
First-Order Proof Tactics in Higher-Order Logic Theorem Provers

Joe Hurd?

Computer Laboratory
University of Cambridge,
joe.hurd@cl.cam.ac.uk

Abstract. In this paper we evaluate the effectiveness of first-order proof procedures when used as
tactics for proving subgoals in a higher-order logic interactive theorem prover. We first motivate why
such first-order proof tactics are useful, and then describe the core integrating technology: an ‘LCF-
style’ logical kernel for clausal first-order logic. This allows the choice of different logical mappings
between higher-order logic and first-order logic to be used depending on the subgoal, and also enables
several different first-order proof procedures to cooperate on constructing the proof. This work was
carried out using the HOL4 theorem prover; we comment on the ease of transferring the technology to
other higher-order logic theorem provers.

1 Introduction

Performing interactive proof in the HOL theorem prover [12] involves reducing goals to simpler subgoals. It
turns out that many of these subgoals can be efficiently ‘finished off’ by an automatic first-order prover. To
fill this niche, Harrison implemented a version of the MESON procedure [13] with the ability to translate
proofs to higher-order logic. The original MESON procedure, due to Loveland [17], is a sound and complete
calculus for finding proofs in full first-order logic. This was integrated as a HOL tactic in 1996, and has
since become a standard workhorse of interactive proof. Today, building all the theories in the most recent
distribution of HOL41 relies on MESON to prove 1726 subgoals; the HOL formalization of probability theory,
including an example verification of the Miller-Rabin primality test, contributes another 1953 subgoals to
this total.

The primary goal of this paper is to evaluate the effectiveness of different first-order proof calculi for
use as HOL tactics supporting interactive proof. We compare the performance of several first-order calculi
on three different problem sets: the TPTP first-order problem set; and two problem sets derived from HOL
subgoals proved by MESON. The TPTP (Thousands of Problems for Theorem Provers) problem set is a
collection of first-order problems designed to test the limits of current automatic first-order provers [24].
This experiment allows us to directly compare the performance of the first-order proof procedures in the
different environments of fully automatic proof of deep theorems and supporting a user engaged in driving an
interactive theorem prover. In this paper we show that performance in these two environments is correlated.
Therefore, if a new first-order prover is developed that can prove more TPTP problems than the existing
state of the art, we can expect the same prover to prove more HOL subgoals, thus improving the user
experience.

The most obvious difference between the fully-automatic and interactive environments is the real-time
nature of interactive proof. Whether the cost of proof search is incurred each time the theory is loaded,
compiled, or even just once when the theory is created, the user usually requires any HOL tactic to respond
(almost) immediately. By contrast, fully automatic provers are generally judged on the number of theorems
that they can prove within a much more relaxed time-limit. To simulate this environmental difference in
our experiments, for the TPTP problem set we allow the provers 60 seconds per problem, and for the HOL
problem sets we allow only 5 seconds per problem.

A limit of 5 seconds per problem suggests that the performance of a prover may be rather sensitive to
the characteristics of initial proof search. Following this reasoning, it seems plausible that a combination
? This work was supported by EPSRC project GR/R27105/01
1 HOL4 is available at http://hol.sf.net/.



of different proof procedures may perform better than any individual, on the grounds that any problems
that are ‘shallow’ for one of the procedures may be quickly solved within the time limit. We therefore
implement a proof procedure that combines resolution, model elimination, and the Delta preprocessor. All
three procedures may be run in parallel (using time slicing), and they cooperate by sharing unit clauses.2 It
turns out that not only does this combination procedure significantly outperform each individual procedure
on the HOL problem sets, but also on the TPTP problem set.

The device that allows the provers to share unit clauses is a small ‘LCF-style’ kernel for clausal first-order
logic. As well as providing a convenient mechanism for detecting unit clauses derived by model elimination,
it also provides a convenient place to install the proof recording in the event that it is necessary to translate
them to HOL. In particular, it is the only place that needs to worry about keeping track of proofs, and this
enabled broader experimentation with the first-order provers.

Since HOL4 is written in Standard ML, this is a convenient implementation language for our experiment,
though in the past similar experiments have been performed by making calls to external C provers [14].
Therefore, this paper also provides a view of implementing first-order proof procedures in a functional
programming language, and some interesting aspects of this are brought out in discussion.

The secondary goal of this paper is to serve as a ‘HOW-TO guide’ for would-be implementors of first-order
proof tactics in higher-order theorem provers. We will present all the steps necessary to prove higher-order
subgoals using automatic first-order provers: the initial conversion from higher-order subgoal to first-order
clauses; the first-order proof search; and the final translation of the first-order refutation to a higher-order
logic theorem.

The main contributions of this paper are as follows:

– A relative performace comparison of different first-order proof calculi in the two environments of proving
deep first-order theorems (the TPTP problem set) and aiding the user engaged in interactive proof (the
two problem sets extracted from HOL subgoals).

– A combination resolution and model elimination procedure that performs significantly better than either
individually, in both the TPTP and the HOL environments.

– A detailed description of how to implement tactics for proving higher-order logic subgoals using first-order
proof procedures.

The paper is structured as follows: in Section 2 we point out the interesting features of the mapping
between higher-order and first-order logic; Section 3 examines the syntactic differences between the problem
sets and presents our evaluation methodology; in Section 4 we describe the ML implementation of the
first-order provers and their subsequent optimization; Section 5 presents the results of running different
combinations of provers on the problem sets; Section 6 comments on how this technology might be ported
to other higher-order logic theorem provers; and finally in Sections 7 and 8 we conclude and take a look at
related work.

2 The HOL Interface to First-Order Logic

This is the high-level view of how we prove the HOL goal g using a first-order prover:

1. We first convert the negation of g to conjunctive normal form; this results in a HOL theorem of the form

` ¬g ⇐⇒ ∃a. (∀v1. c1) ∧ · · · ∧ (∀vn. cn) (1)

where each ci is a HOL term having the form of a disjunction of literals, and may contain variables from
the vectors a and vi.

2. Next, we map each HOL term ci to first-order logic, producing the clause set

C = {C1, . . . , Cn}
2 Unit clauses are clauses with only one literal, and are used to simplify other clauses.

2



3. The first-order prover runs on C, and finds a refutation ρ.
4. By proof translation, the refutation ρ is lifted to a HOL proof of the theorem

{(∀v1. c1), . . . , (∀vn. cn)} ` ⊥ (2)

5. Finally, some HOL primitive inferences use theorems (1) and (2) to derive

` g (3)

In the following subsections we examine the translation of formulas and proofs between higher-order
logic and first-order logic, which plays a role in steps 2 and 4 of the above process. Much of this information
appears in a previously published system description [15]; it is reproduced here because it is an essential
part of our framework for creating first-order proof tactics.

Before getting into the details, we first give an extended example of the whole process with a typical
HOL subgoal that we prove using a first-order proof tactic. Consider the subgoal

∀x, y, z. divides x y ⇒ divides x (z ∗ y) (4)

where the predicate divides is defined as

` ∀x, y. divides x y ⇐⇒ ∃ z. y = z ∗ x (5)

To prove the subgoal, we also need the following theorems about multiplication:

` ∀x, y. x ∗ y = y ∗ x (6)
` ∀x, y, z. (x ∗ y) ∗ z = x ∗ (y ∗ z) (7)

The user invokes the first-order proof tactic on the subgoal (4), passing as arguments the definition (5)
and theorems (6) and (7). Initially, the first-order proof tactic uses the arguments to set up the equivalent
subgoal g:

(5) ∧ (6) ∧ (7) ⇒ (4)

The next step is to negate g and convert to conjunctive normal form. This conversion is completely standard—
negation normal form followed by pushing out quantifiers and Skolemization—and we refer the interested
reader to a textbook such as Chang and Lee [6] for more details. In our example, this results in the theorem

` ¬g ⇐⇒
∃ a, b, c, d.

(∀x, y. x ∗ y = y ∗ x) ∧
(∀x, y, z. (x ∗ y) ∗ z = x ∗ (y ∗ z)) ∧
(∀x, y, z. ¬(y = z ∗ x) ∨ divides x y) ∧
(∀x, y. ¬divides x y ∨ y = d x y ∗ x) ∧
divides a b ∧
¬divides a (c ∗ b)

We map each line of this formula to a first-order clause. The existential variables a, b, c, d are mapped to
first-order function symbols, and the universal variables x, y, z are mapped to first-order variables. The first-
order prover runs, finds a refutation, and this is translated to a HOL theorem from which the first-order
tactic derives ` g, thus proving the initial goal.

3



2.1 Mapping HOL Terms to First-Order Logic

Seemingly the hardest problem with mapping HOL terms to first-order logic—dealing with λ-abstractions—
can be smoothly dealt with as part of the conversion to CNF. Any λ-abstraction at or beneath the literal level
is rewritten to combinatory form, using the set of combinators {S, K, I, C, ◦}. Using this set of combinators
prevents the exponential blow-up that is encountered when only {S, K, I} are used [25].3

The mapping that we use makes explicit function application, so that the HOL term m + n maps to the
first-order term @(@(+,m), n). Since in HOL there is no distinction between terms and formulas, we model
this in first-order logic by defining a special relation called B (short for Boolean) that converts a first-order
term to a first-order formula. For example, the HOL boolean term m ≤ n is mapped to the first-order
formula B(@(@(≤,m), n)). The only exception to this rule is equality: the HOL term x = y is mapped to
the first-order logic formula =(x, y).

As described thus far, this mapping is used to generate the uHOL first-order problem set from HOL
subgoals sent to MESON. uHOL stands for untyped HOL, because no type information is included in this
representation. However, we also experimented with including higher-order logic types in the first-order
mapping of a HOL term. Using this idea, the HOL term m + n would map to the first-order term

@(@(+ : N → N → N,m : N) : N → N, n) : N

where ‘:’ is a binary function symbol (written infix for readability), and higher-order logic types are encoded
as first-order terms.4 This mapping is used to produce the HOL problem set from HOL subgoals. As might be
expected, this produces much larger first-order clauses than omitting the types, and this results in first-order
deduction steps taking longer to perform. However, we cannot conclude that including types is definitely
harmful: the extra information may pay for itself by cutting down the search space. This hypothesis is
examined in Section 5.

2.2 Translating First-Order Refutations to HOL

When the first-order prover has found a refutation of a set of clauses, the HOL tactic must translate the
refutation to a HOL theorem, thus ensuring that no soundness bugs in the first-order prover are propagated
into HOL. At first sight it may appear that the necessity of translating first-order refutations to higher-order
logic proofs imposes a burden that hampers free experimentation with the first-order provers. However,
by applying the logical kernel idea of the LCF project [11], we can make the proof translation invisible
to the developer of first-order proof procedures, leaving him free to experiment with new calculi. We have
implemented this automatic proof translation for both the mapping with type information and the one
without, and they have been successfully used to prove many HOL subgoals.

A1 ∨ · · · ∨ An
AXIOM [A1, . . . , An]

L ∨ ¬L
ASSUME L

A1 ∨ · · · ∨ An

A1[σ] ∨ · · · ∨ An[σ]
INST σ

A1 ∨ · · · ∨ An

Ai1 ∨ · · · ∨ Aim

FACTOR

A1 ∨ · · · ∨ L ∨ · · · ∨ Am B1 ∨ · · · ∨ ¬L ∨ · · · ∨ Bn

A1 ∨ · · · ∨ Am ∨ B1 ∨ · · · ∨ Bn
RESOLVE L

Fig. 1. The Primitive Rules of Inference of Clausal First-Order Logic.

3 In principle we could use more combinators to guarantee an even more compact translation, but HOL goals are
normally small enough that this extra complication is not worth the effort.

4 Encoding type variables as first-order logic variables allows polymorphic types to be dealt with in a straightforward
manner.

4



This is achieved by defining a logical kernel of ML functions that execute a primitive set of deduction
rules on first-order clauses. For our purposes, we only need the five rules in Figure 1.

The AXIOM rule is used to create a new axiom of the logical system; it takes as argument the list of
literals in the axiom clause. The ASSUME rule takes a literal L and returns the theorem L∨¬L.5 The INST
rule takes a substitution σ and a theorem A, and applies the substitution to every literal in A.6 The FACTOR
rule takes a theorem and removes duplicate literals in the clause: note that no variable instantiation takes
place here, two literals must be identical for one to be removed. Finally, the RESOLVE rule takes a literal
L and two theorems A,B, and creates a theorem containing every literal except L from A and every literal
except ¬L from B. Again, no variable instantiation takes place here: only literals identical to L in A (or ¬L
in B) are removed.

These five primitive rules define a (refutation) complete proof system for clausal first-order logic. To see
this, recall that a complete proof system results from Factor and Resolve rules that perform unification [6].
However, we can simulate these rules by first instantiating appropriately using the INST rule, and then
applying our identical-match versions FACTOR and RESOLVE.

signature Kernel =

sig

type formula = Term.formula

type subst = Term.subst

(* An ABSTRACT type for theorems *)

eqtype thm

(* Destruction of theorems is fine *)

val dest_thm : thm -> formula list

(* But creation is only allowed by these primitive rules *)

val AXIOM : formula list -> thm

val ASSUME : formula -> thm

val INST : subst -> thm -> thm

val FACTOR : thm -> thm

val RESOLVE : formula -> thm -> thm -> thm

end

Fig. 2. The ML Signature of a Logical Kernel Implementing Clausal First-Order Logic

The ML type system can be used to ensure that these primitive rules of inference represent the only way
to create elements of an abstract thm type.7 In Figure 2 we show the signature of an ML Kernel module
that implements the logical kernel. We insist that the programmer of a first-order provers derive refutations
by creating an empty clause of type thm. The only way to do this is to use the primitive rules of inference
in the Kernel module: this is both easy and efficient for all the standard first-order proof procedures.

At this point it is simple to translate first-order refutations to HOL proofs. We add proof logs into the
representation of theorems in the Kernel, so that each theorem remembers the primitive rule and theorems
that were used to create it. When we complete a refutation, we therefore have a chain of proof steps starting
at the empty clause and leading back to axioms. In addition, for each primitive rule of inference in Kernel,
we create a higher-order logic version that works on HOL terms, substitutions and theorems. The final
ingredient needed to translate a proof is a HOL theorem corresponding to each of the first-order axioms.

5 This rule is used to keep track of reductions in the model elimination procedure.
6 In some presentations of logic, this uniform instantiation of variables in a theorem is called specialization.
7 Indeed, the ability to define an abstract theorem type was the original reason that the ML type system was created.

5



These theorems are the HOL clauses in the CNF representation of the original (negated) goal, which we
mapped to first-order logic and axiomatized.

To summarize: by requiring the programmer of a first-order proof procedure to derive refutations using
a logical kernel, lifting these refutations to HOL proofs can be done completely automatically.

2.3 The Scope of a First-Order Prover for HOL

Using the mapping in Section 2.1, we can use a first-order prover to prove some higher-order HOL goals,
such as the classic derivation of an identity function from combinator theory:

` (∀x, y. K x y = x) ∧ (∀ f, g, x. S f g x = (f x) (g x)) ⇒ ∃ f. ∀x. f x = x

Similarly, the framework for translating refutations in Section 2.2 is general enough to translate any
first-order theorem to HOL. Therefore, we can use a first-order prover to solve for HOL terms satisfying a
set of HOL formulas, just as Prolog does for Horn formulas.8

However, our method of embedding higher-order in first-order logic is not without danger. The whole
reason for adding types to higher-order logic is to avoid the Russell paradox, and so if we choose to remove
them in our translation we must beware of unsoundness. Defining a ‘Russell combinator’ R as

R = (λ x. ¬(x x)) = S (K (¬)) (S I I)

we find that we can use the reduction rules for S and K to prove

R R = ¬(R R)

and thus derive a contradiction.
Of course, a first-order refutation that is unsound in this way cannot be successfully translated to a HOL

proof. It is therefore trivial to discover any problems that occur due to the lack of type information in the
first-order representation. When unsoundness is discovered, the subgoal is simply tried again with the type
information included. Fortunately, this phenomenon occurs in less than 1% of all HOL subgoals.

3 Problem Sets and Evaluation Methodology

In the next section we describe the ML implementation of our combination of first-order provers. To evaluate
and compare different procedures, we use the following three problem sets:

TPTP This consists of all the problems classified as ‘unsatisfiable’ in version 2.4.1 of TPTP.9

uHOL This problem set consists of all subgoals proved by MESON when building: the standard theories
included with version Kananaskis-0 of the HOL4 theorem prover; the HOL formalization of probability
theory; and the example verification of the Miller-Rabin primality test.10 The HOL subgoals are mapped
to first-order logic without type information (uHOL = untyped HOL).

HOL The same problem set as uHOL, but the HOL subgoals are mapped to first-order logic with type
information included.

Table 1 profiles the three problem sets. For each problem set, we show the number of problems (N), and
the median of several statistics for each problem: number of clauses (C), number of literals (L), number
of symbols11 (S), mean literals per clause (L/C), mean symbols per clause (S/C), and mean symbols per
literal (S/L).

8 The model elimination procedure has the capability to solve for terms in this way.
9 The TPTP problem set is available at http://www.cs.miami.edu/∼tptp/.

10 Available at http://www.cl.cam.ac.uk/∼jeh1004/research/problems/.
11 By symbols we mean variables, functions, relations and logical connectives.

6



Table 1. Profiles of the Problem Sets.

Set N C L S L/C S/C S/L

TPTP 2752 31.0 65.0 229.0 2.07 8.17 4.00
uHOL 3679 11.0 19.0 146.0 1.78 12.86 7.14
HOL 3679 11.0 19.0 701.0 1.78 63.71 35.30

Comparing the TPTP and HOL problem sets, it can be seen that the average TPTP problem has more
clauses, while the average HOL problem has more symbols per literal. However, by looking at the uHOL row,
it is apparent that most of the symbols in the HOL problems come from type information. One similarity
between all three problem sets is the average number of literals per clause: around two.

As previously mentioned, we allow 60 seconds per TPTP problem and 5 seconds per HOL problem, to
simulate the difference in requirements between fully automatic and interactive proof. All experiments were
run on Athlon 1.4GHz processors with at least 512Mb of memory, using version 2.00 of Moscow ML12 on
RedHat Linux 7.1.

So that we can use statistical methods to compare the first-order provers, we randomly split each problem
set into 10 equally sized sections. By counting the number of problems in each section that any two provers
solve within the time limit, we can use the t-test to compute the statistical significance that one prover is
better than the other [9]. Here is an example results table where we compare two hypothetical provers, foo
and bar:

foo bar

foo ∗
+95

99.5%

bar
+7 ∗

Since we do not compare provers with themselves, the diagonal entries are marked with ∗. The 99.5% in
the upper right entry means that foo is statistically better than bar with 99.5% confidence. The +95 above
this means that, over the whole problem set, foo proved 95 problems that bar could not. The lower left
entry in the table means that bar is not significantly better than foo, but it did prove 7 problems that foo
could not.

4 Implementing the First-Order Provers

In Sections 2 and 3 we presented a mechanism for mapping HOL subgoals to first-order problems and a way to
evaluate first-order provers. In this section we will describe an ML implementation of a collection of first-order
proof procedures, using our evaluation method to select optimum parameters and justify optimizations.

Since the literature contains such an abundance of strategies and techniques for first-order proof, it was
necessary to select just a few for the purpose of our present experiment. In particular, we do not treat
equality at all, and add equality axioms as part of our mapping to first-order logic. However, in the future
there is nothing to stop us including more sophisticated methods for handling equality, say by adding a
PARAMODULATION primitive inference rule.

4.1 Model Elimination Procedure

The first proof procedure that we implement is the model elimination procedure of Loveland [17]; our prover
is essentially a ground-up reimplementation of Harrison’s MESON [13], incorporating some optimizations of
Astrachan, Loveland and Stickel [2, 3].

12 Moscow ML is available at http://www.dina.dk/∼sestoft/mosml.html.

7



Our strategy is to first produce a naive implemention, and then incrementally optimize it. The starting
point is a version of model elimination called m-0 that treats every input clause as an initial clause. A
clause must contain at least one negative literal for m-1 to treat it as initial, and initial clauses in m-n must
contain all negative literals.

Building upon m-n, we add ancestor pruning to get m-a, and then ancestor cutting to get m-x. Ancestor
cutting means that if the negation of an ancestor exactly matches the current goal, we do a reduction on
that ancestor and disallow backtracking. Incorporating Harrison’s divide-and-conquer search strategy brings
us to m-d, and trying to match the goal from the clause set before trying unification is called m-s.13 The
optimization in m-c is slightly dubious, incorporating a limited form of caching to stop us attempting the
same goal twice from a given point in the search. The overhead of this pays off on the TPTP problem set
with a time limit of 60 seconds, but not on the HOL problem sets where the limit is 5 seconds.

Finally, m-u incorporates unit lemmaizing, where the use of a unit lemma contributes size 1 to the proof.
Since we use iterative deepening to search for proofs in order of size, the penalty of using a unit lemma is an
important factor in the optimization. However, we cannot make the penalty depend on the proof size of the
unit lemma, since later we will import unit lemmas from a resolution prover where proof sizes do not play
any part.

Table 2. Comparing Model Elimination Optimizations on the TPTP Problem Set.

m-u m-c m-s m-d m-x m-a m-n m-1 m-0

m-u ∗
+89

99.5%
+91

99.5%
+99

99.5%
+180

99.5%
+186

99.5%
+198

99.5%
+345

99.5%
+371

99.5%

m-c
+13 ∗

+2

80.0%
+14

97.5%
+103

99.5%
+109

99.5%
+121

99.5%
+269

99.5%
+295

99.5%

m-s
+13 +0 ∗

+13

95.0%
+101

99.5%
+107

99.5%
+119

99.5%
+267

99.5%
+293

99.5%

m-d
+9 +0 +1 ∗

+90

99.5%
+96

99.5%
+108

99.5%
+255

99.5%
+281

99.5%

m-x
+12 +11 +11 +12 ∗

+7

95.0%
+25

99.5%
+178

99.5%
+204

99.5%

m-a
+12 +11 +11 +12 +1 ∗

+19

97.5%
+174

99.5%
+200

99.5%

m-n
+5 +4 +4 +5 +0 +0 ∗

+158

99.5%
+184

99.5%

m-1
+0 +0 +0 +0 +1 +3 +6 ∗

+29

99.5%

m-0
+0 +0 +0 +0 +1 +3 +6 +3 ∗

Table 2 shows the result of a pairwise comparison between each step in the evolution of our model
elimination prover, from the humble m-0 to the hi-tech m-u which proves 371 more TPTP problems.
Similar results occur on the HOL problem sets.

4.2 Resolution Procedure

The second proof procedure that we implemented is the resolution procedure of Robinson [21]. Our ver-
sion uses the given clause algorithm, and we implement term nets to improve the speed of unification and
subsumption checking. Additionally, unit clauses are used whenever possible to simplify clauses. In contrast
with the incremental sequence of optimizations that we used for model elimination, our resolution procedure
has several independent parameters that control the search strategy.

13 The fact that we are implementing this in ML might help to explain why this is such an effective optimization. If
matching succeeds then there is no need to update the substitution context, and this results in less allocation and
reduced garbage collection times. These reductions range between 20% and 80% on TPTP problems.

8



The first parameter controls how much subsumption checking is done. By default, as clauses are taken
from the unused list they are checked to see if they are subsumed by a clause in the used list. If so, they are
dropped and the next clause is chosen from the unused list. We also implement a higher level of subsumption,
indicated by an extra s in the prover name. Here, when we lift a clause from the unused list, we immediately
see if it is subsumed by another clause in the unused list. If so, we use that clause instead.

The second parameter is a number n, and controls the order that we pick clauses from the unused list.
For every clause picked from the unused list in FIFO order, we pick n clauses with the smallest symbol
count.14 The number n is one of 1, 2, 3, 4 or 5, and is part of the prover name. This is called the ratio
strategy, originally used in the Otter theorem prover [26].

The final parameter is Robinson’s positive refinement [20], which we indicate with a final ‘+’ in the prover
name.

We found that the best prover for all three problem sets is r3+: the default level of subsumption; picking
3 smallest clauses for every clause at the head of the queue; and using positive resolution. On the TPTP
problem set, this parameter setting is better than any other with confidence at least 95%.

4.3 Delta-style Procedure

The third and final proof procedure that we implemented is based on the Delta preprocessor of Schumann [23].
Put simply, for every n-ary relation R present in the problem, we generate the ‘Delta goals’ R(X1, . . . , Xn)
and ¬R(Y1, . . . , Yn) (with fresh variables Xi and Yi). We then use the model elimination procedure with
iterative deepening to search for solutions to the Delta goals. Every unit clause that is derived during this
process is shared with the other proof procedures.

The Delta procedure takes the same optimization parameters as model elimination, and so it is not
necessary to separately optimize this procedure. In any case, since it is not designed to directly solve the
goal, but rather to help the other procedures by finding useful unit clauses, it only makes sense to use it
when unit lemmaizing is switched on.

5 Combining the First-Order Provers

As already mentioned, when we run different proof procedures together they can cooperate by sharing unit
clauses. Whenever a unit clause is derived, it is inserted into a global store that is available to every proof
procedure. The way that the individual proof procedures make use of unit clauses was described in the
previous sections.

Each proof procedure runs for a time-slice,15 and a scheduler decides which proof procedure to run based
on the cost of the execution time it has already consumed. For model elimination and resolution, the cost of
execution time is simply the number of seconds, but for the Delta procedure it was empirically found to be
better to use the square of the number of seconds.

For example, if each proof procedure has consumed 1/3 second of CPU time, the model elimination and
resolution cost is 1/3, while the Delta cost is (1/3)2 = 1/9. Therefore, Delta will be scheduled as the cheapest
procedure. If each proof procedure has consumed 2 seconds, the model elimination and resolution cost is 2,
while the Delta cost is 22 = 4, and so one of model elimination and resolution will be scheduled to run for a
time-slice.

Tables 3, 4, and 5 show the result of running different proof procedure combinations on the TPTP, uHOL
and HOL problem sets, respectively.

In every case, the combined model elimination and resolution procedure performed significantly better
than either individually, with the highest level of confidence (99.5%). For the TPTP problem set, we can use
some arithmetic to see that there must exist at least 166 problems that were proved by the combined proce-
dure but were not proved by either acting alone. This is compelling evidence that the combined procedure
14 We efficiently implement this alternation in ML by storing unused clauses as both queues and (leftist) heaps.

Okasaki [18] implements functional versions of these and many more data structures.
15 In our experiments we set each time slice to be 1/3 second long.

9



Table 3. Comparing Combinations of Provers on the TPTP Problem Set.

mrd mr md m rd r

mrd ∗
+22

99.5%
+160

99.5%
+200

99.5%
+291

99.5%
+322

99.5%

mr
+9 ∗

+161

99.5%
+189

99.5%
+283

99.5%
+307

99.5%

md
+22 +36 ∗

+56

99.5%
+274

99.5%
+298

99.5%

m
+13 +15 +7 ∗

+243

99.5%
+264

99.5%

rd
+25 +30 +146 +164 ∗

+42

99.5%

r
+25 +23 +139 +154 +11 ∗

Table 4. Comparing Combinations of Provers on the uHOL Problem Set.

mrd mr md m rd r

mrd ∗
+16

70.0%
+111

99.5%
+187

99.5%
+164

99.5%
+148

99.5%

mr
+13 ∗

+119

99.5%
+182

99.5%
+156

99.5%
+137

99.5%

md
+11 +22 ∗

+91

99.5%
+152

97.5%
+133

90.0%

m
+14 +12 +18 ∗ +133 +113

rd
+21 +16 +109 +163

90.0% ∗ +33

r
+22 +14 +107 +160

99.0%
+50

90.0% ∗

does more than simply harvest the problems that are ‘shallow’ for one of model elimination and resolution.
Rather, the sharing of unit clauses creates a whole new procedure that is better than either.

Comparing the combinations of proof procedures across the three problem sets, as we move from TPTP
through uHOL to HOL we find resolution becoming better relative to model elimination. Similarly, the Delta
procedure helps the combined procedure less as we move from TPTP to HOL. This latter effect is probably
due to the cost functions we chose, which favours Delta in the first 3 seconds of CPU time. When the total
limit is 5 seconds, this represents a serious bias.

Because the proof procedures share unit clauses, some rather counter-intuitive effects can arise from
combining proof procedures. For example, there is a class of 7 TPTP problems that model elimination can
prove, but model elimination and Delta together fail to prove within 60 seconds. One of these is GRP128 4 003,
which model elimination acting alone proves in about 12 seconds! The only explanation is that Delta finds
some ‘helpful’ unit clauses that lead model elimination into an unprofitable area of the search space. However,
these kind of events are rare: the other 6 problems in this class take model elimination acting alone more
than 45 seconds to prove.

Finally, we can compare the performance of provers on the different versions of each problem in the
uHOL and HOL problem sets. The best prover in this domain is the combination of model elimination and
resolution, and there were 142 problems that it could prove in uHOL but not in HOL, and 13 problems that
it could prove in HOL but not in uHOL. Therefore, this confirms our expectations that the much smaller
versions of the problems in uHOL can be proved more efficiently, though there are a few examples where
the types cut down the search space enough to make the difference between finding a proof within the time
limit and not.

10



Table 5. Comparing Combinations of Provers on the HOL Problem Set.

mrd mr md m rd r

mrd ∗ +9 +171

99.5%
+246

99.5%
+174

99.5%
+127

99.5%

mr
+22

95.0% ∗
+184

99.5%
+258

99.5%
+184

99.5%
+131

99.5%

md
+25 +25 ∗

+102

99.5%
+168

75.0%
+124

m
+23 +22 +25 ∗ +146 +105

rd
+14 +11 +154 +209

99.5% ∗ +20

r
+32 +23 +175

99.5%
+233

99.5%
+85

99.5% ∗

6 Transferring the Technology to Other Higher-Order Logic Theorem Provers

The results of the previous section show that we can create combination first-order proof tactics that are
more powerful than individual proof procedures, and the LCF-style logical kernel allows us to easily translate
first-order refutations to higher-order logic theorems. The existing implementation in HOL4 has been found
to be a useful proof tool when used in proofs by the HOL developers.

The general architecture is easily ported to other higher-order logic theorem provers such as PVS or
Isabelle. Indeed, the first-order proof procedures complete with logical kernel are a standalone library in
Standard ML, so could be imported without any change at all.16 The only part that needs to be created
afresh for each higher-order logic theorem prover is a rule of inference that translates first-order refutations
to higher-order logic theorems. This will differ slightly according to the particular details of the higher-order
logic.

There is one difference between HOL and PVS that may be significant here. When translating a first-order
refutation to higher-order logic, it is often necessary to translate a first-order term to higher-order logic. In
HOL this is straightforward, but in PVS some auxiliary theorems may be necessary to establish the TCCs
of the translated term. Additionally, there may be no type information in the first-order term, in which case
we generate a HOL term and infer its principal type. In PVS this may not be possible in general, which
may jeopardize the possibility of an untyped mapping to first-order logic. More investigation is necessary to
establish whether the required information can be reconstructed in some way.

Finally, for some interactive theorem proving applications, it may be appropriate to simply trust that
the subgoal is valid if the first-order prover detects unsatisfiability of the corresponding clauses. There is
already strong pressure on the implementors of first-order provers to make sure their system is sound; at the
annual CADE automatic system competition, provers face disqualification if they fail any soundness test.
Abandoning the idea of translating refutations gives an additional benefit: many first-order provers perform
much better if they are not required to keep track of the refutation as they search.

7 Conclusions

In this paper we described a framework for implementing first-order proof tactics in higher-order logic
theorem provers, which uses an LCF-style logical kernel to create a modular interface between the two
logics. The architecture we presented is not specific to a particular higher-order theorem prover, and we
have sketched out how it could be ported to a new theorem prover, notwithstanding the potential problem
with type reconstruction in PVS. We have implemented a version in HOL4, with two working mappings: one
that preserves type information from higher-order logic, and one that reconstructs it while translating the
first-order refutation.
16 Available at http://www.cl.cam.ac.uk/∼jeh1004/research/metis/.

11



We also implemented a combination of first-order proof procedures in Standard ML, and compared their
performance on three different problem sets. Based on our experiments, we tentatively conclude that good
performance from a first-order prover in one domain suggests that it will also perform well in other domains.
Optimizations we made to improve performance on the TPTP problem set usually also improved performance
on the HOL problem sets, though there was a significant shift from model elimination in the TPTP domain
towards resolution in the HOL domain. This was extremely surprising, since the HOL problems are self-
selected for the MESON prover in HOL. During interactive proof in HOL, if MESON cannot prove a subgoal
within a reasonable time, then a user can perform a manual inference step and then try again. Further
investigation is needed to establish why resolution seems to do better on HOL subgoals.

We found the LCF-style kernel for clausal first-order logic to be more than just a convenient interface to
a proof translator. Reducing the steps of proof procedures to primitive inferences clarified their behaviour,
and also helped catch bugs early. Also, assuming the (52 line) ML Kernel module is correctly implemented
and the programmer is careful about asserting axioms, loss of soundness arising from ‘prover optimizations’
can be completely avoided.

Finally, on all three problem sets the combination of model elimination and resolution was found to
perform significantly better than either individually. This supports the hypothesis that first-order search
spaces have a structure that rewards the use of a variety of search methods, despite the extra redundancy
that is entailed; a view neatly summarized by Astrachan and Loveland [2]:

“Unlike chess, theorems are a very diverse lot and different proof methods may excel in different
areas.”

8 Related Work

In addition to MESON in HOL, there are many other examples of automatic first-order provers being used
to prove problems in an interactive theorem prover: (in chronological order) FAUST in HOL [16]; SEDUCT
in LAMBDA [5]; 3TAP in KIV [1]; Paulson’s blast in Isabelle [19]; Gandalf in HOL [14]; and Bliksem in
Coq [4]. Various mappings are used from the theorem prover subgoals into problems of first-order logic,
defining the scope of what can be automatically proved. Using the architecture presented in this paper for
translating first-order refutations would allow different first-order provers to be ‘plugged-in’ to the theorem
prover. Moreover, if first-order provers emitted proofs in a standardized ‘LCF-style’ logical kernel for clausal
first-order logic, then this would further simplify their integration into interactive theorem provers.

As part of the ILF Mathematical Library Project, Dahn and Wernhard [8] extracted 97 first-order prob-
lems from the article Boolean Properties of Sets in the Mizar Mathematical Library. Later, Dahn [7] added
the ability to represent Mizar type information, and extracted 47 problems from the article Relations De-
fined on Sets. However, there has been no published study of the comparitive effectiveness of first-order
provers on this problem set.

Several projects have aimed to create combination first-order provers that are better than the individual
components. For example, the TECHS system [10] uses automatic referees to decide which clauses to exchange
between provers, as opposed to our system that simply shares unit clauses. Further investigation is needed
to decide the best way of combining proof procedures in our application.

Finally, we note that Robinson [22] proposed a version of higher-order logic in terms of combinators
(though it is typeless and therefore unsound due to the ‘Russell combinator’ we defined in Section 2.3).17

However, the motivation behind combinators instead of the λ-calculus is that proof automation can be
simplified, and this also motivates our combinator mapping from HOL subgoals to first-order logic.

Acknowledgements

This project greatly benefitted from discussions with Mike Gordon, Michael Norrish and Konrad Slind.
Also, the CAML code in John Harrison’s forthcoming book provided a useful starting point for my own ML
implementation of first-order provers. Thanks are also due to Judita Preiss for technical support.
17 Thanks to John Harrison for drawing my attention to this.

12



References

1. Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel, Wolfgang Reif, Gerhard Schellhorn, and
Peter H. Schmitt. Integration of automated and interactive theorem proving. In W. Bibel and P. Schmitt, editors,
Automated Deduction: A Basis for Applications, volume II, chapter 4, pages 97–116. Kluwer, 1998.

2. O. L. Astrachan and Donald W. Loveland. The use of lemmas in the model elimination procedure. Journal of
Automated Reasoning, 19(1):117–141, August 1997.

3. Owen L. Astrachan and Mark E. Stickel. Caching and lemmaizing in model elimination theorem provers. In
Deepak Kapur, editor, Proceedings of the 11th International Conference on Automated Deduction (CADE-11),
volume 607 of Lecture Notes in Artificial Intelligence, pages 224–238, Saratoga Springs, NY, USA, June 1992.
Springer.

4. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction in type theory using resolu-
tion. In David A. McAllester, editor, Proceedings of the 17th International Conference on Automated Deduction
(CADE-17), volume 1831 of Lecture Notes in Computer Science, pages 148–163, Pittsburgh, PA, USA, June
2000. Springer.

5. H. Busch. First-order automation for higher-order-logic theorem proving. In Tom Melham and Juanito Camilleri,
editors, Higher Order Logic Theorem Proving and Its Applications, 7th International Workshop, volume 859 of
Lecture Notes in Computer Science, Valletta, Malta, September 1994. Springer.

6. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, New York, 1973.

7. Ingo Dahn. Interpretation of a Mizar-like logic in first-order logic. In Ricardo Caferra and Gernot Salzer, editors,
International Workshop on First-Order Theorem Proving (FTP ’98), Technical Report E1852-GS-981, pages
116–126, Vienna, Austria, November 1998. Technische Universität Wien.

8. Ingo Dahn and Christoph Wernhard. First order proof problems extracted from an article in the MIZAR math-
ematical library. In Maria Paola Bonacina and Ulrich Furbach, editors, International Workshop on First-Order
Theorem Proving (FTP ’97), number 97-50 in RISC-Linz Report Series, Schloss Hagenberg, Austria, October
1997. Johannes Kepler Universität Linz.

9. Morris DeGroot. Probability and Statistics. Addison-Wesley, 2nd edition, 1989.
10. Jörg Denzinger and Dirk Fuchs. Knowledge-based cooperation between theorem provers by TECHS. SEKI-Report

SR-97-11, University of Kaiserslautern, 1997.
11. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of Lecture Notes in Computer Science.

Springer, 1979.
12. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A theorem-proving environment for higher

order logic). Cambridge University Press, 1993.
13. John Harrison. Optimizing proof search in model elimination. In Michael A. McRobbie and John K. Slaney,

editors, 13th International Conference on Automated Deduction (CADE-13), volume 1104 of Lecture Notes in
Artificial Intelligence, pages 313–327, New Brunswick, NJ, USA, July 1996. Springer.

14. Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin,
and Laurent Théry, editors, Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs
’99, volume 1690 of Lecture Notes in Computer Science, pages 311–321, Nice, France, September 1999. Springer.

15. Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei Voronkov, editor, Proceedings
of the 18th International Conference on Automated Deduction (CADE-18), volume 2392 of Lecture Notes in
Artificial Intelligence, pages 134–138, Copenhagen, Denmark, July 2002. Springer.

16. R. Kumar, T. Kropf, and K. Schneider. Integrating a first-order automatic prover in the HOL environment. In
Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and Phillip J. Windley, editors, Proceedings of the 1991 International
Workshop on the HOL Theorem Proving System and its Applications (HOL ’91), August 1991, pages 170–176,
Davis, CA, USA, 1992. IEEE Computer Society Press.

17. Donald W. Loveland. Mechanical theorem proving by model elimination. Journal of the ACM, 15(2):236–251,
April 1968.

18. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, Cambridge, UK, 1998.
19. L. C. Paulson. A generic tableau prover and its integration with Isabelle. Journal of Universal Computer Science,

5(3), March 1999.
20. J. A. Robinson. Automatic deduction with hyper-resolution. International Journal of Computer Mathematics,

1:227–234, 1965.
21. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23–49,

January 1965.

13



22. J. A. Robinson. A note on mechanizing higher order logic. Machine Intelligence, 5:121–135, 1970.
23. Johann Ph. Schumann. DELTA — A bottom-up processor for top-down theorem provers (system abstract). In

Alan Bundy, editor, 12th International Conference on Automated Deduction (CADE-12), volume 814 of Lecture
Notes in Artificial Intelligence, Nancy, France, June 1994. Springer.

24. Christian B. Suttner and Geoff Sutcliffe. The TPTP problem library — v2.1.0. Technical Report JCU-CS-97/8,
Department of Computer Science, James Cook University, December 1997.

25. D. A. Turner. A new implementation technique for applicative languages. Software – Practice and Experience,
9(1):31–49, January 1979.

26. Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated Reasoning: Introduction and Applications.
McGraw-Hill, New York, 2nd edition, 1992.

14


