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Abstract. We discuss a collection of mechanized formal proofs of sym-
metric key block encryption algorithms (AES, MARS, Twofish, RC6,
Serpent, IDEA, and TEA), performed in an implementation of higher
order logic. For each algorithm, functional correctness, namely that de-
cryption inverts encryption, is formally proved by a simple but effective
proof methodology involving application of invertibility lemmas in the
course of symbolic evaluation. Block ciphers are then lifted to the en-
cryption of arbitrary datatypes by using modes of operation to encrypt
lists of bits produced by a polytypic encoding method.

1 Introduction

Symmetric-key block ciphers represent an important part of today’s security in-
frastructure. Besides their main application, information hiding, block ciphers
are also used in the implementation of pseudo-random number generators, mes-
sage authentication protocols, stream ciphers, and hash functions. There are
two main properties that a cipher should have: first, Functional Correctness,
namely that decryption should invert encryption; second, Security, namely that
the cipher should be hard to break. In this paper, we focus solely on the first
property.

The formal methods community has, to date, paid surprisingly little atten-
tion to the functional correctness of block ciphers. This is a pity, since these
algorithms provide an application area in which the algorithms are heavily used,
security-critical, often well-specified, and well within the scope of theorem prov-
ing methods. In this paper, we formalize seven block ciphers and prove their
functional correctness.

We have undertaken our proofs in a theorem proving environment: we wanted
to see if the seemingly impossible task of brute force analysis of cipher correct-
ness (there would be 2128 cases to consider for most of the ciphers we consider)
could be avoided by a symbolic analysis. Indeed, it can; we found that the proofs
are often quite simple. A major side benefit—which may outweigh the assurance
provided by the proofs—is that descriptions of ciphers in higher order logic
are elegant and unambiguous. The descriptions are also mathematical and exe-
cutable. Thus in this work higher order logic is used as a specification language
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for ciphers and its implementation provides a symbolic execution and theorem
proving environment. That has two benefits: when prototyping the ciphers, we
can use deductive steps to evaluate ciphers on test cases and check results; and
we re-use those definitions in the correctness proofs.

In practice, ciphers are used to encrypt compound user-defined data such
as numbers, lists, trees, and records. Modes of operation [6] can be used to
apply a block cipher to the task of encrypting a list of blocks; however, there
still remains the issue of how to encrypt higher level datatypes. Often support
for this is provided by language-specific libraries. In our work, we have used
polytypism [11] to implement datatype encryption: elements of datatypes are
reduced by polytypic encoders to lists of bits which are then encrypted by a
mode of operation instantiated with a particular block cipher. The correctness
proofs of block ciphers can be combined with the correctness of encoders to
obtain the correctness of data encryption.

This work was initiated in 2002 [17] with a verification of the functional cor-
rectness of the then-recent AES standard. We subsequently extended the work
to modes of operation, padding, and user-defined datatypes. After that, we were
left wondering if the (relative) ease with which AES was verified also held for
other block ciphers. Case studies with the other block ciphers mentioned above
do seem to indicate that the proof methodology used on AES is widely appli-
cable. The approach (discussed more fully in the sequel) amounts to symbolic
evaluation of the formula

∀key plaintext . decrypt key (encrypt key plaintext) = plaintext

coupled with simplification by inversion lemmas, which show that round opera-
tions performed during encryption are inverted by their counterparts in decryp-
tion. This methodology worked successfully on all our verifications. However,
it seems not to be generally automatable: at times, the verification of inver-
sion lemmas can be quite difficult. For example, our proof of invertibility of the
column-mixing operation in AES is based on a collection of ad hoc, user-specified,
lemmas, each proved by brute force. Another example is the verification of IDEA,
in which Euclid’s extended algorithm needed to be formalized and applied in or-
der to prove invertibility of a special-purpose multiplication operation.

Our verifications1 have been carried out in HOL-4,2 an implementation of
higher order logic [12]. We have made heavy use of Anthony Fox’s HOL-4 library
for generating theories and proof tools for fixed-width n-bit words. We use an
ML-like functional programming notation to present algorithms in this paper.

2 Encryption Algorithms

Block ciphers usually operate on a fixed, small, amount of data called a block
which is repeatedly transformed for a number of rounds. For example, a block in
1 Accessible at the webpage http://www.cs.utah.edu/~slind/papers/lpar05.
2 Accessible at the webpage http://hol.sourceforge.net.
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AES is a 16-tuple of word8 (8 bit bytes) and each block undergoes ten rounds of
transformation. Conceptually, decryption is just ‘running encryption in reverse’,
but often that is not obvious, since decryption round operations can seem quite
unrelated to encryption round operations. Although ciphers can have quite com-
plex mathematical underpinnings, their implementations usually require only the
most primitive computational objects, found in most machine instruction sets:
namely, boolean and arithmetic operations on machine words.

A block cipher takes two inputs: the plaintext and a key. In many cases,
before encryption starts, the key is used to generate a key schedule, which may
be thought of as a list of keys, which get used as encryption proceeds. It is
interesting to note that, in many cases, the key schedule calculation is more
complex than the actual encryption. We have formalized the computation of key
schedules, but have noticed that the actual values in the key schedule are not
relevant to functional correctness, at least for the ciphers we have examined. In
other words, the key schedule seems to be important for security, and not for
functional correctness.

The block ciphers we will examine are symmetric key ciphers, which means
that the key used for encryption must be used in decryption. Many, but not all,
symmetric key ciphers are based on the notion of a Feistel network, which divides
the plaintext into two halves and repeatedly applies the round function for a
number of rounds. In each round, the left half of the plaintext is transformed
based on the right half, and then the right half is transformed based on the
transformed left half. The round function usually applies several basic linear
and non-linear operations: boolean operations such as exclusive-or, substitution
(via so-called S-boxes), permutation, and modular arithmetic. An S-box is often
implemented by an array, but is mathematically just a total function.

In the years previous to 2001, the United States National Institute of Stan-
dards (NIST) held a competition to select a successor to the aging DES (Dig-
ital Encryption Standard). Among a number of entries, five (MARS, Rijndael,
Twofish, Serpent, and RC6) were chosen as finalists, and Rijndael was the even-
tual winner. Rijndael has since been named AES (Advanced Encryption Stan-
dard) and should become widely used in the years ahead.

We have formalized all of the AES finalists, plus a few more ciphers, and
proved their functional correctness. In the following, we will introduce each al-
gorithm and discuss any interesting aspects of the correctness proof. Further
details on the algorithms can be found in the cited literature.

2.1 AES

The AES block cipher is described in the NIST standards document [13] and in
a book [5] by the authors of the cipher. AES is defined for three keylengths: 128,
192, and 256 bits. Our verification is for a keylength of 128, but changing to the
other keylengths would be straightforward and involve no changes to the proofs.
In the formalization, the original imperative pseudo-code for describing the ci-
pher was converted to a purely functional form which served as an executable
model, and also as the code verified in the correctness proof. We followed this
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practice for the other ciphers as well. We can define the encryption (AES) and
decryption (AES_INV) functions using function composition as follows:

AES keys = from_state ◦ Round 9 (TL keys)
◦ AddRoundKey (HD keys) ◦ to_state

AES_INV keys = from_state ◦ InvRound 9 (TL keys)
◦ AddRoundKey (HD keys) ◦ to_state

AES takes a key schedule (a list of keys) and AES_INV takes the reversed key
schedule. The encryptor works by copying the input block into the state, ‘xors’
the state with the first key, then performs 10 rounds of processing. In each round,
one key from the key schedule is consumed. After the rounds of processing are
finished, the state is copied to the output. This is formalized as follows: blocks,
states, and keys are each represented by 16-tuples of word8. The processing of
an arbitrary number of rounds is defined by a recursive function named Round:

(Round 0 [key] state = AddRoundKey key (ShiftRows (SubBytes state))) ∧
(Round (n+1) (key::keys) state =

Round n keys
(AddRoundKey key

(MixColumns
(ShiftRows (SubBytes state)))))

AddRoundKey (the names are taken from the original Rijndael documenta-
tion) is just pairwise exclusive-or; SubBytes applies an S-box to each element
of the state; and ShiftRows performs a simple permutation on the block. The
most complex operation is MixColumns; it treats the state as a 4 × 4 matrix and
applies a specialized transformation on each column of the matrix. Mathemati-
cally, each column in the state is treated as a four-term polynomial over GF(28)
and multiplied modulo x4 + 1 with a fixed polynomial. When encrypting, the
fixed polynomial is a(x) = 03x3 + 01x2 + 01x + 02, while decryption uses the
polynomial a−1(x) = 0Bx3 +0Dx2 +09x+0E. In the implementation, column
multiplication during encryption is implemented by

MultCol (a,b,c,d) =
((02 • a) ⊕ (03 • b) ⊕ c ⊕ d, (* F1 *)
a ⊕ (02 • b) ⊕ (03 • c) ⊕ d, (* F2 *)
a ⊕ b ⊕ (02 • c) ⊕ (03 • d), (* F3 *)
(03 • a) ⊕ b ⊕ c ⊕ (02 • d)) (* F4 *)

where (− • −) is the finite field multiplication and ⊕ is exclusive-or. The actual
appplication of MultCol to the block is by the following function (where we have
arranged the state tuple so as to suggest a matrix):

MixColumns (b1, b2, b3, b4,
b5, b6, b7, b8,
b9, b10,b11,b12,
b13,b14,b15,b16) =

let (b1’,b5’,b9’,b13’) = MultCol (b1,b5,b9,b13)
and (b2’,b6’,b10’,b14’) = MultCol (b2,b6,b10,b14)
and (b3’,b7’,b11’,b15’) = MultCol (b3,b7,b11,b15)
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and (b4’,b8’,b12’,b16’) = MultCol (b4,b8,b12,b16)
in
(b1’,b2’, b3’,b4’,b5’,b6’,b7’,b8’,
b9’,b10’,b11’,b12’,b13’,b14’,b15’,b16’)

Decryption also uses MixColumns, except that MultCol has been replaced by
InvMultCol:

InvMultCol (a,b,c,d) =
((0E • a) ⊕ (0B • b) ⊕ (0D • c) ⊕ (09 • d), (* G1 *)
(09 • a) ⊕ (0E • b) ⊕ (0B • c) ⊕ (0D • d), (* G2 *)
(0D • a) ⊕ (09 • b) ⊕ (0E • c) ⊕ (0B • d), (* G3 *)
(0B • a) ⊕ (0D • b) ⊕ (09 • c) ⊕ (0E • d)) (* G4 *)

Verification. Functional correctness, namely

∀keys block. INV_AES (reverse keys) (AES keys block) = block

is proved as follows: the variable block is split into a 16-tuple of word8 vari-
ables. Then all the definitions used to define AES and AES_INV are expanded
by symbolic evaluation. This results in (conceptually) a long string of function
compositions:

from_state ◦ .... ◦ to_state ◦ from_state ◦ ... ◦ to_state

and then we need merely simplify with inversion lemmas, showing that each
operation used in encryption inverts its counterpart in decryption. Most of the
inversion lemmas for AES are quite easy to prove: from_state inverts to_state
(and vice versa), ⊕ inverts itself, the S-boxes are inverses, when regarded as
functions, and so on. However, the inversion lemma for column mixing

InvMixColumns (MixColumns s) = s

is difficult to prove. Naive attempts at this led to overly large goals, and we were
forced to much more basic steps. To see the problem, let us consider the action
on a column (a, b, c, d). In the forward direction, MixColumns applies transfor-
mations F1 · · · F4 to the column

a′ = F1(a, b, c, d)
b′ = F2(a, b, c, d)
c′ = F3(a, b, c, d)
d′ = F4(a, b, c, d)

and in the reverse InvMixColumns applies transformations G1 · · · G4 to the re-
sulting column

a′′ = G1(a′, b′, c′, d′)
b′′ = G2(a′, b′, c′, d′)
c′′ = G3(a′, b′, c′, d′)
d′′ = G4(a′, b′, c′, d′)

and we then wish to show that a = a′′, b = b′′, c = c′′, d = d′′. Consideration of
a should illustrate the strategy.
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a′ = (02 • a) ⊕ (3 • b) ⊕ c ⊕ d
b′ = a ⊕ (02 • b) ⊕ (03 • c) ⊕ d
c′ = a ⊕ b ⊕ (02 • c) ⊕ (03 • d)
d′ = (03 • a) ⊕ b ⊕ c ⊕ (02 • d)

Thus a′′ is
(0E • a′) ⊕ (0B • b′) ⊕ (0D • c′) ⊕ (09 • d′)

which expands to

(0E • ((02 • a) ⊕ (03 • b) ⊕ c ⊕ d)) ⊕
(0B • (a ⊕ (02 • b) ⊕ (03 • c) ⊕ d)) ⊕
(0D • (a ⊕ b ⊕ (02 • c) ⊕ (03 • d))) ⊕
(09 • ((03 • a) ⊕ b ⊕ c ⊕ (02 • d)))

By use of associativity and commutativity of ⊕ and distribution of • over ⊕,
we can separate the expression into four subexpressions each involving only one
variable. Each subexpression is then simplified by case analysis on the 256 ways
of forming a word8 quantity. The subexpression involving a is simplified to a, and
the subexpressions for b, c, d all simplify to 0, leading to the conclusion a′′ = a.
Such a proof was carried out for each of a, b, c, d. The potential tedium of this
was eased by HOL’s rewriter, which can perform permutative rewriting (in this
case using the associativity and commutativity of ⊕).

Enhancements and Optimizations. Working in a theorem prover means that
program transformations and optimizations can be easily applied, once proved.
For example, in [17], an optimization to the decryption process is verified, and
the resulting decryptor is proved to be mathematically equal to the original. As
another example, the multiplication used in AES may be specified recursively,
iteratively, or as a lookup table (feasible since all multiplications have one argu-
ment fixed to one of a small set of constants). In our development, we prove the
iterative and recursive functions equal, and generate the tables by proof from
the recursive algorithm, achieving high assurance. Thus multiple implementa-
tions can be spawned, by proof, from a single source.

In summary, the functional correctness of AES was straightforward, except
for one lemma, which required ingenuity in the decomposition. One question we
have is whether the difficulty of the proof of invertibility of column mixing is
instrinsic, or whether it would be easier as a general argument at the level of
finite fields and polynomials. It may also be a good challenge for SAT methods.

2.2 Verifying the Other Ciphers

We now discuss the other ciphers, omitting much detail since the basic ideas
have been established in the discussion of AES.

MARS. [4] was IBM’s candidate in the AES competition. It has 128 bit blocks
(a 4-tuple of word32) and a variable keysize ranging from 128 to 448 bits (we
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chose 128). The key schedule is a 40-tuple of word32s. Encryption in MARS
takes place in three phases: eight rounds of forward mixing, sixteen rounds in
the cryptographic core, and eight rounds of backwards mixing. Decryption ap-
plies counterparts of these three phases. MARS uses a 512 element S-box. Al-
though the formalization of MARS is quite complex, the basic operations are
simple boolean operations and addition plus application of the S-boxes. Inver-
sion lemmas for mixing and the cryptographic core are quite easy; again symbolic
evaluation plus rewriting with inversion lemmas and some basic word identities
(algebraic properties of exclusive-or, for example) sufficed for the final theorem.

Twofish. [16] was also an AES competitor. It has a block size of 128 bits and key
sizes up to 256 bits. Twofish’s distinctive features are the use of pre-computed
key-dependent S-boxes, and a relatively complex key schedule. Twofish is a 16-
round Feistel network. We used word4, word8, and word32 in the formalization.
A block is a 4-tuple of word32, and the key schedule is a 40-tuple of word32,
computed from 32 word8s. Twofish uses several multiplication operations, which
are similar to that of AES. It uses these in column multiplication, also much like
that of AES. However, unlike AES, the correctness proof for Twofish is almost
comically easy.

RC6. [15] is a block cipher based on RC5 and designed by Rivest, Sidney, and
Yin for RSA Security. RC6 is a parameterized algorithm where the block size,
the key size, and the number of rounds are variable; the upper limit on the
key size is 2040 bits. In our formalization, we have fixed on a internal block
size of 176 bits (a 6-tuple of word32), a key size of 64 (a pair of word32), and
twenty rounds. RC6 uses integer multiplication to increase the diffusion achieved
per round so that fewer rounds are needed and the speed of the cipher can be
increased. The algorithm also wraps the round computations in ‘pre-whitening’
and ‘post-whitening’ steps. RC6 does not use S-boxes. In spite of the fact that
multiplication is used, the verification of RC6 was extremely simple, reducing to
simple identities on words.

TEA. (Tiny Encryption Algorithm) [22] is a very compact cipher designed by
David Wheeler and Roger Needham. TEA operates on 64-bit blocks and uses
a 128-bit key. TEA has has a trivial key schedule (the same four keys are used
throughout); it also does not use an S-box. It has Feistel structure, using addition
and subtraction as the reversible operators rather than exclusive-or. A dual shift
causes all bits of the key and data to be mixed repeatedly. The number of rounds
before a single bit change of the data or key has spread very close to 32 is
at most six, so that sixteen cycles may suffice and the authors suggest 32 (we
implemented 32 rounds). The verification of TEA was again an easy application
of our methodology.

Serpent. [1] is a 128-bit block cipher designed by Ross Anderson, Eli Biham
and Lars Knudsen. It placed second in the AES competition. The authors de-
signed Serpent to provide users with the highest practical level of assurance
that no shortcut attack will be found. To achieve this, the cipher uses twice
as many rounds (32) as are sufficient to block all currently known shortcut
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attacks. Despite this intentional ‘overdesign’, Serpent supports a very efficient
bitslice implementation. We have verified both the bitslice implementation and
a more conventional reference implementation. Perhaps surprisingly, the bitslice
implementation was far easier to verify than the reference version! The reference
implementation of Serpent uses tables for S-boxes, linear transformations, and
permutations. The specification used lists of indices, and we had to derive func-
tions, which were more tractable in later proofs, from them. Several transcription
errors were caught in the later invertibility proofs.

IDEA. [8] is used in the popular PGP (Pretty Good Privacy) package. IDEA
operates on 64-bit blocks using a 128-bit key, and consists of seventeen rounds.
The processes for encryption and decryption are similar. IDEA derives much of
its security by interleaving operations from different algebraic groups: exclusive-
or, addition modulo 216, and multiplication modulo 216 + 1 (a prime), where 0
is treated as 216. The internal operations of IDEA use word16, so the state is a
4-tuple of word16 and the input key is treated as an 8-tuple of word16. The key
schedule is a 52-tuple of word16.

The verification of IDEA is straightforward, much like the others, except for
proving the invertibility of the multiplication. The difficulty comes from the
fact that the native multiplication in word16 is modulo 216, and not modulo
216 + 1. So we had to define our own multiplication and give an implementation
for its inverse. This required some new formalization work: we had to define
the generalized Euclid’s algorithm, develop relevant properties, and show that
the algorithm does find multiplicative inverses modulo 65537 for all numbers
from 1 to 65536 inclusive. A further complication is that, since 65537 can not be
represented in 16 bits, we had to map multiplications out to a larger type, and
then map back. A full account is given in [23].

In summary, the verification of IDEA has much in similarity with that of
AES: mostly the proof was easy, except for one complex operation.

3 Data Encryption

We now turn from block ciphers to techniques for encrypting data. The first step
is to formalize so-called modes of operation. A mode of operation extends a cipher
from single blocks to arbitrary block sequences. Some acronyms of the commonly
used modes are ECB, CBC, CFB, OFB, and CTR [6]. In this paper, we chose to
work with CBC (Cipher Block Chaining). In CBC, the previous ciphertext block
is ‘xor’ed with the current plaintext before encryption. We formalize CBC (see
Fig. 1) as a pair of recursive functions being parameterized by block encryptors
and decryptors enc and dec. The parameter xor represents an ‘xor’ function:
since we do not know a priori what the actual type of blocks will be (different
ciphers have different representations for blocks), we simply fill xor in later.3 In
the actual formalization, block is just a type variable in the HOL logic, to be
instantiated to the block type of a particular cipher.

3 A logic with dependent types could avoid this extra parameterization.
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CBC xor enc [ ] = [ ] : block list
CBC xor enc v (h :: t) = let x = enc (xor h v) in x :: CBC xor enc x t

CBC−1 xor dec [ ] = [ ] : block list
CBC−1 xor dec v (h :: t) = xor (dec h) v :: CBC−1 xor dec h t

Fig. 1. Cipher Block Chaining

Both CBC and CBC−1 have the type

(block → block → block) → (block → block) → block → block list → block list .

The correctness of CBC using arbitrary inverting encryptors and decryptors

� ∀� xor v encrypt decrypt .
(decrypt ◦ encrypt) = I ∧
(∀x y. (x xor y) xor y = x)

⇒
∀k. CBC−1 (xor) (decrypt k) v (CBC (xor) (encrypt k) v �) = �

is proved very easily by induction on �. From there, support for data encryption
is provided by adding in functions for encoding and decoding arbitrary data, as
can be seen in the following trivial consequence:

� ∀(encode : α → bool list) (decode : bool list → α)
(block : bool list → block list) (unblock : block list → bool list)
(encrypt : block → block) (decrypt : block → block) xor .

(decode ◦ encode = I) ∧
(∀k. decrypt k ◦ encrypt k = I) ∧
(unblock ◦ block = I) ∧
(∀x y. (x xor y) xor y = x)

⇒ ∀v key .

(decode ◦ unblock ◦ (CBC−1 (xor) (decrypt key) v)) ◦
(CBC (xor) (encrypt key) v ◦ block ◦ encode) = I

(1)

In other words, provided that inverting encoder/decoder, blocker/unblocker, and
encryptor/decryptor are provided, then (a) encoding the data to a list of bits
then (b) chunking the list into blocks then (c) using CBC to encrypt the blocks
can be inverted by applying the inverse operations in the correct order. Note
that there is a hidden complexity, in that the action of turning a list of bits into
a list of fixed length blocks requires padding the bits to get a list the length of
which is a multiple of the block size. Moreover, padding must be implemented
in such a way that the extra padding can be dropped off when mapping back
from a block to a list of bits.

We have now finished the abstract development. To see how it may be in-
stantiated, we turn our attention to type-directed construction of encoders and
decoders.
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3.1 Encoding and Decoding Datatypes

A common task in computer science is to package up high-level data as flat
strings of bits, and correspondingly, to unpack strings of bits in order to recover
the high-level data. When this is done to send data over a communication net-
work, it is called marshalling or serialization but we will use encoding/decoding
or simply coding. A type-directed approach to coding, based on an interpreta-
tion of higher order logic types into higher order logic terms, is given in [18].
An encoding function can be thought of simply as an injective function of type
τ → bool list mapping elements of type τ to lists of booleans. The injectiv-
ity condition prevents two elements of τ being encoded as the same list of
booleans, and so guarantees that if a list can be decoded then the decoding
will be unique.

Encoding functions can be automatically defined when a new datatype is
declared; the interpretation is used to calculate the form of the encoder from
the declaration of the type. Mutually recursive datatypes and datatypes with
recursion under existing type operators (so-called nested datatypes) are cleanly
handled. Encoding and decoding of polymorphic types is dealt with by abstrac-
tion: an encoder for a polymorphic type is parameterized by encoders for types
that may be substituted for the type variables.

Without going into the details of encoding, which may be found in [18], each
constructor for a datatype is assigned a marker list, which serves to distinguish
it from other constructors for the type. Lists have two constructors, and so the
marker lists have length one. A datatype with eight constructors would need
marker lists of length three.

For example, the encoding function for the datatype α list of polymorphic
lists is the following:

encode list f [ ] ≡ [F] ∧
encode list f (h :: t) ≡ T :: f h @ encode list f t

where f : α → bool list is the parameter encoder. Lists have two constructors,
which are distinguished by the prepending of marker lists [F] and [T].

Although encoders are automatically defined for every datatype declared in
HOL, a user may wish to override the automatic definition with an alternative
version, or to provide an encoder for a non-datatype e.g., for finite sets. A custom
encoder for natural numbers4 is the following:

encode num n ≡ if n = 0 then [T; T]
else if even n then F :: encode num ((n − 2) div 2)
else T :: F :: encode num ((n − 1) div 2)

A typical environment for encoding functions would include at least the following
bindings:

4 Built up from 0 using two successor functions: 2n + 1 and 2n + 2.
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type encoder
τ1 ∗ τ2 encode prod f g (x, y) ≡ f x @ g y
τ1 + τ2 encode sum f g (INL x) ≡ F :: f x

encode sum f g (INR y) ≡ T :: g y
bool encode bool x ≡ [x]
option encode option f NONE ≡ [F]

encode option f (SOME x) ≡ T :: f x
num encode num (defined above)
τ list encode list (defined above)

Encrypting Data. For an example, we will see how to synthesize encryption
routines for the type (num∗bool option)list. Given a typical encoder environment,
traversing the type structure and emitting the corresponding encoders yields the
following function in the HOL logic:

encode_list (encode_prod encode_num (encode_option encode_bool))

Applying it to the list [(1,NONE); (13,SOME T); (257,SOME F)] yields the the-
orem

|- encode_list (encode_prod encode_num (encode_option encode_bool))
[(1,NONE); (13,SOME T); (257,SOME F)]

= [T; T; F; T; T; F; T; T; F; F; F; T; T; T; T; T; T; F;
F; T; F; T; F; T; F; T; F; T; F; T; F; T; T; T; F; F]

If we instantiate CBC with the TEA block cipher, the key (1w,2w,3w,4w) and
the initial value (5w,10w) for v, and prepend encoding, padding, and blocking,
we can deductively evaluate the expression to obtain a theorem giving the result
of encrypting our specific input list:

|- (CBC XORB (TEAEncrypt (1w,2w,3w,4w)) (5w,10w) o BLOCK o PAD o
encode_list (encode_prod encode_num (encode_option encode_bool)))
[(1,NONE); (13,SOME T); (257,SOME F)]

= [(3008902428w,1274536877w)]

Decrypting Data. A decoder for type τ is an algorithm that takes as input a
list of booleans and returns an element of type τ . It is also possible to build and
compose decoders in a type-directed way. The key is to think of a decoder for
type τ as a monadic parser [21] :

decode τ : bool list → (τ × bool list) option

Such a function tries to parse an input list of booleans into an element of type
τ , and if it succeeds then it returns the element of τ , together with the list of
booleans that were left over. If it fails to parse the input list, it signals this by
returning NONE. (A decoding function of the expected type bool list → τ can
be easily recovered when decoding is expected to succeed.) As an example, the
following is the decoding function for lists:
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wf_decoder d ⇒
(decode_list d [] = NONE) ∧
(decode_list d (F::t) = SOME ([],t)) ∧
(decode_list d (T::t) =

case d t
of NONE -> NONE
|| SOME (x, t’) ->

case decode_list d t’
of NONE -> NONE
|| SOME (xs, t’’) -> SOME (h::xs, t’’))

Thus, given a parameter decoder d, one decodes to an empty list, provided
the marker at the head of the bits list is F; otherwise, the marker must be T,
and we expect to be able to use d to deliver the head of the original list x and
remaining bits t′. We then recurse to get the rest of the original list xs, and
the remaining bits t′′. As HOL is a logic of total functions, this function is only
well-defined if d does not increase the length of the list of bits; this is enforced
by the constraint wf decoder d.

In our current formalization, a decoding function also has an attached do-
main predicate, in order to deal with subsets of types. We have omitted the
domain predicates since they hamper readability, and are not actually used in a
significant way in our experiments so far.

Returning to our example, suppose we have a decoder context containing at
least decoders for the types num, list, option, and bool, then a type-directed
traversal of (num ∗ bool option) list yields the following decoding function.

decode_list (decode_prod (decode_num (decode_option decode_bool)))

In order to formally apply the abstract inversion theorem (1) for data en-
cryption, we need to show that the synthesized decoder inverts the synthesized
encoder. This is relatively easy to automate by backchaining with pre-proved
theorems relating basic coders/decoders already in the coder and decoder con-
texts. Thus we ultimately have that

(decode_list (decode_prod (decode_num (decode_option decode_bool))) o
UNPAD o UNBLOCK o CBC_DEC XORB (TEADecrypt (1w,2w,3w,4w)) (5w,10w))
o
(CBC XORB (TEAEncrypt (1w,2w,3w,4w)) (5w,10w) o BLOCK o PAD o
encode_list (encode_prod encode_num (encode_option encode_bool)))

is the identity function. In summary, compound encoders and decoders can
be formally synthesized and their invertibility property proved in the theorem
prover; this property can then be used to show that data encryption for the
specified type is invertible.

4 Related Work

Probably the earliest application of a proof assistant to cryptography is the
use of Boyer and Moore’s Nqthm to verify the invertibilty of encryption in the
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RSA public-key algorithm [14]. Whereas their goal seemed to be to check an
interesting piece of (then) recently-announced mathematics, we have been more
interested in getting an overview of how hard proofs are for a gamut of algorithms
in this area.

In [17] we verified the functional correctness of Rijndael, and in [23] we pro-
vide further detail on the functional correctness of the IDEA cipher. Toma and
Borrione report on an ACL2 verification of an implementation of the SHA-1
hash algorithm in [20]. Higher level security protocol specification and verifica-
tion has received much more attention than ciphers, and this work is starting to
mature: see [2] for example. It would be interesting to explore links between our
correctness proofs and that body of work. Finally, the Cryptol language [9] is
a domain-specific language, based on functional programming principles, aimed
at cryptographers. Cryptol provides a uniform stream-based view of all the data
involving in encryption, and supports that view with an interesting type sys-
tem reflecting how functions manipulate streams. C code can be generated from
Cryptol programs, and there is also a path to FPGAs.

5 Conclusions and Further Work

This paper summarizes some case studies in the verification of block ciphers for-
malized in higher order logic. A simple proof methodology successfully supports
functional correctness proofs of these algorithms. Although some ciphers are for-
mulated in terms of concepts from abstract algebra and number theory, we found
that in most cases (IDEA was the sole exception) higher mathematics could be
avoided in the proofs. We also showed how ciphers can be lifted from blocks
to arbitrary user-defined datatypes by use of modes of operation and polytypic
encoding techniques.

This activity takes place inside the theorem prover, and although it is en-
couraging to see that bespoke data encryption can be supported in such an
environment, it would be a useful next step to generate executable models in
real programming languages from our formal models. In fact, we can already do
that in HOL-4, generating standalone ML code from the formal specifications.
In principle, the generated code could be compiled in with other code to build an
application with a formally-justified security component. It would also be useful
to input or output code in mainstream languages such as C or Java, as a way of
developing a path from verification environments to security applications devel-
opment. The paper [3] appears to provide an interesting framework in which to
work.

We have also been investigating the automatic synthesis of hardware from our
specifications using a prototype deduction-based compiler [7]. At present, we are
able to generate netlists from the HOL-4 specification of AES, and we plan to
further develop and test our prototype on the other ciphers presented here.

Invertibility proofs, as we have seen, are in many cases quite straightforward.
It would therefore be interesting to see how much of these proofs could be auto-
mated. However, as in AES and IDEA, there can be round operations that have
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hard to prove inversion lemmas, but that itself is interesting information about
a cipher.

An interesting point is that key schedule generation algorithms can be more
difficult than the actual encryption core. This means that mistakes can be more
easily made when implementing them. In our work, we formalized these algo-
rithms, but proved little about them, other than a few facts about how long the
resulting schedule would be, for example. Therefore, correctness properties of
key schedules, if such exist and are amenable to mechanized formal proof, could
lead to even higher levels of assurance.

We are currently investigating links between HOL-4 and Cryptol. Since Cryp-
tol is a stream-processing language, and its semantics document is not yet in the
public domain, we are basing the work on a HOL theory of lazy lists, due to
Michael Norrish (based on original work by John Matthews [10]). Several of the
ciphers have been ported to work over the new type, and we have been encour-
aged, since the functional correctness proof of the new algorithm can be reduced
with a few simple lemmas to that of the old. A longer-term goal would be to
provide a HOL shallow embedding of an interesting subset of Cryptol.

Another operation sometimes used with encryption is compression. It would
be interesting to incorporate a formally verified compression algorithm. Since
compression, being invertible, is similar to encryption, there may be common-
alities in the two formal exercises. A verification of Huffman’s algorithm has
recently been carried out in the Coq system [19], and there are many other
important compression algorithms that could be tackled.

Finally, the investigation of security properties of block ciphers in theorem
provers seems to be an obvious area for future work.
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