
An LCF-Style Interface between HOL and
First-Order Logic

Joe Hurd�

Computer Laboratory
University of Cambridge,
joe.hurd@cl.cam.ac.uk

1 Introduction

Performing interactive proof in the HOL theorem prover1 [3] involves reducing
goals to simpler subgoals. It turns out that many of these subgoals can be effi-
ciently ‘finished off’ by an automatic first-order prover. To fill this niche, Harrison
implemented a version of the MESON procedure [4] with the ability to translate
proofs to higher-order logic. This was integrated as a HOL tactic in 1996, and
has since become a standard workhorse of interactive proof. Today, building all
the theories in the most recent distribution of HOL relies on MESON to prove 1726
subgoals.

Given this level of demand for automatic first-order proof by users performing
interactive proof in HOL, it seems worthwhile to look for ways to narrow the gap
between these two worlds. Consider the following high-level view of how a HOL
goal g is proved using a first-order prover:

1. We first convert the negation of g to CNF; this results in a HOL theorem of
the form

� ¬g ⇐⇒ ∃a. (∀v1. c1) ∧ · · · ∧ (∀vn. cn) (1)

where each ci is a HOL term having the form of a disjunction of literals, and
may contain variables from the vectors a and vi.

2. Next, we create skolem constants for each variable in a, and map each HOL
term ci to first-order logic. This produces the clause set

C = {C1, . . . , Cn}
3. The first-order prover runs on C, and finds a refutation ρ.
4. By proof translation, the refutation ρ is lifted to a HOL proof of the theorem

{(∀v1. c1), . . . , (∀vn. cn)} � ⊥ (2)

5. Finally, some HOL primitive inferences use theorems (1) and (2) to derive

� g (3)
� Supported by EPSRC project GR/R27105/01
1 HOL is available at http://www.cl.cam.ac.uk/Research/HVG/FTP/.

A. Voronkov (Ed.): CADE-18, LNAI 2392, pp. 134–138, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

http://www.cl.cam.ac.uk/Research/HVG/FTP/


An LCF-Style Interface between HOL and First-Order Logic 135

Various logical incompatibilities manifest themselves in steps 2 and 4, when
formulas and proofs must be mirrored in both logics. In this paper we present a
generic interface between HOL and first-order logic, offering:

– an expressive representation of HOL terms in unsorted first-order logic, per-
mitting many ‘higher-order’ goals to be proved by standard first-order de-
duction calculi;

– an automatic conversion from first-order refutations to HOL proofs, reduc-
ing the effort needed to integrate existing first-order provers with the HOL
theorem prover;

– with a strong guarantee that soundness will not be violated.

2 Mapping HOL Terms to First-Order Logic

Seemingly the hardest problem with mapping HOL terms to first-order logic—
dealing with λ-abstractions—can be smoothly dealt with as part of the conver-
sion to CNF. Any λ-abstraction at or beneath the literal level is rewritten to
combinatory form, using the set of combinators {S, K, I, C, ◦}.2

The mapping that we use makes explicit function application, so that the
HOL term m + n maps to the first-order term @(@(+, m), n). Since in HOL
there is no distinction between terms and formulas, we model this in first-order
logic by defining a special relation called B (short for Boolean) that converts
a first-order term to a first-order formula. For example, the HOL boolean term
m ≤ n can be translated to the first-order formula B(@(@(≤, m), n)). The only
exception to this rule is equality: the HOL term x = y can be mapped to the
first-order logic formula =(x, y).

The mapping described thus far includes no type information, but is still a
useful way to map HOL terms to first-order logic. We also experimented with
including types in the first-order representation of a HOL term. Using this idea,
the HOL term m+ n would map to the first-order term

@(@(+ : N → N → N, m : N) : N → N, n) : N

where ‘:’ is a binary function symbol (written infix for readability), and higher-
order logic types are encoded as first-order terms.3 As might be expected, this
mapping produces much larger first-order clauses than omitting the types, and
this results in first-order deduction steps taking longer to perform. However, we
cannot conclude that including types is definitely harmful: the extra information
may pay for itself by cutting down the search space.

2 In principle we could use more combinators to guarantee a more compact translation,
but HOL goals are normally small enough that this extra complication is not worth
the effort.

3 Encoding type variables as first-order logic variables allows polymorphic types to be
dealt with in a straightforward manner.



136 J. Hurd

Using this mapping, we can use a first-order prover to prove several ‘higher-
order’ goals, such as the classic derivation of an identity function from combina-
tor theory:

� (∀x, y. K x y = x) ∧ (∀ f, g, x. S f g x = (f x) (g x)) ⇒ ∃ f. ∀x. f x = x

3 Translating First-Order Refutations to HOL

At first sight it may appear that the necessity of translating first-order refuta-
tions to higher-order logic proofs imposes a burden that hampers free experimen-
tation with the first-order provers. However, by applying the technology of the
LCF project [2], we can isolate the proof translation and make it invisible to the
developer of first-order proof procedures. We have implemented this automatic
proof translation for the mapping that preserves type information, and it has
been successfully used in combination with ML versions of first-order calculi to
prove many subgoals in the HOL theorem prover.

A1 ∨ · · · ∨ An
AXIOM [A1, . . . , An]

L ∨ ¬L
ASSUME L

A1 ∨ · · · ∨ An

A1[σ] ∨ · · · ∨ An[σ]
INST σ

A1 ∨ · · · ∨ An

Ai1 ∨ · · · ∨ Aim

FACTOR

A1 ∨ · · · ∨ L ∨ · · · ∨ Am B1 ∨ · · · ∨ ¬L ∨ · · · ∨ Bn

A1 ∨ · · · ∨ Am ∨ B1 ∨ · · · ∨ Bn
RESOLVE L

Fig. 1. The Primitive Rules of Inference of Clausal First-Order Logic.

This is achieved by defining a logical kernel of ML functions that execute a
primitive set of deduction rules on first-order clauses. For our purposes, we use
the five rules in Figure 1, which form a (refutation) complete proof system for
clausal first-order logic.

The AXIOM rule is used to create a new axiom of the logical system; it takes
as argument the list of literals in the axiom clause. The ASSUME rule takes a
literal L and returns the theorem L ∨ ¬L.4 The INST rule takes a substitution
σ and a theorem A, and applies the substitution to every literal in A.5 The
FACTOR rule takes a theorem and removes duplicate literals in the clause: note
that no variable instantiation takes place here, two literals must be identical for
one to be removed. Finally, the RESOLVE rule takes a literal L and two theorems
A, B, and creates a theorem containing every literal except L from A and every
literal except ¬L from B. Again, no variable instantiation takes place here: only
literals identical to L in A (or ¬L in B) are removed.
4 This rule is used to keep track of reductions in the model elimination procedure.
5 In some presentations of logic, this uniform instantiation of variables in a theorem
is called specialization.



An LCF-Style Interface between HOL and First-Order Logic 137

signature Kernel =
sig
type formula = Term.formula
type subst = Term.subst

(* An ABSTRACT type for theorems *)
eqtype thm

(* Destruction of theorems is fine *)
val dest_thm : thm -> formula list

(* But creation is only allowed by these primitive rules *)
val AXIOM : formula list -> thm
val ASSUME : formula -> thm
val INST : subst -> thm -> thm
val FACTOR : thm -> thm
val RESOLVE : formula -> thm -> thm -> thm

end

Fig. 2. The ML Signature of a Logical Kernel Implementing Clausal First-Order Logic.

The ML type system can be used to ensure that these primitive rules of
inference represent the only way to create elements of an abstract thm type.6

In Figure 2 we show the signature of an ML Kernel module that implements
the logical kernel. We insist that the programmer of a first-order provers derive
refutations by creating an empty clause of type thm. The only way to do this is
to use the primitive rules of inference in the Kernel module: this is both easy
and efficient for all the standard first-order proof procedures.

At this point it is simple to translate first-order refutations to HOL proofs. We
add proof logs into the representation of theorems in the Kernel, so that each
theorem remembers the primitive rule and theorems that were used to create
it. When we complete a refutation, we therefore have a chain of proof steps
starting at the empty clause and leading back to axioms. In addition, for each
primitive rule of inference in Kernel, we create a higher-order logic version that
works on HOL terms, substitutions and theorems.7 The final ingredient needed
to translate a proof is a HOL theorem corresponding to each of the first-order
axioms. These theorems are the HOL clauses in the CNF representation of the
original (negated) goal, which we mapped to first-order logic and axiomatized.

To summarize: by requiring the programmer of a first-order proof procedure
to derive refutations using a logical kernel, lifting these refutations to HOL proofs
can be done completely automatically.
6 Indeed, the ability to define an abstract theorem type was the original reason that
the ML type system was created.

7 If we omit the types from our mapping of HOL terms to first-order logic, it is possible
that the first-order refutation cannot be translated to a valid HOL proof. In this case
we can either abort, or restart the whole procedure with types included.



138 J. Hurd

4 Conclusions and Related Work

We tested the LCF-style kernel for clausal first-order logic by implementing
ML versions of various first-order calculi, and found it to be more than just a
convenient interface to a proof translator. Reducing the steps of proof procedures
to primitive inferences clarified their behaviour, and also helped catch bugs early.
Also, assuming the (52 line) ML Kernel module is correctly implemented and
the programmer is careful about asserting axioms, loss of soundness arising from
‘prover optimizations’ can be completely avoided.

In addition to MESON in HOL, there have been many other examples of
automatic first-order provers being used to prove problems in an interactive
theorem prover, including: FAUST in HOL [5]; Paulson’s blast in Isabelle [6];
and Bliksem in Coq [1].

In these link-ups, various mappings are used from theorem prover subgoals
into problems of first-order logic, defining the class of subgoals that may be fea-
sibly proved using the underlying first-order prover. The architecture presented
in this paper for translating first-order refutations allows different first-order
provers to be ‘plugged-in’ to the theorem prover, with small marginal effort.
Moreover, if first-order provers emitted proofs in a standardized ‘LCF-style’ log-
ical kernel for clausal first-order logic, then this would further simplify their
integration into interactive theorem provers.

References

1. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction
in type theory using resolution. In David A. McAllester, editor, Proceedings of the
17th International Conference on Automated Deduction (CADE-17), volume 1831
of Lecture Notes in Computer Science, pages 148–163, Pittsburgh, PA, USA, June
2000. Springer.

2. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of Lecture
Notes in Computer Science. Springer Verlag, 1979.

3. M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving
environment for higher order logic). Cambridge University Press, 1993.

4. John Harrison. Optimizing proof search in model elimination. In Michael A. McRob-
bie and John K. Slaney, editors, 13th International Conference on Automated De-
duction (CADE-13), volume 1104 of Lecture Notes in Artificial Intelligence, pages
313–327, New Brunswick, NJ, USA, July 1996. Springer.

5. R. Kumar, T. Kropf, and K. Schneider. Integrating a first-order automatic prover
in the HOL environment. In Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and
Phillip J. Windley, editors, Proceedings of the 1991 International Workshop on the
HOL Theorem Proving System and its Applications (HOL ’91), August 1991, pages
170–176, Davis, CA, USA, 1992. IEEE Computer Society Press.

6. L. C. Paulson. A generic tableau prover and its integration with Isabelle. Journal
of Universal Computer Science, 5(3), March 1999.


	Introduction
	Mapping HOL Terms to First-Order Logic
	Translating First-Order Refutations to HOL
	Conclusions and Related Work

