
Formal Verification of Chess Endgame Databases

Joe Hurd?

Computing Laboratory
Oxford University

joe.hurd@comlab.ox.ac.uk

Abstract. Chess endgame databases store the number of moves re-
quired to force checkmate for all winning positions: with such a database
it is possible to play perfect chess. This paper describes a method to
construct endgame databases that are formally verified to logically fol-
low from the laws of chess. The method employs a theorem prover to
model the laws of chess and ensure that the construction is correct, and
also a BDD engine to compactly represent and calculate with large sets
of chess positions. An implementation using the HOL4 theorem prover
and the BuDDY BDD engine is able to solve all four piece pawnless
endgames.

1 Introduction

The game of chess with the modern rules came into existence in Italy towards
the end of the 15th century [7]. The half millennium since then has witnessed
many attempts to analyze the game, and in the last half century computers
have naturally been used to extend the range of human analysis. One such ap-
proach uses computers to enumerate all possible positions of a certain type in an
endgame database, working backwards from checkmate positions to determine
the number of moves required to achieve checkmate from any starting position.

A survey paper by Heinz [6] cites Ströhlein’s Ph.D. thesis from 1970 as the
earliest publication on the algorithmic construction of endgame databases, and
today endgame databases exist for all positions with five or fewer pieces on the
board. Nalimov has started construction of the six piece endgames, but it is
estimated that the finished database will require at least 1 terabyte of storage.

As an aside, it is still unclear whether or not access to endgame databases
improves the strength of chess playing programs. However, they have found
other uses by problemists in aiding the creation of endgame studies, and also
by experts intepreting the computer analysis and writing instructional books for
human players [10].

The attitude towards correctness of endgame databases is summed up by the
following quotation in a paper comparing index schemes [9]:

The question of data integrity always arises with results which are not self-
evidently correct. Nalimov runs a separate self-consistency phase on each

? Supported by a Junior Research Fellowship at Magdalen College, Oxford.

2

[endgame database] after it is generated. Both his [endgame databases] and
those of Wirth yield exactly the same number of mutual zugzwangs [. . .] for
all 2-to-5 man endgames and no errors have yet been discovered.

Applying computer theorem provers to chess endgame databases has two poten-
tial benefits:

– verifying the correctness of an endgame databases by proving that it faith-
fully corresponds to the rules of chess; and

– reducing the storage requirements by employing a more efficient representa-
tion than explicitly enumerating all possible positions.

For analyzing chess endgames this paper advocates the use of a higher order
logic theorem prover integrated with a BDD engine. Higher order logic is very
expressive, and it is possible to encode the rules of chess in a natural way, as
an instance of a general class of two player games. On the other hand, BDDs
can compactly represent sets of positions that have been encoded as boolean
vectors, and the BDD engine can perform efficient calculation on these sets. The
theorem prover ensures that the results of the BDD engine are faithfully lifted
to the natural model of chess, and that all the reasoning is valid.

This methodology has been used to solve all four piece pawnless chess end-
games, the product of which is a set of ‘high assurance’ endgame databases
that provably correspond to a natural definition of chess. For example, given
a chess position p in which it is Black to move, the theorem prover can fully
automatically derive a theorem of the form

`HOL+BDD win2 by chess 15 p ∧ ¬(win2 by chess 14 p) ,

which means that after any Black move from p, White can force checkmate within
15 moves but not within 14 moves. The `HOL+BDD symbol indicates that this
theorem has been derived only from the inference rules of higher order logic and
some BDD calculations. The only constants in this theorem are win2 by, which
has a natural definition in the theory of two player games (see Section 2.1), and
chess, which is a natural model of chess in higher order logic (see Section 2.2).

The primary contribution of this paper is a demonstration of the novel ap-
proach of verifying the correctness of an endgame database by proving its corre-
spondence to a natural definition of chess, as opposed to testing its correspon-
dence to another endgame database.

A secondary contribution of this paper is an investigation into the efficiency
of BDDs to represent and calculate with sets of chess positions. Preliminary
results in this area have already been obtained by Edelkamp, who calculated the
number of BDD nodes to be 5% of the number of winning positions [3].

The structure of the paper is as follows: Section 2 presents a natural model
of chess in higher order logic, which makes use of a general theory of two player
games; Section 3 describes how an endgame database can be constructed in the
theorem prover by rigorous proof; Section 4 presents the results; and Sections 5
and 6 conclude and look at related work.

3

2 Formalizing Chess in Higher Order Logic

The rules of chess are formalized in higher order logic in two phases. The first
is a formalization of the theory of two player games, which is general enough
to cover a large class of two player zero sum games with perfect information,
including human games such as chess, checkers and go, and logic games such as
Ehrenfeucht-Fräıssé pebble games.

The second phase defines the legal positions, move relations and winning
positions of chess. Putting these into the two player game framework yields the
crucial sets containing all positions in which White has a forced checkmate within
n moves.

2.1 Two Player Games

The two players of the game are conventionally called Player I and Player II.
In the general theory of two player games layed out in this section the positions
have higher order logic type α, a type variable. This means that when the theory
is applied to a specific game the type of positions can be instantiated to any
concrete representation type.

A two player game G is modelled in higher order logic with a four tuple

(L,M,M,W) ,

where L is a predicate on positions that holds if the position is legal. M is a
relation between pairs of legal positions that holds if Player I can make a legal
move from the first position to the second. Similarly, M is the move relation for
Player II. Finally W is a predicate on legal positions that holds if the position is
won for Player I (e.g., checkmate in chess). A game G is said to be well-formed
(written two player G) if the move relations and winning predicate are always
false when given an illegal input position.

Intuitively, Player I wins a position if and only if it can be forcibly driven into
a position satisfying W (within a finite number of moves). Given a well-formed
game G, the following definitions make this intuition precise by carving out the
set of legal positions that are eventually won for Player I. One way that Player I
can fail to win is by reaching a non-winning position in which no moves are
possible (e.g., stalemate in chess). This motivates the following two definitions:

terminal1 G ≡ {p | LG(p) ∧ ∀p′. ¬MG(p, p′)} ;
terminal2 G ≡ {p | LG(p) ∧ ∀p′. ¬MG(p, p′)} .

A position with Player II to move is won for Player I within zero moves if
the predicate W is true of it:

win2 by G 0 ≡ {p | WG(p)} .

A position with Player I to move is won for Player I within n moves if Player I
can make a move to reach a position that is won for Player I within n moves:

win1 by G n ≡ {p | ∃p′. MG(p, p′) ∧ p′ ∈ win2 by G n} .

4

Finally, a position with Player II to move is won for Player I within n+1 moves
if it is won within n moves, or (i) it is not a terminal position and (ii) every move
that player Player I makes will reach a position that is won for Player I within
n moves:

win2 by G (n+ 1) ≡
win2 by G n ∪
{p | LG(p) ∧ ∀p′. MG(p, p′) ⇒ p′ ∈ win1 by G n} − terminal2 G .

Also of interest is the set of all positions that are eventually winning for
Player I, which is defined separately for the cases of Player I to move and
Player II to move:

win1 G ≡ {p | ∃n. p ∈ win1 by G n} ;
win2 G ≡ {p | ∃n. p ∈ win2 by G n} .

The preceding definitions provide all the theory of two player games that
is necessary to interpret theorems resulting from a query of a verified endgame
database.

2.2 Chess

The authoritative version of the laws of chess is the FIDE1 handbook [4]. Section
E.I of the handbook is entitled Laws of Chess, and in a series of articles describes
the object of the game, the movement of the pieces and how the players should
conduct themselves. For example, Article 1 is entitled The nature and objectives
of the game of chess

Article 1.1. The game of chess is played between two opponents who move
their pieces alternately on a square board called a ‘chessboard’. [. . .]

which confirms that chess is an instance of the general class of two player games
formalized in the previous section.

The first design choice that occurs in the formalization of chess is to decide
which higher order logic type will be used to represent chess positions. The results
in this paper cover only pawnless endgames in which castling is forbidden, so
the only information that needs to be tracked by the position type is the side
to move and the location of the pieces on the board. The key types used to
represent chess positions are:

side ≡ White | Black ;
piece ≡ King | Queen | Rook | Bishop | Knight ;

square ≡ N× N ;
position ≡ side× (square→ (side× piece) option) .

Sides and pieces simply enumerate the possibilities. In the context of the two
player game of chess, this paper will follow the convention of referring to Player I
1 FIDE (Fédération Internationale des Échecs) is the World Chess Federation.

5

as White and Player II as Black. Squares are pairs of natural numbers, and a
position is a pair of the side to move and a partial function from squares to
pieces. For convenience and readability, a few basic functions are defined for
examining positions:

opponent s ≡ case s of White→ Black | Black→White ;
to move (s,) ≡ s ;

on square (, f) sq ≡ f sq ;
empty p sq ≡ (on square p sq = NONE) ;

occupies p s sq ≡ ∃v. on square p sq = SOME (s, v) .

Once the type representing the game state is fixed, what remains to apply
the general theory of two player games is a higher order logic encoding of the
legal positions, move relations and winning positions of chess. Such an encoding
is a routine formalization, and the remainder of this section demonstrates how
naturally the laws of chess can be represented in higher order logic.

Article 2 of the laws of chess in the FIDE handbook describes the geometry
of the chessboard:

Article 2.1. The chessboard is composed of an 8× 8 grid of 64 equal squares
alternately light (the ‘white’ squares) and dark (the ‘black’ squares). The chess-
board is placed between the players in such a way that the near corner square
to the right of the player is white.
Article 2.4. The eight vertical columns of squares are called ‘files’. The eight
horizontal rows of squares are called ‘ranks’. A straight line of squares of the
same colour, touching corner to corner, is called a ‘diagonal’.

This is encoded into higher order logic with the following definitions:

files ≡ 8 ;
ranks ≡ 8 ;

file (f, r) ≡ f ;
rank (f, r) ≡ r ;

board ≡ {sq | file sq < files ∧ rank sq < ranks} ;
same file sq sq′ ≡ (file sq = file sq′) ;

same rank sq sq′ ≡ (rank sq = rank sq′) ;
same diag1 sq sq′ ≡ (file sq + rank sq = file sq′ + rank sq′) ;
same diag2 sq sq′ ≡ (file sq + rank sq′ = file sq′ + rank sq) ;

diff m n ≡ if m ≤ n then n−m else m− n ;
file diff sq sq′ ≡ diff (file sq) (file sq′) ;

rank diff sq sq′ ≡ diff (rank sq) (rank sq′) .

Notice that the presentational aspect of white and black squares is not included
in the higher order logic encoding, only the logically important aspect of the
board being an 8× 8 grid of squares.

Article 3 is entitled The moves of the pieces:

Article 3.2. The bishop may move to any square along a diagonal on which
it stands.
Article 3.3. The rook may move to any square along the file or the rank on
which it stands.

6

Article 3.4. The queen may move to any square along the file, the rank or a
diagonal on which it stands.
Article 3.5. When making these moves the bishop, rook or queen may not
move over any intervening pieces.
Article 3.6. The knight may move to one of the squares nearest to that on
which it stands but not on the same rank, file or diagonal.
Article 3.8. There are two different ways of moving the king, by:

1. moving to any adjoining square not attacked by one or more of the op-
ponent’s pieces. The opponent‘s pieces are considered to attack a square,
even if such pieces cannot themselves move.

2. or ‘castling’. [. . .]

The moves are encoded into higher order logic in three steps. In the first step
the basic moves of the pieces are defined:

bishop attacks sq1 sq2 ≡ (same diag1 sq1 sq2 ∨ same diag2 sq1 sq2) ∧ sq1 6= sq2 ;
rook attacks sq1 sq2 ≡ (same file sq1 sq2 ∨ same rank sq1 sq2) ∧ sq1 6= sq2 ;

queen attacks sq1 sq2 ≡ rook attacks sq1 sq2 ∨ bishop attacks sq1 sq2 ;
knight attacks sq1 sq2 ≡ ((file diff sq1 sq2 = 1) ∧ (rank diff sq1 sq2 = 2)) ∨

((file diff sq1 sq2 = 2) ∧ (rank diff sq1 sq2 = 1)) ;
king attacks sq1 sq2 ≡ file diff sq1 sq2 ≤ 1 ∧ rank diff sq1 sq2 ≤ 1 ∧ sq1 6= sq2 .

To improve clarity, the definition of the basic moves is closer to an explanation
typically found in a beginner’s chess book rather than the letter of the articles.
For example, the queen is explicitly defined to move like a rook or a bishop, and
the definition of the knight move follows the traditional L-shape explanation
rather than the article’s more geometric explanation of “[nearest square] not on
the same rank, file or diaganal”.2

The second step formalizes the no-jumping requirement of Article 3.5 by
defining the concept of a clear line from a square: all the squares that can be
reached horizontally, vertically or diagonally without jumping over any interven-
ing pieces:

between n1 n n2 ≡ (n1 < n ∧ n < n2) ∨ (n2 < n ∧ n < n1) ;
square between sq1 sq sq2 ≡
if same file sq1 sq2 then same file sq sq1 ∧ between (rank sq1) (rank sq) (rank sq2)
else if same rank sq1 sq2 then same rank sq sq1 ∧ between (file sq1) (file sq) (file sq2)
else if same diag1 sq1 sq2 then same diag1 sq sq1 ∧ between (file sq1) (file sq) (file sq2)
else if same diag2 sq1 sq2 then same diag2 sq sq1 ∧ between (file sq1) (file sq) (file sq2)
else ⊥ ;

clear line p sq1 ≡ {sq2 | ∀sq. square between sq1 sq sq2 ⇒ empty p sq}

The definition of square between formalizes the notion of a square lying strictly
between two others in a straight line: the verbosity is a normal consequence of
using algebraic formulas to capture an essentially geometric concept.

2 A more succinct definition that illustrates the L-shape even better is

knight attacks sq1 sq2 ≡ ({file diff sq1 sq2, rank diff sq1 sq2} = {1, 2}) ,

but this has the drawback of requiring a moment’s thought to see that it is correct.

7

In the third and final step, the basic moves of the pieces and clear lines are
brought together to define the set of squares attacked from a square.

attacks p sq ≡
board ∩ clear line p sq ∩
(case on square p sq of

NONE→ ∅
| SOME (, King)→ {sq′ | king attacks sq sq′}
| SOME (, Queen)→ {sq′ | queen attacks sq sq′}
| SOME (, Rook)→ {sq′ | rook attacks sq sq′}
| SOME (, Bishop)→ {sq′ | bishop attacks sq sq′}
| SOME (, Knight)→ {sq′ | knight attacks sq sq′}) .

Having defined the moves of the pieces, it is straightforward to formalize the
set of legal positions. According to the laws of chess, a position is legal if the
side that has just moved is not in check:

Article 3.9. The king is said to be ‘in check’ if it is attacked by one or more
of the opponent’s pieces, even if such pieces are constrained from moving to
that square because they would then leave or place their own king in check.
No piece can be moved that will expose its own king to check or leave its own
king in check.

In addition to this, the type of chess positions makes it necessary to require
that all of the pieces are on the board. Without this extra requirement, the
formalization would capture the game of chess being played on an infinite board!

in check s p ≡
∃sq1, sq2.

(on square p sq1 = SOME (s, King)) ∧
occupies p (opponent s) sq2 ∧ sq1 ∈ attacks p sq2 ;

all on board p ≡ ∀sq. ¬empty p sq ⇒ sq ∈ board ;
chess legal p ≡ all on board p ∧ ¬in check (opponent (to move p)) p .

Using everything that has been defined so far, it is easy to formalize the move
relations chess move1 (for the White pieces) and chess move2 (for the Black
pieces). In a nutshell, a move is either a simple move of a piece to an empty
square, or a capturing move of a piece to a square occupied by an opponent’s
piece. For the full details of how this is formalized, please refer to Appendix A.

Finally, all that remains is to define the set of positions that are winning for
the player of the White pieces. This is covered back in Article 1, The nature and
objectives of the game of chess:

Article 1.2. The objective of each player is to place the opponent’s king
‘under attack’ in such a way that the opponent has no legal move. The player
who achieves this goal is said to have ‘checkmated’ the opponent‘s king and
to have won the game. [. . .]

This wordy article can be concisely formalized in higher order logic:

game over p ≡ chess legal p ∧ ∀p′. ¬chess move p p′ ;
checkmated p ≡ game over p ∧ in check (to move p) p ;

chess win p ≡ (to move p = Black) ∧ checkmated p .

8

Finally, the legal positions, move relations and winning positions are put
together to define the two player game of chess:

chess ≡ (chess legal, chess move1, chess move2, chess win) .

The remainder of this paper presents a method for automatically constructing
endgame databases that are formally verified with respect to this theory of the
laws of chess. However, it is also possible to prove theorems interactively in the
theorem prover, such as the result that a player with only a King can never win.
Given a ternary relation has pieces s l p (defined in Appendix A) that holds
whenever the side s has precisely the list of pieces l on the board in the position
p, it is straightforward to prove the desired theorem

`HOL ∀p. all on board p ∧ has pieces White [King] p⇒ ¬chess win p

by manually directing the theorem prover to apply standard proof tactics.

3 Constructing Formally Verified Endgame Databases

Recall from Section 2.1 that win2 by chess n is a set of legal chess positions with
Black (i.e., Player II) to move. The set contains all positions such that however
Black moves White can force a checkmate within n moves. By convention the
set win2 by chess 0 contains all positions where White has already won (i.e.,
Black is checkmated). Similarly, win1 by chess n is a set of legal positions with
White to move. This set contains all positions where there is a White move after
which the resulting position lies in the win2 by chess n set: in the chess jargon a
position in the win1 by chess n set is called a mate in n+ 1.

Constructing a formally verified endgame database consists of evaluating the
win1 by chess n and win2 by chess n sets in the theorem prover. The first problem
that occurs is that these sets are extremely large: even with just four pieces on
the board, the total number of winning positions can be ten of millions. Thus it
is not feasible to aim to prove a theorem of the form

`HOL win1 by chess n = {p1, . . . , pN} ,

where the pi are an explicit enumeration of the positions in the winning set.
Instead, the winning sets are represented symbolically using Binary Decision
Diagrams [2], which provide a compact way to represent sets of boolean vectors.
A theorem of the form

`HOL+BDD φ[B1, . . . , Bk] ∈ win1 by chess n 7→ ∆ (1)

is proved, where [B1, . . . , Bk] is a vector of boolean variables that encode a
position, φ is a decoding function from an encoding to a position, and ∆ is
a BDD representing a set of boolean vectors. The theorem asserts that for any
assignment of booleans bi to the variables Bi, the position φ[b1, . . . , bk] is a forced
win for White within n moves if and only if the vector [b1, . . . , bk] is in the set
represented by the BDD ∆.

9

The following two sections will discuss the encoding of positions as boolean
variables, and the proof tools required to construct theorems of the above form
in the theorem prover.

3.1 Encoding Positions as Boolean Variables

The formalization of the laws of chess presented in Section 2.2 is designed to
be as natural as possible, so that a human reader (familiar with higher order
logic) can be easily convinced that it is a faithful translation of the laws of
chess. However, it fails to satisfy two basic requirements for encoding positions
as boolean vectors:

1. The position type should be easy to encode as a vector of booleans. Al-
though there are tools in the theorem prover to support boolean encoding
of (bounded) numbers and lists, the function from squares to pieces in the
position type would require a custom encoder to be written and proved cor-
rect.

2. Given a list of White and Black pieces, it should be straightforward to define
the set of all positions that have precisely these pieces on the board, since
that is how endgame databases are structured. Unfortunately, the square
based nature of the position type makes it inconvenient to reason about the
pieces on the board.

For both these reasons, the boolean encoding of positions makes use of an inter-
mediate ‘posn’ type defined as follows:

placement ≡ (side× piece)× square ;
posn ≡ side× placement list .

Versions of the legal position predicates, move relations and winning position
predicate are defined on type posn, and their definitions are designed for ease of
boolean encoding. In addition, a function

abstract : posn→ position

is defined that lifts elements of type posn to chess positions. With respect to the
abstract function, the two versions of the legal position predicates, move relations
and winning position predicates are identical: a useful check for both versions.

The new posn type also satisfies the requirement that positions should be
easily categorized according to the pieces on the board. Define a category to be
a side to move and a list of pieces on the board:

category ≡ side× (side× piece) list .

For example

(Black, [(White,King), (White,Rook), (Black,King)])

10

is the category of positions where it is Black to move, White has a King and
Rook on the board, and Black has only a King. The set of all elements of the
posn type in a category (s, l) can be defined as

category (s, l) ≡ {(s′, l′) | s′ = s ∧ map fst l′ = l} ,

where map is the standard list map function and fst is the function that picks
the first component from a product.

For each category c, all the positions p in category c are encoded to booleans
in the same way. The side to move and pieces in p are fixed, so the only ‘state’
left to encode as booleans are the squares that the pieces are on, which is a
fixed length list of pairs of bounded natural numbers. Encoding this type is
a relatively straightforward matter of plumbing together the standard boolean
encoders for fixed length lists, products and bounded natural numbers that are
already defined in the theorem prover [11]. Given a category c, this process yields
a function encode posn c for encoding posns in category c as a vector of booleans,
and an inverse function decode posn c for decoding a vector of booleans as a posn
in category c.

For positions in a category c, the decoder function φ in Equation (1) can now
be expanded to

abstract ◦ decode posn c .

3.2 Proving Endgame Database Theorems

The verified endgame database is constructed category by category by symboli-
cally evaluating the winning sets (i.e., calculating the BDDs ∆ in Equation (1)
for increasing values of n). When a fixed point is found, a stability theorem is
proved which is lifted to the position type using to move and has pieces predi-
cates. For example, the lifted stability theorem

`HOL+BDD

∀p.
all on board p ∧ (to move p = Black) ∧
has pieces p White [King,Rook] ∧ has pieces p Black [King]⇒
(p ∈ win2 chess ⇐⇒ p ∈ win2 by chess 16)

states that for positions with Black to move, White having a King and Rook and
Black having only a King, if a position is won at all for White then checkmate
can be forces within 16 moves. In addition, a concrete position is lifted from the
final BDDs to show that this bound is the best possible:

`HOL+BDD

(Black,
λsq.

if sq = (0, 0) then SOME (White,King) else if sq = (5, 6) then SOME (White,Rook)
else if sq = (3, 6) then SOME (Black,King) else NONE) ∈ win2 by chess 16 ∧

(Black,
λsq.

if sq = (0, 0) then SOME (White,King) else if sq = (5, 6) then SOME (White,Rook)
else if sq = (3, 6) then SOME (Black,King) else NONE) /∈ win2 by chess 15 .

11

Calculating the sequence of BDDs representing winning sets for a category is
implemented using the category-specific boolean encoding of the move relations
and winning position predicate. The winning position predicate is converted to
a BDD, and this becomes the first BDD in the sequence. The move relation is
also converted to a BDD, and applied to the current winning set to find the set
of positions that for which the current winning set is reachable in one White
move (this new winning set consists of all the mate in one positions). The BDD
resulting from this calculation is added to the sequence of BDDs, and becomes
the current winning set. The BDD for the move relation is now applied again,
but with a universal instead of an existential quantifier, to calculate the set of
positions such that all Black moves result in a position in the current winning set.
The BDD representing this winning set is added to the sequence of BDDs, and
becomes the current winning set. This sequence of BDDs representing winning
sets is continued until it converges to a fixed point (i.e., the winning set with
Black to move is the same as the previous winning set with Black to move).

Since pieces may get captured during play, and this changes the category of
the position, it is important to construct the endgame databases for the small
categories first, so that captures always reduce to a previously solved position.
The base case is two bare Kings on the board, and then different pieces are added
to first solve all the three piece endgames, and then the four piece endgames.

There are potential pitfalls to symbolically calculating the winning sets that
do not appear in the usual method of explicitly enumerating all positions, but
the theorem prover ensures that the reasoning is sound and that no positions
are left out. For example, consider the category

(White, [(White,King), (White,Queen), (White,Rook), (Black,King)])

where from any starting position White needs at most six moves to force check-
mate. Indeed, during construction of the sequence of BDDs they are seen to
converge after six moves. However, because this category of endgame can re-
duce by a capture to the category where White has a King and Rook against
Black’s bare King, and because in this smaller category White sometimes needs
16 moves to force checkmate, it is logically necessary to extend the sequence of
BDDs to 16 moves in the original category. At that point all the side conditions
are satisfied and the stability theorem can be proved:

`HOL+BDD

[· · ·]⇒
p ∈ win1 chess ⇐⇒ p ∈ win1 by chess 16 .

The final step is to prove that the official set of winning positions found after 16
moves is equal to the set of winning positions found after six moves, and thus
conclude that the same stability theorem must also hold for six moves:

`HOL+BDD

[· · ·]⇒
p ∈ win1 chess ⇐⇒ p ∈ win1 by chess 6 .

12

4 Results

The construction of verified endgame databases described in the previous section
is implemented in the HOL4 theorem prover,3 using the HolBddLib [5] interface
to the BuDDy BDD engine.4

One thing that can make a big difference to the performance of a BDD
calculation is the ordering of the boolean variables. Recall from Section 3.1 that
the ‘state’ to be encoded as boolean variables is a list of squares on the board.
This is exactly how the state breaks down into boolean variables B:

State ←− Square · · · Square
Square ←− File Rank

File ←− B B B
Rank ←− B B B

To test the effect of variable ordering on performance the construction of the
King and Rook versus King and Rook endgame database is used as a bench-
mark.5 If the variables are ordered exactly as above then the endgame database
takes 1,514 seconds to construct, and the BDD engine creates 165,847,971 nodes.
If instead the variables for the state are formed by interleaving the variables for
each square, then the endgame database takes 543 seconds to construct, and
the BDD engine produces 16,413,512 nodes. If additionally the variables for
each square are formed by interleaving the file and rank variables, the endgame
database takes 835 seconds to construct and the BDD engine produces 84,019,830
nodes. Clearly the middle option is best, and this has since been confirmed on
other benchmark tests.

Another BDD optimization that proved effective was to combine the quantifi-
cation and logical connective that occurs when the move relation is applied to the
current winning set. On a benchmark test of constructing all four piece endgames
containing only Kings, Rooks and Knights, the time required fell 19% from 3,251
seconds and 222,122,342 nodes produced to 2,640 seconds and 144,441,858 nodes
produced.

The final results for all four piece pawnless endgames are shown in Table 1.
The first column shows the pieces on the board: first the White pieces using the
standard abbreviations of K for King, Q for Queen, R for Rook, B for Bishop
and N for Knight; next an underscore; and finally the Black pieces. The other
columns are separated into positions with White to move and positions with
Black to move. Within each, the columns are as follows: the max column shows
the maximum number of moves required for White to force checkmate from a
winning position, or a dash if there are no positions winning for White; the %win
column shows the percentage of legal positions that are winning for White, a
dash if there are none, or ‘ALL’ if every legal position is winning for White;
3 HOL4 is available for download at http://hol.sf.net/.
4 BuDDy is available for download at http://sourceforge.net/projects/buddy.
5 All the results were collected on a Pentium 4 3.2GHz processor with 1Gb of main

memory and running the HOL4 theorem prover using Moscow ML 2.01.

13

the #win column shows the total number of positions winning for White; the
bdd column shows the compression ratio of the number of BDD nodes required
to store the winning sets divided by the total number of winning positions; the
#legal shows the the total number of legal positions; and the final bdd column
shows the BDD compression ratio for the legal positions.

Pieces White to move Black to move
max %win #win bdd #legal bdd max %win #win bdd #legal bdd

K K — — 0 0% 3612 1% — — 0 0% 3612 1%
K KB — — 0 0% 223944 0% — — 0 0% 193284 0%
K KBB — — 0 0% 13660584 0% — — 0 0% 10164056 0%
K KBN — — 0 0% 13660584 0% — — 0 0% 10875504 0%
K KN — — 0 0% 223944 0% — — 0 0% 205496 0%
K KNN — — 0 0% 13660584 0% — — 0 0% 11499304 0%
K KQ — — 0 0% 223944 0% — — 0 0% 144508 1%
K KQB — — 0 0% 13660584 0% — — 0 0% 7698432 0%
K KQN — — 0 0% 13660584 0% — — 0 0% 8245296 0%
K KQQ — — 0 0% 13660584 0% — — 0 0% 5657120 0%
K KQR — — 0 0% 13660584 0% — — 0 0% 6911296 0%
K KR — — 0 0% 223944 0% — — 0 0% 175168 0%
K KRB — — 0 0% 13660584 0% — — 0 0% 9366840 0%
K KRN — — 0 0% 13660584 0% — — 0 0% 9905048 0%
K KRR — — 0 0% 13660584 0% — — 0 0% 8325184 0%
KB K — — 0 0% 193284 0% — — 0 0% 223944 0%
KB KB 1 0% 416 0% 11832464 0% 0 0% 112 0% 11832464 0%
KB KN 1 0% 16 0% 11832464 0% 0 0% 8 0% 12535256 0%
KB KQ — — 0 0% 11832464 0% — — 0 0% 8952608 0%
KB KR — — 0 0% 11832464 0% — — 0 0% 10780728 0%
KBB K 19 49% 5007216 12% 10164056 0% 19 41% 5628080 8% 13660584 0%
KBN K 33 100% 10822184 30% 10875504 0% 33 82% 11188168 19% 13660584 0%
KN K — — 0 0% 205496 0% — — 0 0% 223944 0%
KN KB 1 0% 40 0% 12535256 0% 0 0% 8 0% 11832464 0%
KN KN 1 0% 40 0% 12535256 0% 0 0% 8 0% 12535256 0%
KN KQ — — 0 0% 12535256 0% — — 0 0% 8952608 0%
KN KR 1 0% 32 0% 12535256 0% 0 0% 8 0% 10780728 0%
KNN K 1 0% 1232 0% 11499304 0% 0 0% 240 0% 13660584 0%
KQ K 10 ALL 144508 19% 144508 1% 10 90% 200896 12% 223944 0%
KQ KB 17 100% 8925252 19% 8952608 0% 17 77% 9097332 18% 11832464 0%
KQ KN 21 99% 8894128 21% 8952608 0% 21 80% 10088688 21% 12535256 0%
KQ KQ 13 42% 3737092 11% 8952608 0% 12 0% 40628 1% 8952608 0%
KQ KR 35 99% 8863768 52% 8952608 0% 35 66% 7062680 35% 10780728 0%
KQB K 8 ALL 7698432 11% 7698432 0% 10 91% 12379568 8% 13660584 0%
KQN K 9 ALL 8245296 9% 8245296 0% 10 90% 12343856 7% 13660584 0%
KQQ K 4 ALL 5657120 4% 5657120 0% 10 98% 13378232 6% 13660584 0%
KQR K 6 ALL 6911296 4% 6911296 0% 16 99% 13519192 6% 13660584 0%
KR K 16 ALL 175168 20% 175168 0% 16 90% 201700 18% 223944 0%
KR KB 29 35% 3787160 11% 10780728 0% 29 3% 381888 5% 11832464 0%
KR KN 40 48% 5210920 34% 10780728 0% 40 11% 1364800 23% 12535256 0%
KR KQ 19 29% 3090088 5% 10780728 0% 18 0% 17136 0% 8952608 0%
KR KR 19 29% 3139232 5% 10780728 0% 19 1% 72464 1% 10780728 0%
KRB K 16 ALL 9366840 12% 9366840 0% 16 91% 12458920 10% 13660584 0%
KRN K 16 ALL 9905048 11% 9905048 0% 16 91% 12406892 10% 13660584 0%
KRR K 7 ALL 8325184 3% 8325184 0% 16 100% 13621424 6% 13660584 0%

40 29% 1.179E8 6% 4.033E8 0% 40 34% 1.355E8 6% 4.033E8 0%

Table 1. Results for all four piece pawnless endgames.

Constructing the whole endgame database took 18,540 seconds (including 418
seconds spent on garbage collection), during which the HOL4 theorem prover

14

executed 82,713,188 primitive inference steps in its logical kernel and the BDD
engine produced 882,827,905 nodes.

5 Conclusions

This paper has shown how a theorem prover equipped with a BDD engine can
be used to construct an endgame database that is formally verified to logically
follow from the laws of chess.

The method has been implemented for all four piece pawnless positions, and
the resulting endgame database can be used as a ‘golden reference’ for other
implementors of endgame databases to check against. In addition, the verified
endgame database has been used to produce a set of educational web pages
showing the best line of defence in each position category.6

The approach used to augment standard theorem proving techniques with
a tailor made BDD algorithm was found to be convenient for this application,
combining the expressive power and high assurance of theorem provers with
the compact representation and fast calculation of BDD engines. As seen in
Section 3.2, the use of a theorem prover avoided some potential pitfalls that
appear when symbolically processing sets of positions.

6 Related Work

The earliest example of applying BDDs to analyze a two player game is the
attempt of Baldumus et. al. [1] to solve American Checkers by means of symbolic
model checking.

Edelkamp [3] put forward the idea that BDDs are generally suitable for clas-
sifying positions in a wide range of two player games, including chess endgames.
Edelkamp’s encoding of chess positions also includes a bit for the side to move,
but otherwise it is identical to the encoding in this paper. This paper can be seen
as a continuation of Edelkamp’s work, with the addition of a theorem prover to
ensure the accuracy of the move encodings and winning sets.

Kristensen [8] investigated the use of BDDs to compress endgame databases,
showing BDDs to be comparable to the state of the art in explicit enumeration
for 3–4 man endgames, and better for some simple 5 man endgames.

Acknowledgements

This work was initiated by a conversation between the author and Tim Leonard,
and the correct method of boolean encoding was hammered out during many
discussions with Konrad Slind.

6 Available at http://www.gilith.com/chess/endgames

15

References

1. Michael Baldamus, Klaus Schneider, Michael Wenz, and Roberto Ziller. Can Amer-
ican Checkers be solved by means of symbolic model checking? In Howard Bow-
man, editor, Formal Methods Elsewhere (a Satellite Workshop of FORTE-PSTV-
2000 devoted to applications of formal methods to areas other than communication
protocols and software engineering), volume 43 of Electronic Notes in Theoretical
Computer Science. Elsevier, May 2001.

2. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, September 1992.

3. Stefan Edelkamp. Symbolic exploration in two-player games: Preliminary results.
In The International Conference on AI Planning & Scheduling (AIPS), Workshop
on Model Checking, pages 40–48, Toulouse, France, 2002.

4. FIDE. The FIDE Handbook, chapter E.I. The Laws of Chess. FIDE, 2004. Available
for download from the FIDE website.

5. Michael J. C. Gordon. Reachability programming in HOL98 using BDDs. In Mark
Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics,
13th International Conference: TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 179–196. Springer, August 2000.

6. E. A. Heinz. Endgame databases and efficient index schemes. ICCA Journal,
22(1):22–32, March 1999.

7. David Hooper and Kenneth Whyld. The Oxford Companion to Chess. Oxford
University Press, 2nd edition, September 1992.

8. Jesper Torp Kristensen. Generation and compression of endgame tables in chess
with fast random access using OBDDs. Master’s thesis, University of Aarhus,
Department of Computer Science, February 2005.

9. E. V. Nalimov, G. McC. Haworth, and E. A. Heinz. Space-efficient indexing of
chess endgame tables. ICGA Journal, 23(3):148–162, September 2000.

10. John Nunn. Secrets of Rook Endings. Gambit Publications, December 1999.
11. Konrad Slind and Joe Hurd. Applications of polytypism in theorem proving. In

David Basin and Burkhart Wolff, editors, 16th International Conference on Theo-
rem Proving in Higher Order Logics: TPHOLs 2003, volume 2758 of Lecture Notes
in Computer Science, pages 103–119. Springer, September 2003.

16

A Formalized Chess (Omitted Definitions)

pushes p sq ≡
board ∩ clear line p sq ∩
(case on square p sq of

NONE→ ∅
| SOME (, King)→ {sq′ | king attacks sq sq′}
| SOME (, Queen)→ {sq′ | queen attacks sq sq′}
| SOME (, Rook)→ {sq′ | rook attacks sq sq′}
| SOME (, Bishop)→ {sq′ | bishop attacks sq sq′}
| SOME (, Knight)→ {sq′ | knight attacks sq sq′}) ;

sorties p sq ≡ {sq′ | sq′ ∈ pushes p sq ∧ empty p sq′} ;

captures p sq ≡ {sq′ | sq′ ∈ attacks p sq ∧ occupies p (opponent (to move p)) sq′} ;

simple move p p′ ≡
∃sq1, sq2.

occupies p (to move p) sq1 ∧ sq2 ∈ sorties p sq1 ∧
∀sq.

on square p′ sq =
if sq = sq1 then NONE
else if sq = sq2 then on square p sq1

else on square p sq ;

capture move p p′ ≡
∃sq1, sq2.

occupies p (to move p) sq1 ∧ sq2 ∈ captures p sq1 ∧
∀sq.

on square p′ sq =
if sq = sq1 then NONE
else if sq = sq2 then on square p sq1

else on square p sq ;

chess move p p′ ≡
chess legal p ∧ chess legal p′ ∧
(to move p′ = opponent (to move p)) ∧
simple move p p′ ∨ capture move p p′ ;

chess move1 p p′ = chess move p p′ ∧ (to move p = White) ;

chess move2 p p′ = chess move p p′ ∧ (to move p = Black) ;

has pieces p s l ≡
∃f ∈ Bijection {n | n < length l} {sq | occupies p s sq}.
∀n. n < length l⇒ (on square p (f n) = SOME (s, nth n l)) .

