to ensure this.
10 Barras calculates the constant factor difference to be about 1000 for his merge-sort example.
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Table 1
Testing the composite prover

n Run time GC time

225 + 1 53.080 7.170

226 + 1 370.210 53.530

227 + 1 2842.920 409.620

228 + 1 22095.770 3170.780

We emphasize that this family of sequences is merely a convenient way to generate
superficially unpredictable bits, and is of course completely deterministic. 11 The point is
well made by von Neumann [20]:

Any one who considers arithmetical methods of producing random digits is, of course,
in a state of sin. For, as has been pointed out several times, there is no such thing as
a random number––there are only methods to produce random numbers, and a strict
arithmetical procedure is of course not such a method.

For our purpose, we set the parameters to be A = 103, B = 95, N = 79, and we now
have all the ingredients we need to execute the Miller–Rabin primality test in the logic
using computeLib. Table 1 gives the run times in seconds (including garbage collection
(GC) time) that was taken to prove the compositeness of some Fermat numbers. 12

The last number in Table 1 has 78 digits, and demonstrates the possibility of formally
proving numbers to be composite with no knowledge of their factors. Since this proof
procedure is not the main focus of this paper (rather an interesting digression), we shall
not do any more profiling than this. However, one point that can be made from the existing
results is that from one line of the table to the next, the number of digits in n roughly
doubles while the run time increases by a factor of 8. This cubic growth is indeed what we
would expect if we executed the algorithm in ML, empirically confirming the theoretical
result that the efficiency of computeLib is a constant factor away from ML.

4. Extracting the algorithm to standard ML

The advantage of extracting the algorithm to a standard programming language such
as ML is twofold: firstly execution is more efficient, and so the algorithm can be applied
to usefully large numbers; and secondly it can be packaged up as a module and used as a
reliable component of larger programs.

However, there is a danger that the properties that have been verified in the theorem-
prover are no longer true in the new context. In this section we make a detailed examination
of the following places where the change in context might potentially lead to problems: the
source of random bits, the arbitrarily large natural numbers, and the manual translation
of the Miller–Rabin functions to ML. Finally we test the algorithm on some examples, to
check again that nothing has gone amiss and also to get some idea of the performance and
computational complexity of the code.

11 We might equally well test our programs on the sequence where every element is �, but this is not even
superficially unpredictable.
12 All the results in this paper were produced using the Moscow ML 2.00 interpreter over RedHat Linux 6.2,
running on a computer with a 200 MHz Pentium Pro processor and 128 MB of RAM.
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4.1. Random bits

Our theorems are founded on the assumption that our algorithms have access to a gener-
ator of perfectly random bits: each bit has probability of exactly 1/2 of being either 1 or 0,
and is completely independent of every other bit. In the real world this idealized generator
cannot exist, and we must necessarily select an approximation.

The first idea that might be considered is to use a pseudo-random number generator,
such as the linear congruence method we used to execute the Miller–Rabin test in the
logic. These have been extensively analysed (for example by Knuth [13]) and pass many
statistical tests for randomness, but their determinism makes them unsuitable for applica-
tions that require genuine unpredictability. For instance, when generating cryptographic
keys it is not sufficient that the bits appear random, they must be truly unpredictable even
by an adversary intent on exploiting the random number generator used.

Rejecting determinism, we must turn to the operating system for help. Many modern
operating systems can utilize genuine non-determinism in the hardware to provide a higher
quality of random bits. For example, here is a description of how random bits are derived
and made available in Linux, excerpted from the man page ‘random’ in Section 4:

The random number generator gathers environmental noise from device drivers and
other sources into an entropy pool. The generator also keeps an estimate of the number
of bit[s] of the noise in the entropy pool. From this entropy pool random numbers are
created.

When read, the /dev/random device will only return random bytes within the esti-
mated number of bits of noise in the entropy pool. /dev/random should be suitable for
uses that need very high quality randomness such as one-time pad or key generation.
When the entropy pool is empty, reads to /dev/random will block until additional
environmental noise is gathered.

When read, /dev/urandom device will return as many bytes as are requested. As
a result, if there is not sufficient entropy in the entropy pool, the returned values are
theoretically vulnerable to a cryptographic attack on the algorithms used by the driver.
Knowledge of how to do this is not available in the current non-classified literature,
but it is theoretically possible that such an attack may exist. If this is a concern in your
application, use /dev/random instead.

These devices represent the highest quality source of randomness to which we have easy
access, and so we have packaged them up as ML boolean streams for use in our extracted
program.

4.2. Arbitrarily large natural numbers

Another place where there is a potential disparity between HOL and ML regards their
treatment of numbers. The HOL Miller–Rabin test operates on the natural numbers {0, 1,
2, . . .}, while in ML the primitive type int contains signed numbers in a range depending
on the machine architecture.

We resolved this incompatibility by creating the ML module HolNum, which implements
an equality type num of arbitrarily large natural numbers. The Miller–Rabin functions may
then use this type of numbers, and the arithmetic operations will behave exactly as in HOL.

We first implemented our own large number module, written in the purely functional
subset of ML (and using a word vector representation of numbers). However, this was
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found to be about 100 times slower than the Moscow ML interface to the GNU Multi-
Precision library, so we switched to this instead.

4.3. Extracting from HOL to ML

A further place where errors could creep in is the manual extraction of the Miller–Rabin
functions from HOL to ML. Consequently we did this in two steps, the first of which was
creating a new HOL theory containing a version of each function we wished to extract. For
example, in Theorem 21 the monadic operator many was defined like so

�∀ f, n.
many f 0 = unit � ∧
many f (suc n) = bind f (λ x. if x then many f n else unit ⊥)

and in this new HOL theory we prove it is equivalent to

�∀ f, n.
many f n =
if n = 0 then unit �
else bind f (λ x. if x then many f (n− 1) else unit ⊥)

so that we may export it to ML as

fun MANY f n =
if n = ZE\-RO then UNIT true
else BIND f (fn x => if x then MANY f (n -- ONE) else UNIT false);

As can be seen here the ML version involves some lexical changes, but has precisely
the same parse tree as the intermediate HOL version. This reduces the chance of errors
introduced by the cut-and-paste operation.

An intellectually interesting problem in the extraction is the question of how to handle
partial functions. Consider the HOL function uniform that generates (approximations to)
uniform random numbers:

�∀ t, n. uniform t (suc n) = if t = 0 then unit 0 else . . .

The function is deliberately underspecified: there is no case where the second argument
takes the value 0 because it does not make sense to talk of random numbers uniformly
distributed over the empty set. HOL allows us to define functions like this, but there is
no immediate ML equivalent. In the intermediate HOL version, we prove it to be equiva-
lent to

�∀ t, n.
uniform t n =
if n = 0 then uniform t n else if t = 0 then unit 0 else . . .

This rather strange-looking theorem is a formulation of uniform that is suitable to be
extracted to ML, because the left hand side does not contain any illegal patterns like suc n.
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Of course, if we naively extract this to ML it will loop forever when a user mistakenly calls
it with second argument 0, so we improve the error handling by extracting in the following
way:

fun uni\-form t n =
if n = ZE\-RO then raise Fail "uni\-form: out of do\-main"
else if t = ZE\-RO then UNIT ZE\-RO
else ...

This implementation trick allows us to faithfully extract partial functions with as much
confidence as for total functions.

Finally, we note that had we completed our verification in the Coq theorem prover,
then the standard Coq infrastructure could have been used to extract the same verified
Miller–Rabin test to ML. In addition, our stricving for guaranteed termination also allows
a relatively straightforward constructive proof, since only rational numbers can appear as
probabilities. However, similar experience has shown that the constructive proof would
still be harder work than our classical one, and the restriction to guaranteed termination
rules out the straightforward verification of many interesting programs that termination
with probability 1.

4.4. Testing

It would be pleasant to say that since the function had been mechanically verified, no
testing was necessary. But the preceding subsections have shown that this would be naive.
Even if we are prepared to trust the generation of random bits, the operations of our ar-
bitrarily large number module and the manual extraction of the algorithms, testing would
still be prudent to catch bugs at the interface between these components.

The first quick test was an ML version of Rabin’s 2400 test mentioned in the introduc-
tion: with the number of tries (the t parameter) set to 50 the program took 15 s to confirm
that 2400 − 593 is indeed the smallest (probable) prime below 2400.

The main test proceeded in the following way: for various values of l, generate n odd
candidate numbers of length l bits. Perform a quick compositeness test on each by checking
for divisibility by the first l primes, and also run Miller–Rabin with the maximum num-
ber of bases fixed at 50. The results are displayed in Table 2. El,n(composite) is equal to
n(1− Pl (prime)) and mathematically estimates the number of composites that the above
algorithm will consider as candidates. 13

QC is the number of candidates that were found to be divisible by the quick compo-
siteness test, MR is the number that the Miller–Rabin algorithm found to be composite,
and finally MR+ is the number of candidates that the Miller–Rabin algorithm needed more
than one iteration to determine that it was composite.

The most important property for testing purposes cannot be deduced from the table: for
each number that the quick compositeness test found to be composite, the Miller–Rabin

13 Using the prime number theorem, π(n) ∼ n/ log n, we can derive:

Pl (prime) = π(2l )− π(2l−1)

2l−2
∼ 2

log 2

(
2

l
− 1

l − 1

)
.
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Table 2
Testing the extracted Miller–Rabin algorithm

l n El,n QC MR MR+
10 100,000 74,352 70,262 70,683 520
15 100,000 82,138 72,438 80,448 85
20 100,000 86,332 74,311 85,338 5
50 100,000 94,347 79,480 94,172 0
100 100,000 97,144 82,258 97,134 0
150 100,000 98,089 83,401 98,077 0
200 100,000 98,565 84,370 98,557 0
500 100,000 99,424 86,262 99,458 0
1000 100,000 99,712 87,377 99,716 0
1500 100,000 99,808 87,935 99,798 0
2000 100,000 99,856 88,342 99,852 0

Table 3
Profiling the extracted Miller–Rabin algorithm

l Gen time QC time MR1 time

10 0.0004 0.0014 0.0028
15 0.0007 0.0017 0.0041
20 0.0009 0.0019 0.0054
50 0.0023 0.0034 0.0136
100 0.0068 0.0075 0.0370
150 0.0107 0.0112 0.0584
200 0.0157 0.0156 0.0844
500 0.0443 0.0416 0.2498
1000 0.0881 0.0976 0.7284
1500 0.1543 0.2164 1.7691
2000 0.3999 0.2843 4.2910

test also returned this result (and as can be seen, this almost always required only one
iteration). In the other direction, using the El,n column as a guide, we can see that the
Miller–Rabin algorithm did not find many more composites than expected.

In Table 3 we compare for each l the average time in seconds taken to generate a ran-
dom odd number, subject it to the quick composite test, and perform one iteration of the
Miller–Rabin algorithm.

The complexity of (one iteration of) the Miller–Rabin algorithm is around O(l2 log l),
since it uses asymptotically the same number of operations as modular exponentiation [6].
However, performing linear regression on the log–log graph in Fig. 2 gives a good fit with
degree 1.32, implying a complexity of O(l1.32). We can only conclude that the GNU Multi-
Precision library is heavily optimized for the ‘small’ numbers in the range we were using,
and so we cannot expect an asymptotically valid result. 14

14 When we ran this experiment using our own purely functional implementation of arbitrarily large numbers,
it was a different story. Performing linear regression on the log–log graph gave a good fit with degree 2.98,
confirming the theoretical result since we used the simple O(l2) algorithm for multiplication. GC was minimal,
typically accounting for less than 5% of the time taken.
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Fig. 2. Graph of log(MR1 time) against log l.

5. Conclusion

In this paper we have shown that our higher-order logic framework for verifying prob-
abilistic programs is powerful enough to formally specify and verify the Miller–Rabin
primality test, a well-known and commercially used probabilistic algorithm. The verifica-
tion highlighted a small gap between theory and implementation, namely the difference
between having a generator of uniformly distributed random numbers and a generator of
random bits. An extra observation bridged this gap in the proof, and we were able to pro-
duce a version of Miller–Rabin using random bits that was guaranteed to terminate and
satisfied the required probabilistic specification. An immediate application was a procedure
for formally proving in HOL the compositeness of a number, without requiring a witness
factor.

The predicate set prover helped to make the proof development more efficient; it was
particularly useful for proving group membership conditions and simple but ubiquitous
arithmetic conditions. Our evaluation is that it is a useful tool for reasoning about term
properties that naturally propagate up terms, and a useful condition prover for contextual
rewriters.

The difference between formal and informal proofs in their use of the fundamental theo-
rem of arithmetic was pointed out in Section 2.3. This is the most striking example of many
small differences in the style of informal and formal proofs, stemming from the different
proof consumers in each case. Machines make it easier to formalize principles of induction
such as dividing out a prime or prime power factor of a number, whereas humans would
seem to be better at manipulating the multisets that contain the prime factors. However, it
is usually straightforward to translate standard proofs from the literature into the form that
is simpler to machine check.

We also extracted the algorithm to standard ML that takes as input a number and a
stream of random bits, and declares the number either to be composite or probably prime,
with a formally specified probability. Algorithms such as these with a probabilistic speci-
fication are difficult to get right, since testing must necessarily be statistical. In this paper
we have given arguments that our version has a high assurance of correctness.

Overall, the proof script for the whole verification is 8000 lines long over 16 theories.
It is difficult to measure the time it took to perform the verification, since at the same time
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there was much development of the HOL probability theory. Perhaps six weeks would be a
reasonable estimate, mainly due to the formalization of number theory results. Of course,
the formalized number theory is now available to use for any user of the HOL theorem
prover, and the framework for verifying probabilistic programs has already been applied to
several other examples [11]. However, the Miller–Rabin primality test remains our largest
verification to date.

6. Related Work

There has been a long history of number theory formalizations, most relevantly for us:
Russinoff’s proof of Wilson’s theorem in the Boyer–Moore theorem-prover [17]; Boyer
and Moore’s correctness proof of the RSA algorithm in ACL2 [4]; and Théry’s correctness
proof of RSA in three different theorem-provers [19]. This last work was especially use-
ful, since one of the theorem-provers was HOL, and we were able to use his proof of the
binomial theorem in our own development.

The closest work in spirit to this paper is Caprotti and Oostdijk’s [5] primality proving
in Coq, in which they formalize a similar computational number theory development and
utilize a computer algebra system to prove numbers prime. Seeing this work improved the
organization of theories in our own formalism. Harrison has also implemented a primality
prover in HOL Light, using Pratt’s criterion instead of Pocklington’s.

Our own development of group theory benefitted from the higher-order logic formal-
isms of Gunter [8], Kammüller [12] and Zammit [22], but the theory of groups has been
formalized in many different theorem-provers.

There exist other formalizations of probability, and some have been applied to analy-
sing probabilistic programs. It is conceivable that the same work could have been carried
out using the probabilistic predicate transformers of Morgan et al. [15], except that this
formalism has not yet been mechanized.
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