
Maintaining Verified Software

Joe Leslie-Hurd
Intel Corp.

joe@gilith.com

Abstract
Maintaining software in the face of evolving dependencies is a chal-
lenging problem, and in addition to good release practices there
is a need for automatic dependency analysis tools to avoid errors
creeping in. Verified software reveals more semantic information
in the form of mechanized proofs of functional specifications, and
this can be used for dependency analysis. In this paper we present
a scheme for automatic dependency analysis of verified software,
which for each program checks that the collection of installed li-
braries is sufficient to guarantee its functional correctness. We il-
lustrate the scheme with a case study of Haskell packages verified
in higher order logic. The dependency analysis reduces the burden
of maintaining verified Haskell packages by automatically comput-
ing version ranges for the packages they depend on, such that any
combination provides the functionality required for correct opera-
tion.

Categories and Subject Descriptors K.6.3 [Software Manage-
ment]: Software Maintenance

Keywords Software Maintenance; Formal Verification; Depen-
dency Analysis

1. Introduction
One feature of a healthy software ecosystem is the ability for
developers to build upon the work of others, rather than creating
everything from scratch. For example, a developer might link a
program to a set of software libraries developed by others that
implement useful functionality. However, the price for obtaining
this useful functionality is that the correctness of the program now
depends on the behaviour of the software libraries, and each new
release of the libraries requires careful checking to make sure the
program still functions correctly. Checking dependencies is such
a common problem that the phrase ‘dependency hell’ exists to
describe various extreme forms of it.1

Software dependency management is an old problem (Lehman
1980), and over time there have emerged release practices and
automatic tools to ease the maintenance burden on developers. For
example, many software projects have an established practice that

1 http://en.wikipedia.org/wiki/Dependency_hell

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’13, September 23–24, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2383-3/13/09. . . $15.00.
http://dx.doi.org/10.1145/2503778.2503787

each new release is assigned a version number that reflects the scale
of the change from the previous release. If the last release of the
software was assigned version 1.3, then a new release assigned
version 1.4 is expected to behave more like the last release than a
new release assigned version 2.0. There is a language-independent
Semantic Versioning Specification that formalizes this practice by
setting conditions for incrementing the different components of a
version number,2 although realizing its promised benefit relies on
library developers being willing and able to consistently apply the
rules.

In addition to following good release practices, developers can
use automatic tools to manage software dependencies. A general
observation is that the more information about software behaviour
is available to an automatic tool, the more precise it can be about
deciding whether a program will function correctly using a partic-
ular set of libraries. For example, a linker tool such as ld is used
to resolve library references in programs, binding function calls in
the program to the corresponding object code in a library. How-
ever, since the linker only processes program symbols, it can only
detect dependency problems where the names of library functions
have changed, and is oblivious to changes in their behaviour. By
contrast, a compiler tool such as gcc is able to detect some de-
pendency problems stemming from changes in software behaviour,
since it processes source code containing type information for func-
tions and data.

One way of making more software behaviour information avail-
able to automatic tools is to formally verify it. A developer of veri-
fied software has the ability to write arbitrary functional specifica-
tions for a program, and then construct machine-checkable proofs
that the program satisfies its specification. Though real-world veri-
fied software is still something of a rarity, developing reusable ver-
ified libraries is one way to speed up production of verified appli-
cations.

This paper presents a scheme that makes use of the mechanized
proofs of verified software to decide which versions of available
libraries are required to guarantee functional correctness of a pro-
gram. It works by analyzing exactly how the environmental as-
sumptions of a verified program are satisfied by the properties of
the available libraries, and then using an incremental algorithm to
track these dependencies through previous versions of each library
until an incompatibility is found.

The scheme for analyzing dependencies relies on the existence
of a formal semantic model for the environment of a program and
also the code that it implements. Viewed in this way a program P is
similar to a logical theory Γ . ∆, which uses a set Γ of assumptions
to derive a set ∆ of theorems. The set Γ of assumptions models the
environment used by P : a collection of externally defined symbols
with associated properties. The set ∆ of theorems models the code
implemented in P : a collection of defined symbols with associated
properties that are expressed in terms of externally defined sym-

2 http://semver.org/

theory theorems ∆

Γ . ∆

theory assumptions Γ

Figure 1. Visual representation of a theory Γ . ∆ as a labelled box
that derives theorems ∆ at its top from assumptions Γ at its base.

bols. Associating a verified program P with a logical theory Γ . ∆
in this way, it is possible to view the dependency analysis as a mod-
ule system for verified programs.

For example, consider a Haskell program consisting of the fol-
lowing function definition:3

divides :: Natural -> Natural -> Bool
divides m n =
if m == 0 then n == 0 else n ‘mod‘ m == 0

The environment model of this program contains the externally de-
fined type operators {Natural, Bool,→} and constants {mod, =,
0}, satisfying a set Γ of their regular mathematical properties.4 The
code model of the program consists of the defined constant divides
satisfying a set ∆ of properties such as ` ∀m,n. divides n (m∗n).
Note that the environment and code properties may refer to addi-
tional externally defined symbols not directly used in the program
(like the ∗ constant in this example), and these are simply folded
into the environment model.

The primary contribution of this paper is a language-indepen-
dent method to reduce the maintenance burden for verified software
by automatically computing version ranges of libraries for a pro-
gram, with the property that selecting any combination of library
versions respecting the ranges is sufficient to ensure that the pro-
gram functions correctly. By modelling verified programs as logi-
cal theories this dependency analysis can be carried out by formal
reasoning, providing a guarantee of soundness. This precise depen-
dency analysis of verified software is not supported by any existing
tool.

A secondary contribution is a concrete implementation of this
dependency analysis for Haskell packages verified in higher order
logic, both illustrating the approach and demonstrating its feasibil-
ity. An advantage of choosing Haskell as the target language for
this case study is that it has enough in common with higher order
logic that we can perform verifications using a shallow embedding
of program behaviour, requiring less infrastructure than a deep em-
bedding of program syntax.

The remainder of this paper is structured as follows: Section 2
presents language-independent techniques for checking dependen-
cies between logical theories; Section 3 describes a form of theory
packages that can be exported as verified Haskell packages; Sec-
tion 4 puts these together to automatically check dependencies be-
tween verified Haskell packages; and lastly Sections 5 and 6 survey
related work and summarize.

2. Theory Dependencies
Our method for dependency checking of verified software works
by modelling verified software as logical theories, and then check-
ing logical dependencies between theories. This section sets this

3 The Haskell Natural type is defined in the opentheory-primitive
package introduced in Section 3.2.
4 Typeface is used to distinguish types and values used in Haskell code (e.g.,
Natural and ==) from their mathematical models (e.g., Natural and =).

Γ1 . ∆1 · · · Γn . ∆n

Γ . ∆

Figure 2. Visual representation of theories Γ1 . ∆1, . . ., Γn . ∆n

required by theory Γ . ∆.

up by focusing on logical theories (without considering their prove-
nance) and presents different techniques for checking dependencies
between them.

To fix terminology, in this paper a theory Γ . ∆ consists of:

1. A set Γ of assumptions.

2. A set ∆ of theorems.

3. A proof that the theorems in ∆ logically derive from the as-
sumptions in Γ.

Figure 1 introduces a visual representation of the theory Γ . ∆ as
a labelled box that derives theorems ∆ at its top from assumptions
Γ at its base.

A theory Γ . ∆ may define new symbols in its proof, and also
refer to external symbols. Given a context theorem set Θ we can
construct a binding σ of external symbols in Γ . ∆ to defined
symbols in Θ with the same name. Before importing Γ . ∆ into
the context Θ we construct and apply such a binding σ resulting
in Γ[σ] . ∆[σ]. During the import we satisfy assumptions in Γ[σ]
with matching theorems in Θ, and if every assumption is satisfied
the import is successful and results in the theorem set ∆[σ].

The approach described in this paper is illustrated by exper-
iments carried out using theories of higher order logic (Farmer
2008), where the symbols are either type operators (e.g., →) or
constants (e.g., 0). The theories were extracted from the higher
order logic theorem prover in which they were developed and
stored as theory packages in OpenTheory format (Hurd 2011). The
OpenTheory project5 defines a standard package format which con-
tains a representation of a higher order logic theory in a standard
syntax, and also meta-data such as the name, version and author
of the theory. The goal of the project is to build up a collection of
logical theories that are portable across higher order logic theorem
provers, and to this end theory packages in OpenTheory format can
be imported into different theorem prover contexts or analyzed di-
rectly.

2.1 Theory Dependency Checking
As part of its package meta-data, a theory Γ . ∆ can specify a set

{Γ1 . ∆1, . . . , Γn . ∆n}
of theories that it requires, which intuitively means that the theo-
rem sets ∆i of the required theories should collectively satisfy the
assumption set Γ of the theory. Figure 2 gives a visual representa-
tion of required theories, and this section will formalize this notion
of theory dependency.

An OpenTheory directory stores a set of theory packages, which
can be thought of as the nodes of a directed dependency graph.
The arcs of the graph represent the dependency between theories
as follows: the graph contains the arc (Γ . ∆)→ (Γ′ . ∆′) iff the

5 http://www.gilith.com/research/opentheory/

theory Γ .∆ specifies that it requires theory Γ′ .∆′. New versions
of theory packages can be added to directories at any time, which
can lead to broken dependencies. For example, a new version of
a theory might change the set of theorems it proves, resulting in
unsatisfied assumptions in theories that require it. Alternatively, a
new version of a theory package might require an additional theory,
causing a cycle to appear in the dependency graph.

We say that a theory package Γ . ∆ is up-to-date in a directory
if it is possible to prove all of its theorems ‘from scratch’. This boils
down to the following two conditions:

1. Every theory package Γi . ∆i that theory Γ . ∆ requires is
up-to-date in the directory and proves the theorem set Θi.

2. It is possible to successfully import the theory Γ . ∆ into the
context

⋃
i Θi, resulting in the theorem set Θ.

For Condition 2 to hold, it must be possible to construct a
binding σ of external symbols in Γ . ∆ to defined symbols in⋃

i Θi with the same name. The only way this can fail is if there
are defined symbols in Θi and Θj with the same name and different
definitions. Enforcing consistency of definitions in contexts is good
practice anyway, since it rules out soundness bugs such as (i) define
` c = 0; (ii) define ` c = 1; (iii) prove ` 0 = 1. Once the binding
σ has been successfully constructed, the import will be successful
if every assumption in Γ[σ] is satisfied by a matching theorem in⋃

i Θi.
Note that Condition 1 implies that there are no cycles in the

dependency graph reachable from up-to-date theory packages. We
can thus automatically check whether theories are up to date in a
directory by treating the above conditions as a recursive algorithm
that explicitly computes the theorem sets for every up-to-date pack-
age (reporting “not up-to-date” if a cycle is detected). In addition,
if the algorithm is implemented by a theorem prover in the LCF
design (Gordon et al. 1979), the soundness guarantee of the logical
kernel provides high assurance that the up-to-date check will have
no false positives.

2.2 Local Dependency Checking
As the previous section shows, checking that a theory Γ . ∆ is
up-to-date, in the sense that all its theorems are provable ‘from
scratch’, is a property of the whole dependency graph reachable
from Γ . ∆. However, during theory development it is also inter-
esting to know whether Γ . ∆ contains any inherent problems that
would prevent it from being up-to-date in any possible dependency
graph. We call this local dependency checking, and it consists of
checking four properties that are necessary for theories to be up-to-
date.

The first local dependency check examines a single theory in
isolation.

Check 1: No Axioms A theory Γ . ∆ may define new symbols
and prove properties of them, so it is common for defined symbols
to appear in the theorem set ∆. However, assumptions in Γ that
contain defined symbols can never be satisfied by required theories;
we call such assumptions axioms of the theory. This check flags all
axioms as dependency problems.

The remaining local dependency checks examine a single theory
Γ . ∆ in the context of the theorem sets ∆i of the theories that
Γ . ∆ requires.

Check 2: Definitional Consistency This check flags all instances
of defined symbols with the same name that come from different
theorem sets ∆i and ∆j , since multiple definitions of the same
symbol can result in an inconsistent context.

Check 3: No Unsatisfied Assumptions Assuming the theorem
sets ∆i satisfy definitional consistency, we can construct a binding

σ of external symbols in Γ . ∆ to defined symbols in ∆i with
the same name. This check flags any unsatisfied assumptions in
Γ[σ] that are not matched by any theorems in

⋃
i ∆i[σ]. Note that

we need to apply the binding σ to the theorem sets ∆i, since they
may also contain instances of external symbols. Note also that this
check subsumes Check 1: No Axioms, but we keep both because the
special case is a useful check that is independent of other theories.

Check 4: No Ungrounded Symbols This final check flags all
instances of ungrounded symbols in the theorem set ∆. An un-
grounded symbol is an external symbol that does not appear in Γ
or any of the ∆i, and thus will not be bound to a defined symbol
during import. This causes problems because, although this the-
ory import might succeed, the resulting theorem set will contain an
external symbol that fails to match assumptions made by later the-
ories that require Γ . ∆. Ungrounded symbols are a relatively rare
problem in practice, but can appear in a theory such as

∆ ≡ { ` ∀m,n. divides m n ⇐⇒ ∃ k. k ∗m = n }
which defines the divides constant and then derives a single the-
orem from the raw definition. The theory requires only Boolean
theory to satisfy all the assumptions made in its short proof, but
this will result in the ∗ constant being an ungrounded symbol. The
solution is for the theory to require both Boolean and natural num-
ber theory; this will not only satisfy all assumptions but will also
ground ∗ to a defined constant.

Local dependency checking offers the theory developer a fast
way to discover dependency problems in a theory independent
of a particular dependency graph. In addition, there is a way to
efficiently discover which versions of its required theories allow a
theory to pass local dependency checking, which we describe in the
next section.

2.3 Incremental Dependency Checking
Suppose we are given a theory Γ . ∆ that passes local dependency
checking for its required theories. It is natural to ask whether we
could replace one of the required theories with another version
of the same theory and still pass local dependency checking. The
general problem is to find version ranges for each required theory,
such that theory Γ . ∆ passes local dependency checking for any
combination of required theory versions respecting the ranges. A
naive way to compute these version ranges is to add required theory
versions one at a time and carry out local dependency checking
for all new combinations, but this would result in an exponential
algorithm. In this section we present an efficient solution to this
problem in the form of an incremental algorithm.

The input to the algorithm is a theory Γ . ∆ that requires
theories with names ni, and for now we fix on a particular ver-
sion of each required theory. We will illustrate the concepts us-
ing the natural-divides theory, which defines the divides re-
lation on natural numbers (the definition appears in the previ-
ous section) and proves properties that follow from the definition.
The natural-divides theory requires theories with names bool
(Boolean) and natural (natural number), and we fix on their lat-
est versions (1.29 and 1.78 respectively). We create finite map data
structures to represent the following three functions:

defines : symbol names→ theory name sets
s 7→ {ni | required theory ni defines symbol s}

satisfies : assumptions→ theory name sets
γ 7→ {ni | required theory ni satisfies assumption γ}

grounds : symbol names→ theory name sets
s 7→ {ni | required theory ni grounds symbol s}

For the natural-divides theory, the following are true:

• defines(∧) = {bool}
defines(∗) = {natural}
defines(divides) = {}

• satisfies(` >) = {bool}
satisfies(` ∀n. n ≤ n) = {natural}

• grounds(∧) = {bool, natural}
grounds(∗) = {natural}

The local dependency checks can be expressed as properties of
these functions:

1. No Axioms is a special case of No Unsatisfied Assumptions.

2. Definitional Consistency ⇐⇒ For every symbol s, the set
defines(s) must contain at most one required theory name.

3. No Unsatisfied Assumptions ⇐⇒ For every assumption γ ∈
Γ, the set satisfies(γ) must contain at least one required theory
name.

4. No Ungrounded Symbols ⇐⇒ For every external symbol s
that appears in ∆ but does not appear in Γ, the set grounds(s)
must contain at least one required theory name.

Note that each of these properties can be efficiently computed over
the finite map representation of the functions.

Up to this point the introduction of the above functions and
properties might just seem like a complicated way of perform-
ing local dependency checking for a theory. The benefit of ex-
pressing local dependency checking in this way is that the triple
(defines, satisfies, grounds) is capable of representing dependency
information for a version set of each required theory, such that the
above properties hold iff local dependency checking would pass re-
gardless which version of each required theory was selected. The
key to making this work is an ⊗ operation that combines triples
like so: defines,

satisfies,
grounds

⊗
 defines′,

satisfies′,
grounds′

=

 λs. defines(s) ∪ defines′(s),
λγ. satisfies(γ) ∩ satisfies′(γ),
λs. grounds(s) ∩ grounds′(s)

The intuition behind this definition of the ⊗ operation is as fol-
lows. Definitional Consistency holds if there is no symbol overlap
between the definitions made by required theories, so once some
version of required theory ni has defined the symbol s we consider
s to be owned by ni, and no version of another required theory nj

is permitted to define s. No Unsatisfied Assumptions is more com-
plicated, because for a given assumption γ a required theory might
satisfy in some versions and not in others. However, it must be the
case that there is some required theory that satisfies γ in every ver-
sion. If there was not then we could select a version of each required
theory that did not satisfy γ, and it would remain unsatisfied by the
combination. No Ungrounded Symbols follows the same reasoning
as No Unsatisfied Assumptions.

We now have all the tools we need to present the incremental
algorithm for local dependency checking:

1. Take as input a theory Γ . ∆ that requires theories with theory
names ni.

2. Create new defines, satisfies and grounds functions from the
latest versions of the required theories. Check the local depen-
dency properties of defines, satisfies and grounds, and if any
fail then exit with the error “not up-to-date”.

3. Pick an arbitrary required theory nj where there is a previous
untested version available. If there is no such nj then go to
Step 6.

4. Temporarily replace required theory nj with its previous ver-
sion. Create new defines′, satisfies′ and grounds′ functions
from the required theories, and temporarily replace defines,

satisfies,
grounds

 :=

 defines,
satisfies,
grounds

⊗
 defines′,

satisfies′,
grounds′

5. Check the local dependency properties of defines, satisfies and

grounds. If they all hold then commit the temporary changes,
and if any fail then roll back the temporary changes. Go back to
Step 3.

6. For each required theory ni, output the up-to-date range to be
everything between the current version and the latest version.

Running this algorithm on the natural-divides theory generates
the following version range:

bool ≥ 1.25 ∧ ≤ 1.29
natural ≥ 1.55 ∧ ≤ 1.78

This syntax means that combining any bool theory package in the
version range 1.25–1.29 with any natural theory package in the
version range 1.55–1.78 will be sufficient to pass local dependency
checking for the natural-divides theory package.

The algorithm will always terminate, because every selection of
nj in Step 3 will result in either moving to a previous version of
nj (if the check in Step 5 succeeds) or removing nj from further
consideration (if the check fails).

In general, the problem of finding maximal version ranges of
required theories that satisfy local dependency checking does not
have a unique solution, and when there are multiple solutions the
particular version range generated by the algorithm will depend
on the theory choices made in Step 3. For example, suppose the
natural-divides theory made an assumption that was satisfied
by a theorem proved only in the latest version of required theories
bool and natural. The generated version range cannot contain
prior versions of both bool and natural (selecting prior versions
of both would leave the assumption unsatisfied), but whether the
version range contains prior versions of bool or prior versions of
natural depends on which required theory was considered first in
Step 3.

3. Verified Haskell Packages
Haskell (O’Sullivan et al. 2008) is a functional programming lan-
guage that is rapidly growing in popularity, in part due to the Cabal
package system that simplifies the process of reusing code libraries
developed by other Haskellers (Coutts et al. 2008). For our case
study of verified software dependencies we will target Cabal pack-
ages containing Haskell code verified in higher order logic.

It is well-known that there is a correspondence between a pure
subset of Haskell and a subset of higher order logic (Haftmann
2010). For our case study we choose to develop the code in a higher
order logic theorem prover (Section 3.1) and then generate Haskell
from theory packages (Section 3.2).

3.1 Theories of Haskell Packages
The OpenTheory haskell-prime package uses the sieve of Er-
atosthenes to compute the prime numbers, and we will use this

haskell-prime

haskell-
prime-def

haskell-
prime-src

haskell-
prime-test

Figure 3. Theory structure of the OpenTheory haskell-prime package.

theory as a running example to illustrate the method of exporting
OpenTheory packages as Haskell packages.6

Figure 3 shows the internal structure of the haskell-prime
theory package (recall that theories are represented by labelled
boxes that derive theorems at their top from assumptions at their
base). The top-level haskell-prime theory package includes
three nested theory packages, which have dependencies both be-
tween themselves and between the assumptions and theorems
of haskell-prime. For example, the two arrows down from
haskell-prime-src show that it satisfies its assumptions using
the theorem set of haskell-prime-def and the theorem sets of
the packages that haskell-prime depends on (not shown). The
arrows down from the top of haskell-prime show that its the-
orem set consists of the union of the theorem sets of its included
theories.

A Haskell package defines new programming objects and ex-
ports names for referring to them. In the subset of Haskell that
is the target of our case study, the new programming objects are
types (algebraic datatypes and newtypes) and values (functions and
data). The close correspondence between our Haskell subset and
higher order logic allows us to use a shallow embedding to model
types with types and values with terms, but this is not essential.
For a different target language we might model all programming
objects with terms (e.g., using a deep embedding). There is only
one feature of the model that is essential for our dependency anal-
ysis to succeed: exported names in the software must be formal-
ized by defining new symbols in the theory. In our example the
haskell-prime-def package formalizes exported Haskell names
by defining new type operators and constants in terms of symbols
from mathematics and other verified Haskell packages. For exam-
ple, the definition of the stream (i.e., infinite list) of prime numbers
is

` Haskell.Prime.all = Prime.all

which just defines a new constant in the Haskell namespace that is
an alias for the mathematical definition.

We now consider the haskell-prime-src package, which
uses the definitions made in the haskell-prime-def package to
derive the ‘computational forms’ that can appear in Haskell source
files. For example, the computational form for the stream of prime

6 It is perhaps confusing that the names of OpenTheory packages and
symbols that correspond to Haskell entities are identified by a “Haskell”
prefix (and vice versa).

numbers is the theorem
` Haskell.Prime.all =

Haskell.Stream.unfold Haskell.Prime.next
Haskell.Prime.initial

which ‘unfolds’ a stream from an initial state and a next state func-
tion, and looks much more like a Haskell value declaration than its
higher order logic definition that we saw before. Rather than assign-
ing a mathematical meaning to a description of a computation, here
we are deriving a description of a computation from a mathematical
definition. An advantage of this way of describing computations is
that it side-steps the thorny problem of defining functions by gen-
eral recursion in higher order logic at the same time as proving that
they are total (Slind 1999). In this scheme we can define a function
in whichever form is most convenient, and then derive the recursive
equations as a logical consequence.

The final nested package in our example is haskell-prime-
test, which contains a collection of executable properties we ex-
pect the Haskell sources to satisfy. Executable properties must ei-
ther be an assertion that is quantifier free, or a proposition with
a single universally quantified variable of type random: these can
be automatically tested using the Haskell’s QuickCheck (Claessen
and Hughes 2000). Both assertions and propositions are used to
check that the export step has been carried out correctly. The
haskell-prime-test package contains one assertion and three
propositions. The assertion is

` Haskell.Stream.nth Haskell.Prime.all 0 6= 0

which ensures the first element in the stream of prime numbers is
not zero. The first of the three propositions is

` ∀ r.
let (i, r′)← Haskell.Natural.fromRandom r in
let (j, r′′)← Haskell.Natural.fromRandom r′ in
(Haskell.Stream.nth Haskell.Prime.all i ≤
Haskell.Stream.nth Haskell.Prime.all j) ⇐⇒ i ≤ j

which ensures the stream of prime numbers is strictly increasing.
Note the use of fromRandom conversion functions to manufacture
values of arbitrary types from the single permitted quantified vari-
able of type random.

3.2 Exporting Theories as Haskell Packages
The previous section described how to construct an OpenTheory
package in a form that is ready for export as a Haskell pack-

age. The export procedure is completely automatic: the com-
mand opentheory export haskell-prime exports the exam-
ple haskell-prime OpenTheory package to a Haskell package
called opentheory-prime.7 In this section we continue with the
haskell-prime example to illustrate how the export procedure
generates the contents of a Haskell package: source code; a test
suite; and package meta-data.

The Haskell source code is generated from the theorem set
of the included haskell-prime-src theory package. There are
three different standard forms of theorems that generate datatype,
newtype and value declarations. For example, the Haskell value
declaration that is generated for the stream of prime numbers in
the OpenTheory.Prime module is

all :: [OpenTheory.Primitive.Natural.Natural]
all = OpenTheory.Stream.unfold next initial

As this example shows, some higher order logic type operators and
constants are mapped to primitive Haskell types and values, and the
rest are mapped by simply renaming them (the Haskell namespace
is replaced with OpenTheory). The primitive Haskell types and
values provide the computational platform for all verified Haskell
packages, and its implementation is split between standard Haskell
(e.g., lists) and a special opentheory-primitive package (e.g.,
natural numbers).

The mapping to primitive Haskell types and values does not
have to be reversible, and indeed we map both finite and infinite list
types in higher order logic to standard Haskell list types. Though
there is potential for clients of a verified Haskell package to be
confused about whether a function expects finite or infinite lists as
its argument, other verified Haskell packages that depend on it are
checked in higher order logic where using the wrong kind of list is
a type error.

Our approach of interpreting equality theorems as Haskell equa-
tions offers no guarantees of termination (we could just have easily
exported the equation all = all above), so the generated Haskell
packages are only verified to be partially correct despite higher or-
der logic being a logic of total functions. A nice feature of Haskell
code is that all declarations are interpreted as being mutually recur-
sive, so we do not need any special handling for generating these
computational forms. Appendix A lists the full Haskell source code
generated from the haskell-prime-src theory package.

The theorem set of the nested haskell-prime-test theory
package is used to generate a QuickCheck test suite for the Haskell
package: assertions and propositions are exported as value declara-
tions together with a main function that tests them in sequence. For
example, here is the Haskell value declaration for the proposition
that the stream of prime numbers is strictly increasing:

proposition0 ::
OpenTheory.Primitive.Random.Random -> Bool

proposition0 r =
let (i,r’) = OpenTheory.Natural.fromRandom r in
let (j,_) = OpenTheory.Natural.fromRandom r’ in
(OpenTheory.Stream.nth OpenTheory.Prime.all i <=
OpenTheory.Stream.nth OpenTheory.Prime.all j) ==

(i <= j)

This proposition can be tested using QuickCheck, which checks
that calling the proposition0 function with randomly generated
values of the Random type always returns True. It might seem
strange for a Haskell package to contain a test suite of formally
verified properties, but exporting OpenTheory packages as Haskell
packages is an informal operation, and the test suite provides an
extra check that the target has the expected behaviour.

7 The opentheory tool that implements this export procedure is available
for download at http://www.gilith.com/software/opentheory/

One limitation of this approach is that every assertion and
proposition in the test suite must be expressed as executable
code. However, many interesting properties fall into this sub-
set: the expressive power of higher order logic even supports a
proof of the meta-property that the stream of prime numbers is
the unique stream that will always pass the assertion and three
proposition tests exported from the haskell-prime-test pack-
age. Appendix B lists the full QuickCheck test suite generated from
the haskell-prime-test theory package.

The last element of a verified Haskell package is the meta-data
that contains the package information and instructions for building
the library and test-suite. The package information comes directly
from the meta-data of the OpenTheory package, either copied ex-
actly (like package version and author) or modified according to
a fixed scheme (the haskell prefix in the package name is re-
placed with opentheory). The build instructions are a combina-
tion of standard boilerplate that is the same for all verified Haskell
packages (such as ghc-options), and information derived from
the export (such as exposed-modules). The only exception is the
list of build dependencies on other Haskell packages—generating
this information will be covered in the next section.

4. Verified Haskell Package Dependencies
The Hackage repository is the central hub for Haskell developers to
upload their packages for others to use, and at the time of writing
it contains 5,260 unique packages spanning 31,099 package ver-
sions.8 A combination of Haskell language features and the Cabal
package system has made it particularly easy to reuse code from
the Hackage repository, but this has creating difficulties with man-
aging the dependencies of large Haskell projects. The previous sec-
tions showed how to check dependencies between logical theories,
and how to generate verified Haskell packages from OpenTheory
packages. We now put these together to automatically generate de-
pendencies between verified Haskell packages.

4.1 Checking Package Build Dependencies
Section 3 described a form of OpenTheory packages that can be
exported as verified Haskell packages. We call these exportable
OpenTheory packages Haskell theories, and by convention their
names have the prefix haskell. Like any OpenTheory package, a
Haskell theory Γ . ∆ specifies a list of required theory packages,
some of which are Haskell theories and the rest provide mathe-
matical support for the verification. The required Haskell theories
represent build dependencies of the verified Haskell package gener-
ated from Γ . ∆. We can thus use our theory dependency checking
techniques from Section 2 to manage verified Haskell package de-
pendencies.

To check the build dependencies between a collection of veri-
fied Haskell packages, one possible scheme is to maintain a par-
allel OpenTheory directory alongside a Cabal directory of Haskell
packages. Whenever a verified Haskell package was installed or up-
graded in the Cabal directory, the corresponding OpenTheory pack-
age would be installed or upgraded in the OpenTheory directory.
We can ensure that there are no broken dependencies between the
current versions of the verified Haskell packages by checking that
the corresponding theories in the OpenTheory directory are up-to-
date (in the sense of Section 2.1).

In fact this scheme works for maintaining the build dependen-
cies between versions of verified software in any language, because
all the checking is carried out by OpenTheory at install time using
the corresponding theory packages. However, in the case of verified
Haskell packages there is a way to ensure correct build dependen-
cies using the standard Cabal build infrastructure, avoiding the need

8 http://hackage.haskell.org/

for users of verified Haskell packages to process their correspond-
ing theories.

The Cabal tool is used to build Haskell packages that depend
on specified version ranges of other packages. Given a top-level
package version as build target, it employs a solver to construct a
set S of package versions that satisfy the following conditions:

• Targeted: The build target should be in S.
• Closed: Every package version dependency in S is satisfied by

exactly one package version in S.
• Acyclic: There are no cycles in the package version dependency

graph for S.
• Consistency: There are no name clashes between symbols ex-

ported by package versions in S.

This is not a complete list of conditions on Cabal package version
sets (e.g., S should be minimal), but it is sufficient for our purposes.

Given a set of verified Haskell package versions, the above
Cabal requirements ensure that the corresponding theories will be
up-to-date, so long as every assumption made by a package version
is satisfied by a theorem in a dependent package version. Therefore,
every verified Haskell package must specify version ranges for
dependent packages such that every combination guarantees this
extra condition. This is precisely the notion of local dependency
checking from Section 2.2, and so we can use the incremental
algorithm described in Section 2.3 to generate version ranges for
required Haskell packages.

This scheme allows the developer of verified Haskell packages
to automatically generate version ranges of dependent packages
at release time, and the user of the packages will be guaranteed
correct behaviour by simply building them using the standard Cabal
infrastructure. In addition, this scheme reduces the effort required
for the developer to maintain verified Haskell packages. As new
releases of dependent packages are made, it is trivial to bump
the version, recompute the dependency analysis and make a new
release with updated version ranges (this could even be carried out
by the repository either completely automatically or with minimal
human involvement).

4.2 Verified Haskell Package Examples
To test our approach to dependency analysis, we created a toy li-
brary of verified Haskell packages generated from OpenTheory
packages extracted from the HOL Light theorem prover (Harrison
1996).9 The packages and their dependencies are illustrated in Fig-
ure 4: an arrow from package H to package H ′ means that the list
of build dependencies for H contains H ′. The dotted lines indi-
cate the manual set-up of the computational platform, and the solid
lines indicate verified Haskell packages and build dependencies au-
tomatically generated from OpenTheory packages.

The manual set-up, including the implementation of primitives
and the random testing using QuickCheck, is described in Sec-
tion 3.2. These Haskell packages are added to the build dependen-
cies of every verified Haskell package.

The opentheoryHaskell package implements a library of basic
utility functions in terms of the primitives, but does so as a verified
Haskell package that is automatically generated from the haskell
OpenTheory package. This design helps to keep the manually writ-
ten code small and static, and allows us to use the standard de-
pendency analysis to discover which versions of the opentheory
package are required by other verified Haskell packages.

The opentheory-prime package is the result of exporting
the haskell-prime OpenTheory package. To close the running

9 The HOL Light source files used to generate these OpenTheory packages
are available at https://github.com/gilith/hol-light/

example, here are the automatically generated build dependencies
that are inserted in the Haskell package meta-data:

build-depends:
base >= 4.0 && < 5.0,
random >= 1.0.1.1 && < 2.0,
QuickCheck >= 2.4.0.1 && < 3.0,
opentheory-primitive >= 1.0 && < 2.0,
opentheory >= 1.73 && <= 1.74

This build-depends meta-data uses similar syntax to the example
at the end of Section 2.3, and lists the acceptable version ranges of
Haskell packages that the opentheory-prime package depends
on. As a result of inserting this meta-data the Haskell package
manager will only attempt to build the opentheory-prime pack-
age with dependent verified packages that pass local dependency
checking.

The opentheory-parser and opentheory-char packages
are more realistic examples with non-trivial correctness proofs. The
opentheory-parser package implements a simple set of parser
combinators operating on polymorphic streams; the opentheory-
char package defines a Haskell representation of Unicode char-
acters and uses the parser combinators to implement the UTF-8
encoding of Unicode characters as byte streams.

The approach taken to develop all these verified Haskell pack-
ages was first to prototype an unverified version in Haskell, and
once that was passing some basic tests to port the implementation
to higher order logic and prove that it satisfied Unicode and UTF-
8 expected properties. Finally the verified Haskell packages were
generated, together with a test suite of executable properties such
as round-trip: UTF-8 encoding followed by decoding returns the
original string of Unicode characters.

The effort of maintaining even this toy collection of verified
Haskell packages is reduced using the scheme presented in Sec-
tion 4.1. All theories are free to evolve as they will, and each time a
new release is made the Haskell packages are regenerated together
with version ranges of dependent packages that guarantee their ver-
ified properties. Finding the widest version ranges manually would
be tedious work, but the alternative of artificially narrowing them
would unnecessarily constrain users of the verified Haskell pack-
ages.

5. Related Work
The Cabal/Hackage system (Coutts et al. 2008) for distributing
Haskell packages is integrated with the GHC compiler, which
checks dependencies between packages as part of building them.
The Haskell type system can express many useful properties of pro-
grams, so type checking a package with respect to its build depen-
dencies has much in common with theory dependency checking.
However, the precise properties required of dependent packages
are limited by the expressivity of the type system and thus can’t
be used to search for compatible versions of packages. Much still
relies on developers following good release practices such as the
Cabal Package Versioning Policy.10

Another approach to specifying behaviour more precisely is to
use a module system. The signature of a higher order logic theory
Γ . ∆ mapping one set of type operators and constants with
properties Γ to another set with properties ∆ is similar in concept
to a functor in the Standard ML module system (Milner et al. 1997).
However, like the expressive Haskell type system and unlike logical
theories, module systems are designed to help programmers avoid
bugs and not to capture all the interesting behaviour of a module.
This means that they can only be used to show that a version of

10 http://www.haskell.org/haskellwiki/Package_versioning_
policy

opentheory-primitive, QuickCheck, random, base

opentheory

opentheory-
parser

opentheory-
char

opentheory-
prime

Figure 4. Build dependencies between the Haskell computational platform and a collection of verified packages.

a dependent package is incompatible with the current module, and
never to show that a collection of dependent package versions are
sufficient to enable the desired interesting behaviour.

Many operating system distributions rely on package managers
to keep track of the logical dependencies between different ver-
sions of applications and ensure consistency of the platform. The
Nix package manager (Dolstra and Löh 2008) adopts a purely func-
tional approach to package management, supporting rollbacks and
multiple installed versions of packages. Although highly scalable
and robust, most package managers are not equipped to automati-
cally check dependencies between packages. It would be interest-
ing to integrate the techniques in this paper into a package manager
to create a high assurance distribution mechanism for verified soft-
ware.

There has been a great deal of research into generating code us-
ing higher order logic theories; the Haskell case study in this paper
is most similar to the work of Haftmann converting specifications
formulated in Isabelle’s higher-order logic into executable Haskell
code (Haftmann 2010). The present work differs from previous ef-
forts by its focus on modelling the logical dependencies between
units of generated code, so that the build dependencies can be auto-
matically generated in addition to the code. To improve the fidelity
and increase the scope of our Haskell theories, we could use Huff-
man’s formalization of Haskell (Huffman 2012), which can distin-
guishes between strict and lazy code, and also includes the program
structuring constructs of monads and transformers.

6. Summary
This paper presented a scheme for analyzing the dependencies
of verified software and automatically generating library version
ranges that guarantee functional correctness. The key idea under-
lying our approach is that we can perform verified software depen-
dency checking by formal reasoning on logical theories. The aim
of this research is to reduce the maintenance burden on verified
software without stifling its evolution.

The dependency analysis is illustrated by an in-depth case study
of verified Haskell packages generated by higher order logic theory
packages. A by-product of this work is the beginning of a verified
Haskell package library, which can be extended using the recipe of
the opentheory-char package for creating verified Haskell pack-
ages from unverified prototypes. All of the verified Haskell pack-
ages in this paper have been uploaded to the Hackage repository,
and there is now an opportunity to build on the verified Unicode
package to develop a suite of verified text-processing tools (from
wc to grep).

An interesting avenue of future work is to expand the use of
verified properties of Haskell programs beyond their inclusion in a
package test suite. Perhaps a Haskell compiler could perform better
optimizations if it knew extra properties of the code such as the
possible range of a numeric variable or that a user-defined function
is commutative.

Acknowledgements
This paper was greatly improved by comments from Flemming
Andersen, Iavor Diatchki, Rebekah Leslie-Hurd, Lee Pike and the
anonymous referees.

A. Generated Haskell Code Example
This appendix lists Haskell source code implementing the sieve of
Eratosthenes to compute prime numbers. The code was developed
as logical definitions in the HOL Light theorem prover, extracted
into the OpenTheory haskell-prime package, and automatically
exported to the Haskell opentheory-prime package.11

A.1 The Infinite List of Primes
module OpenTheory.Number.Natural.Prime
where

11 http://hackage.haskell.org/package/opentheory-prime

import qualified OpenTheory.Data.Stream
as Data.Stream

import qualified OpenTheory.Number.Natural.Prime.Sieve
as Sieve

import qualified OpenTheory.Primitive.Natural
as Primitive.Natural

all :: [Primitive.Natural.Natural]
all = Data.Stream.unfold Sieve.next Sieve.initial

A.2 The Underlying Sieve Technique
module OpenTheory.Number.Natural.Prime.Sieve
where

import qualified OpenTheory.Primitive.Natural
as Primitive.Natural

newtype Sieve =
Sieve {

unSieve ::
(Primitive.Natural.Natural,
[(Primitive.Natural.Natural,

(Primitive.Natural.Natural,
Primitive.Natural.Natural))])

}

initial :: Sieve
initial = Sieve (1, [])

increment :: Sieve -> (Bool, Sieve)
increment =

\s ->
let (n, ps) = unSieve s in
let n’ = n + 1 in
let (b, ps’) = inc n’ 1 ps in
(b, Sieve (n’, ps’))

where
inc n _ [] = (True, (n, (0, 0)) : [])
inc n i ((p, (k, j)) : ps) =

let k’ = (k + i) ‘mod‘ p in
let j’ = j + i in
if k’ == 0 then (False, (p, (0, j’)) : ps)
else let (b, ps’) = inc n j’ ps in

(b, (p, (k’, 0)) : ps’)

perimeter :: Sieve -> Primitive.Natural.Natural
perimeter s = fst (unSieve s)

next :: Sieve -> (Primitive.Natural.Natural, Sieve)
next s =

let (b, s’) = increment s in
if b then (perimeter s’, s’) else next s’

B. Generated QuickCheck Test Example
This appendix lists the QuickCheck tests contained in the Haskell
opentheory-prime package. Like the Haskell source code, this
test script was automatically generated from the OpenTheory
haskell-prime package.

module Main
(main)

where

import qualified OpenTheory.Data.Stream
as Data.Stream

import qualified OpenTheory.Number.Natural
as Number.Natural

import qualified OpenTheory.Number.Natural.Geometric
as Number.Natural.Geometric

import qualified OpenTheory.Number.Natural.Prime

as Number.Natural.Prime
import qualified OpenTheory.Primitive.Random

as Primitive.Random
import qualified OpenTheory.Primitive.Test

as Primitive.Test

assertion0 :: Bool
assertion0 =

not (Data.Stream.nth Number.Natural.Prime.all 0 == 0)

proposition0 :: Primitive.Random.Random -> Bool
proposition0 r =

let (i, r’) = Number.Natural.Geometric.fromRandom r in
let (j, _) = Number.Natural.Geometric.fromRandom r’ in
(Data.Stream.nth Number.Natural.Prime.all i <=
Data.Stream.nth Number.Natural.Prime.all j) ==

(i <= j)

proposition1 :: Primitive.Random.Random -> Bool
proposition1 r =

let (i, r’) = Number.Natural.Geometric.fromRandom r in
let (j, _) = Number.Natural.Geometric.fromRandom r’ in
not

(Number.Natural.divides
(Data.Stream.nth Number.Natural.Prime.all i)
(Data.Stream.nth Number.Natural.Prime.all

(i + j + 1)))

proposition2 :: Primitive.Random.Random -> Bool
proposition2 r =

let (n, r’) = Number.Natural.fromRandom r in
let (i, _) = Number.Natural.Geometric.fromRandom r’ in
any (\p -> Number.Natural.divides p (n + 2))

(Data.Stream.take’ Number.Natural.Prime.all i) ||
Data.Stream.nth Number.Natural.Prime.all i <= n + 2

main :: IO ()
main =

do Primitive.Test.assert "Assertion 0" assertion0
Primitive.Test.check "Proposition 0" proposition0
Primitive.Test.check "Proposition 1" proposition1
Primitive.Test.check "Proposition 2" proposition2
return ()

References
K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random test-

ing of Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, Sept.
2000. URL http://www.md.chalmers.se/~rjmh/QuickCheck/.

D. Coutts, I. Potoczny-Jones, and D. Stewart. Haskell: Batteries included.
In A. Gill, editor, Haskell ’08: Proceedings of the first ACM SIGPLAN
symposium on Haskell, pages 125–126. ACM, Sept. 2008. URL http:
//www.cse.unsw.edu.au/~dons/papers/CPJS08.html.

E. Dolstra and A. Löh. NixOS: A purely functional Linux distribution.
In J. Hook and P. Thiemann, editors, Proceedings of the 13th ACM
SIGPLAN International Conference on Functional programming (ICFP
2008), pages 367–378. ACM, Sept. 2008. URL http://doi.acm.
org/10.1145/1411204.1411255.

W. M. Farmer. The seven virtues of simple type theory. Journal of
Applied Logic, 6:267–286, 2008. URL http://imps.mcmaster.ca/
wmfarmer/publications.html.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of
Lecture Notes in Computer Science. Springer, 1979.

F. Haftmann. From higher-order logic to Haskell: There and back
again. In J. P. Gallagher and J. Voigtländer, editors, Proceed-
ings of the ACM SIGPLAN workshop on Partial Evaluation and
Program Manipulation (PEPM 2010), pages 155–158. ACM, Jan.
2010. URL http://www4.in.tum.de/~haftmann/pdf/from_hol_
to_haskell_haftmann.pdf.

J. Harrison. HOL light: A tutorial introduction. In M. Srivas and
A. Camilleri, editors, Proceedings of the First International Confer-

ence on Formal Methods in Computer-Aided Design (FMCAD ’96),
volume 1166 of Lecture Notes in Computer Science, pages 265–
269. Springer, 1996. URL http://www.cl.cam.ac.uk/users/jrh/
papers/demo.html.

B. Huffman. Formal verification of monad transformers. In P. Thiemann
and R. B. Findler, editors, Proceedings of the 17th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP 2012). ACM,
Sept. 2012. URL http://web.cecs.pdx.edu/~brianh/icfp2012.
html.

J. Hurd. The OpenTheory standard theory library. In M. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi, editors, Third Interna-
tional Symposium on NASA Formal Methods (NFM 2011), volume 6617
of Lecture Notes in Computer Science, pages 177–191. Springer, Apr.
2011. URL http://gilith.com/research/papers.

M. M. Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980. URL https:
//cs.uwaterloo.ca/~a78khan/cs446/additional-material/
scribe/27-refactoring/Lehman-LawsOfSoftwareEvolution.
pdf.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1997.

B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell. O’Reilly
Media, Inc., 1st edition, 2008.

K. Slind. Reasoning about Terminating Functional Programs. PhD thesis,
Technical University of Munich, 1999.

