
OpenTheory: Package Management
for Higher Order Logic Theories

Joe Hurd
Galois, Inc.

joe@galois.com

Abstract
Interactive theorem proving has grown from toy examples to major
projects formalizing mathematics and verifying software, and there
is now a critical need for theory engineering techniques to support
these efforts. This paper introduces the OpenTheory project, which
aims to provide an effective package management system for log-
ical theories. The OpenTheory article format allows higher order
logic theories to be exported from one theorem prover, compressed
by a stand-alone tool, and imported into a different theorem prover.
Articles naturally support theory interpretations, which is the mech-
anism by which theories can be cleanly transferred from one the-
orem prover context to another, and which also leads to more effi-
cient developments of standard theories.

Keywords theory management, formalizing mathematics

1. Introduction
Interactive theorem provers have grown far beyond toy examples,
and are nowadays being used for impressive verification projects in
mathematics and computer science. Recent examples include: the
CompCert project, which verified an optimizing compiler from a
large subset of C to PowerPC assembly code [12]; and the Flyspeck
project, which aims to mechanize a proof of the Kepler sphere-
packing conjecture [6].

Just as the term software engineering was coined in 1968 [14]
to give a name to techniques for developing increasingly large
programs, there is now a need for theory engineering techniques
to develop increasingly large proofs. An interactive theorem prover
in the LCF design can be seen as a compiler from a source language
program containing high-level proof steps to an assembly language
program consisting of primitive inferences in the logic. Viewed this
way, it is instructive to see which software engineering principles
can be applied to proving in the large.

One software engineering principle that immediately applies is
to have a standardized source language for high-level proof steps,
to eliminate the problem of improvements to the underlying proof
tools breaking legacy proofs. The declarative proof language of
Mizar [18] pioneered this approach, and it has been refined in the
Isar mode of the Isabelle theorem prover [19]. Likewise, the soft-
ware engineering principle of using modules to effectively reuse

[Copyright notice will appear here once ’preprint’ option is removed.]

proofs and avoid namespace pollution has been implemented in
many theorem provers, notable examples being theory interpreta-
tions in IMPS [5] and locales in Isabelle [10].

This paper illustrates how another principle of software engi-
neering can be applied to proof development: effective package
management of theories. Modern operating systems bundle soft-
ware into packages that explicitly track their dependencies, to avoid
being installed into a system that does not provide the support that
they require. The apt-get install command in the Debian dis-
tribution of the Linux operating system takes this one step fur-
ther, recursively installing packages until all dependencies are sat-
isfied and the requested package can be installed. Similarly, cabal
install does the same for modules in the Haskell programming
language [3]. By contrast, transplanting a theory from one theorem
prover to another often involves manually translating the theorem
statements and creating new proofs for them in the local high-level
proof step language.

The OpenTheory project aims to transfer the benefits of effec-
tive package management to logical theories.1 The initial case study
of the project is higher order logic [4],2 which is implemented
by three interactive theorem provers that currently have no good
way to exchange theories: HOL Light [7], HOL4 [16] and Proof-
Power [11]. To continue the compiler analogy, the hardware (logic)
of the three theorem provers is the same, so even though they all im-
plement subtly different assembly languages (primitive inferences),
they can all simulate each other.3 This paper presents the file format
for packages of higher order logic theories, called articles, which
support the following:

• export from and import into theorem provers without explicit
proof objects;
• offline concatenation and compression operations using a stand-

alone tool;
• clean transfer from one theorem prover context to another, using

a restricted form of theory interpretation.

The remainder of the paper is structured as follows: Section 2
presents the article file format for higher order logic theories; Sec-
tion 3 describes the operations that can be performed on theory
packages in article format; Section 4 demonstrate the results of
archiving and compressing the theories distributed with the HOL
Light theorem prover; Section 5 illustrates the utility of theory

1 The OpenTheory project homepage is http://gilith.com/resear-
ch/opentheory
2 In this paper, the term higher order logic is exclusively used to refer to
simple type theory with Hindley-Milner type polymorphism.
3 The type class extension of Isabelle/HOL [15] makes it a later version
of the hardware, so although it can simulate the assembly language of the
others, they cannot simulate it.

1 2009/7/17

error Construct an error object
〈number〉 Construct a non-negative integer
"〈string〉" Construct a quoted string
nil Construct an empty list
cons Add an object to a list
type var Construct a type variable
type op Construct a type operator
var Construct a term variable
const Construct a constant
comb Construct a function application
abs Construct a λ-abstraction
thm Find a theorem
call Simulate a function call
return Simulate a return from a function call
def Add an object to the dictionary
ref Look up an object in the dictionary
remove Remove an object from the dictionary
pop Pop an object from the stack
save Save a theorem onto the export list

Table 1. The complete list of article commands.

packages with two examples; and finally Sections 6–8 examine re-
lated work, consider future directions and summarize.

2. Articles of Proof
This section introduces the OpenTheory article file format for
higher order logic theory packages. For articles, the design choice
was made to rely only on the primitive inferences of the supported
theorem provers. As a consequence, articles cannot be edited, so
theories should only be packaged into articles when they are stable
enough to be archived.

An alternative approach, taken by the Common HOL Project, is
to package the ML source file that generated the higher order logic
theory.4 Packaging theories in source form has the advantage that
they can be edited, but at the cost of being dependent on a set of
standardized proof tools.

Not all of the supported higher order logic theorem provers
build explicit proof objects for theorems. However, every proof tool
in the theorem prover is a function that calls lower-level proof tools,
all the way down to the primitive inference functions in the logical
kernel. Thus the proof of a theorem can be represented as an ML
function call tree, and the article format is a direct encoding of the
function call tree generated by the ML source file that generated
the theory.

This choice of format makes it easy to export theories from a
theorem prover: all that is required is for some functions (at least
the primitive inferences) to be instrumented to log their arguments
and return value to a file. To read in an article created in this way,
the theorem prover steps through the file and simulates the primitive
inference functions that it encounters. This process is made more
precise in the remainder of this section: for every last detail the
reader is referred to the OpenTheory Article Format [9].

2.1 File Format
At the most basic level, an OpenTheory article is a text file using
the UTF-8 character set. Every line in an article file is either a
comment, in which case the first character must be #, or one of
the commands in Table 1. The commands in the article file are
processed by a stack-based virtual machine.

As it reads the article file, the virtual machine maintains the
following data structures:

• A stack containing values of type object.

4 Personal communication from Mark Adams.

• A dictionary mapping keys of type int to values of type
object.
• An import list of type thm list.
• An export list of type thm list.

Initially the stack, dictionary, import list and export list are all
empty. The type of object stored on the stack and in the dictionary
is defined as:

datatype object =
Oerror (* An error value *)

| Oint of int (* A number *)
| Oname of string (* A name *)
| Olist of object list (* A list (or tuple)

of objects *)
| Otype of type (* A higher order

logic type *)
| Oterm of term (* A higher order

logic term *)
| Othm of thm (* A higher order

logic theorem *)
| Ocall of string (* A special object

marking a
function call *)

The virtual machine reads the article file line by line. Comments
are discarded, and commands are immediately executed. As a result
of executing a command, the stack, dictionary, import list or export
list may be altered. After a command has been executed it is
discarded. When the virtual machine has finished processing all the
lines in the article file, the import list and export list of theorems
are the result of reading the article (the stack and dictionary are
discarded).

2.2 Simulating Call Trees
The article file is a direct encoding of the function call tree gen-
erated by the ML source file that generated the theory, and as the
virtual machine reads the article it performs a simulation of the
function calls using its stack. Here is the specification of the call
and return article commands:

call
Pop a name n; pop an object a; push the function
call marker Ocall n; push the argument value a.

Stack: Before: Oname n :: a :: stack
After: a :: Ocall n :: stack

return
Pop a name n; pop an object r; pop objects from
the stack up to and including the top function
call marker Ocall n; push the return value r.

Stack: Before: Oname n :: r :: ... ::
Ocall n :: stack

After: r :: stack

Every function must return a value, to ensure that the Ocall objects
are properly removed from the stack. If the ML function returns an
exception, then this must be trapped by the instrumenting code and
logged as returning with an Oerror value.

Some of the function calls being simulated will be primitive
inferences, and some will be higher-level proof tools. By examining
an article, it is possible to profile proof tools by seeing what lower-
level proof tools they call. One simple metric would be the number
of primitive inferences that a proof tool makes.

2.3 Constructing Types and Terms
Function arguments and return values are built up on the stack
by other article commands. For example, here is the specification

2 2009/7/17

of the var command for constructing a higher order logic term
variable:

var
Pop a type ty; pop a name n; push a variable with
name n and type ty.

Stack: Before: Otype ty :: Oname n :: stack
After: Oterm (mk_var (n,ty)) :: stack

It is often the case that the representation of higher order logic
types and terms in ML uses sharing of memory locations. Naively
building highly shared types and terms can require exponentially
more stack commands than the number of memory locations used
in its ML representation.

The article dictionary maintained by the virtual machine is used
to solve this problem. If an object is going to be required multiple
times, it is constructed once, and associated with an integer key in
the dictionary using the def command. Subsequent uses look up
the object in the dictionary with the key using the ref command,
instead of constructing it again. On the last use of an object, the
remove command can be used instead of ref, which removes the
association from the dictionary in addition to looking up the object.

In practice the theorem prover that is instrumented to export an
article file will not know how many times an object will be used in
the future. It can either choose to use the dictionary on a per-object
basis to avoid the exponential cases, or store all newly constructed
objects in the dictionary in case they will be later required. The first
approach requires no additional storage in the theorem prover, but
the second approach will usually result in smaller article files.

2.4 Theorems
The save command reads an Othm th object from the top of the
stack, and adds the theorem th to the export list of the article.
Theorems are constructed using the thm command, which has the
following specification:

thm
Pop a term c; pop a list of terms h; push the
theorem h ` c with hypothesis h and conclusion c.

Stack: Before: Oterm c ::
Olist [Oterm h1, ..., Oterm hn] ::

stack
After: Othm ([h1, ..., hn] ` c) :: stack

The hypothesis and conclusion terms only provide a specifica-
tion of the result theorem—the theorem is constructed using the
first one of the following methods that succeeds:

1. Look for the result theorem on the export list of the article.

2. If the current function is a primitive inference rule, the result
theorem is proved by simulating the inference using the argu-
ment value.

3. Look for the result theorem inside an object on the stack.

4. Assert the result theorem as an axiom, and add it to the import
list of the article.

2.5 Example Article
Here is a tiny annotated article that exports the theorem ` T:

Construct the hypothesis list
nil
Construct the conclusion term
"T"
"bool"
nil
type_op
const
Construct the theorem

REQUIRES
types: t1 t2 . . . ti
consts: c1 c2 . . . cm

thms: γ1 γ2 . . .γp

PROVIDES
types: u1 u2 . . .uj

consts: d1 d2 . . .dn

thms: δ1 δ2 . . . δq

Figure 1. The general form of an article summary.

thm
Export the theorem
save
Clean up the stack
pop

This tiny example illustrates several aspects of articles: each line of
the article is a command; the command arguments are popped from
the stack and the result (if any) is pushed onto the stack; and clean
articles leave nothing on the stack when they end.

3. Theory Packages
The previous section was concerned with the details of the article
format, focusing on how its design makes it practical to export
theories from one theorem prover and import them into another. By
contrast, this section examines articles as a package for higher order
logic theories, independently of any particular theorem prover, and
focuses on the theory operations that they support.

3.1 Summaries
The result of reading an article file is the import and export lists
of theorems, which can be written as Γ ` ∆, to indicate that
the theorems in the export list ∆ can be logically derived from
the theorems in the import list Γ. In addition to the theorems Γ,
the article also depends on the set of type operators and constants
that appear in Γ. Also, in addition to proving the theorems in ∆,
the article must also define the type operators and constants that
appear in ∆ but not in Γ. This information is captured in an article
summary, which has the general form shown in Figure 1.

Informally, an article can be thought of as a representation of
the following parameterized theory:

∀t, c : Γ. ∃u, d : ∆ .

This is similar to a functor in the ML module system [13], where if
a set of types t and values c that satisfy a signature Γ is provided as
input, the functor will generate a set of types u and values d that sat-
isfy a signature ∆. However there are two significant differences:
the “theorem prover” in Standard ML is the type checker, and so
the signatures are restricted to be type judgments, whereas articles
can specify arbitrary higher order logic properties; and the partic-
ular representation of the types u and construction of the constants
d has an effect on the performance of the resulting code, whereas
for articles it little matters how the types u and constants d are con-
structed, so long as they satisfy their properties ∆.

3.2 Theory Operations
Considering articles as a package for a parameterized theory, it is
interesting to consider the effect of article file operations on the
summary.

Firstly, it is possible to remove some save commands from
the article file, which has the effect of filtering theorems from the
export list:

filter∆′ (Γ ` ∆) = Γ ` (∆ ∩∆′) .

3 2009/7/17

Secondly, the article format is concatenative, and when concate-
nating two article files it may be the case that the first article exports
theorems that are imported by the second. Since the export list is
always checked before adding a theorem to the import list, concate-
nation may result in some required theorems being removed:

(Γ1 ` ∆1) · (Γ2 ` ∆2) = Γ1 ∪ (Γ2 −∆1) ` ∆1 ∪∆2 .

Finally, it is possible to rename the type operators and constants
that appear in the article summary. The easiest point at which to
do this is when constructing a type operator or constant with the
type op and const commands. This provides a limited theory
substitution operator:

(Γ ` ∆)σ = Γσ ` ∆σ .

Of the three theory operations presented here, the theory sub-
stitution operator is the most practically useful for importing the-
ories in article format into a theorem prover. The requirements of
the article can be completely renamed to match type operators and
constants in the local context, so that every theorem in the import
list can be proved by theorems in the current environment.

3.3 Compression
The previous section considered the effect on the summary of
performing operations on the article file. This section considers a
different problem: reducing the size of the article file while keeping
the summary constant.5

The first technique for compressing articles is dead inference
elimination, that is, removing function calls for which the return
value never contributes to the proof of an exported theorem. Per-
haps surprisingly, this occurs a great deal in LCF theorem provers,
usually because a proof tool throws an exception (which is repre-
sented in the article as returning an error value). An implementation
trick helps here: by storing dependency pointers with each object,
the ML garbage collector automatically eliminates dead inferences
as the article is read.

The second technique for compressing articles is to use the
dictionary in an optimal way, never constructing any object more
than once. For types and terms this has a predictable effect, but
arranging for a theorem to use a previously proved version can cut
out a long sequence of inferences.

4. Results
Table 2 presents the results of applying the compression algorithm
described in Section 3.3 to the theories distributed with the HOL
Light theorem prover [7].6 The table presents the compression
ratios for both the raw articles and also the articles compressed
using the gzip program.

The HOL Light source code was instrumented to log function
calls to an article file for all the primitive inferences plus a select
number of higher-level proof tools. For each theory a dictionary
was maintained of all previously constructed objects; this choice
results in smaller article files. Concatenating all of the general ar-
ticle files together results in a gigantic theory providing 129,888
theorems, but requiring only the three standard axioms shown in
Figure 2 (the Axioms of Extensionality, Choice and Infinity, re-
spectively).

From the results it is possible to derive several conclusions.
Firstly, there is a high level of compression despite a maximal dic-
tionary being used, indicating that there are many dead inferences

5 More precisely, the summary must provide the same theorems and require
a subset of the dependencies in the original article.
6 This experiment used HOL Light version 2.20, snapshot release on 25
May 2009. HOL Light is available for download at http://www.cl.cam.
ac.uk/~jrh13/hol-light.

REQUIRES
types: bool fun ind
consts: ∀ ∧ = =⇒ ∃ ONE ONE ONTO select ¬
thms: ` ∀t. (λx. t x) = t
` ∀P, x. P x =⇒ P (select P)
` ∃f. ONE ONE f ∧ ¬ONTO f

Figure 2. The HOL Light axioms.

instance Ord a => Ord [a] where
[] <= _ = True
: <= [] = False
x:xs <= y:ys = if x <= y then

if y <= x then xs <= ys else True
else False

Figure 3. A Haskell type class instance lifting the <= comparison
operator from a type to lists of the type.

made while processing theories that can be safely eliminated. Sec-
ondly, the similar compression ratio for the raw articles and the
articles compressed by gzip shows the complementary nature of
application and generic compression algorithms. Finally, the abso-
lute compressed sizes of the theories are not large, demonstrating
that expanding theories to primitive inferences and archiving them
is feasible.

These HOL Light theories were read into HOL4 by a tool for
reading articles implemented by Quinn Yee Qin Teh,7 simultane-
ously demonstrating the software engineering benefits of a clear
file format standard for theories, and the transfer of theories from
one of the target theorem provers to another.

5. Examples
5.1 Functional Properties
The first example illustrates how properties can be added to type
class instances in the Haskell functional programming language.
Figure 3 shows an example Haskell type class instance, which lifts
the <= comparison operator for a type to lists of the type. However,
the only properties that can be expressed in a type class instance
are those that can be encoded as type judgments, so for instance,
it is not possible to mechanically check the desirable property that
if the element comparison operator is a total order then so is the
generated list comparison operator.

Figure 4 shows an article summary illustrating how this type
class instance can be represented as a higher order logic theory,
including the lifting of the property that the comparison operator is
a total order.

For clarity, not all the requirements of the theory are shown,
only those that cannot be satisfied by the standard theories dis-
tributed with HOL Light. Also, instead of naming both comparison
operators <=, the element comparison operator is called le and the
list comparison operator leList. Despite these surface differences, it
is clear that this pattern can be used to augment type class instances
to generate functions with mechanically checked properties.

5.2 Negative Numbers
The second example demonstrates the utility of a higher order logic
theory that generates a new type on a realistic case study in for-
malized mathematics. Figure 5, which is modified from Harrison’s
thesis [8], shows a path for constructing the real numbers from the
natural numbers, via the positive integers, rationals and reals.

7 Personal communication from Michael Norrish.

4 2009/7/17

HOL Light article comp. comp. gzip’ed gzip’ed comp.
theory (Kb) (Kb) ratio article comp. ratio

(Kb) (Kb)
num 1,821 813 56% 227 113 51%
arith 27,469 7,548 73% 2,884 1,015 65%
wf 29,277 6,330 79% 3,222 861 74%
calc num 3,922 1,570 60% 374 203 46%
normalizer 2,845 688 76% 300 92 70%
grobner 2,417 748 70% 257 103 60%
ind-types 10,625 4,422 59% 1,274 599 53%
list 12,368 4,870 61% 1,485 673 55%
realax 23,628 7,989 67% 2,519 1,070 58%
calc int 2,844 861 70% 314 119 63%
realarith 16,275 4,684 72% 1,326 589 56%
real 30,031 9,346 69% 3,179 1,217 62%
calc rat 2,556 1,166 55% 289 157 46%
int 40,617 9,546 77% 3,465 1,249 64%
sets 168,586 30,315 83% 17,514 4,048 77%
iter 207,324 32,422 85% 17,557 4,199 77%
cart 20,351 3,632 83% 2,076 495 77%
define 82,185 16,409 81% 8,157 2,175 74%

Table 2. Benchmarking the compression algorithm on HOL Light theories.

REQUIRES
types: t
consts: (le : t→ t→ bool) totalOrder
thms: ` totalOrder le

PROVIDES
consts: (leList : t list→ t list→ bool)
thms:
` leList [] l2 = T ∧

leList (h1 :: t1) [] = F ∧
leList (h1 :: t1) (h2 :: t2) =

if le h1 h2 then
if le h2 h1 then leList t1 t2 else T

else F
` totalOrder leList

Figure 4. A higher order logic theory illustrating a pattern for
representing type class instances with properties.

R
↗

R+ Q
↖ ↗

Q+ Z
↖ ↗

Z+

↑
N

Figure 5. Constructing the real numbers from the natural numbers.

The constructions of the integers, rationals and reals from their
positive elements follow the same pattern, and it is possible to gen-
eralize the construction into a higher order logic theory. Figure 6
shows the summary for an article that requires a type p with oper-
ations that satisfy the usual set of arithmetic properties. It provides
a new type n with operations that satisfy arithmetic properties, plus
extra zero and neg operators that behave as expected. In addition,
the inject function embeds the p type into the n type, and is shown
to be a homomorphism with respect to the arithmetic operations.

This allows special properties of the p type to be carried over to the
n type, such as the density of rational numbers.

Again, for clarity not all the requirements of the theory are
shown, only those that cannot be satisfied by the standard theo-
ries distributed with HOL Light. Incidentally, this construction is
normally performed by quotienting pairs of positive numbers, but
in this formalization a different route was taken by defining the n
type as a datatype:

n ≡ negative p | zero | positive p .

This led to a style of proof with much case splitting, but was gen-
erally smooth except for the associativity of addition. This one the-
orem was difficult enough that the quotient route is recommended
for similar formalizations.

5.3 Example Compression
To confirm that there is no significant difference between the ex-
ample theories and the theories distributed with HOL Light, Ta-
ble 3 presents the results of applying the compression algorithm
described in Section 3.3 to the example theories.

6. Related Work
Recording and replaying proofs from LCF theorem provers is not
new: Wong’s pioneering Recording and checking HOL proofs in
1995 appears to be the first [20]. As is necessary in a theorem
prover without explicit proof objects, the approach involved in-
strumenting the logical kernel to emit primitive inferences, and the
proofs were checked for validity by an independent proof checker.
No attempt was made to compress the proofs, although the reading
phase made two passes to avoid storing theorems past their last use.

More recently, Obua and Skalberg [17] instrumented HOL4
and HOL Light to export theories into the Isabelle/HOL theorem
prover. The proofs were stored in an XML document, which pre-
serves sharing, and peephole optimizations could be made on the
proofs. This achieves good compression: they quote 21Mb for all
the HOL Light theories after being compressed by the gzip pro-
gram, which compares to 18Mb in this paper. The present work
differs from this line of proof recording work by its focus on the
theory package as the central concept, independent of any particu-
lar theorem prover.

5 2009/7/17

REQUIRES
types: p
consts: leP addP subP multP
thms: ` ∀x. leP x x
` ∀x, y. leP x y ∧ leP y x =⇒ x = y
` ∀x, y, z. leP x y ∧ leP y z =⇒ leP x z
` ∀x, y. leP x y ∨ leP y x
` ∀x, y. addP x y = addP y x
` ∀x, y, z. addP (addP x y) z = addP x (addP y z)
` ∀x, x′, y, y′. leP x x′ ∧ leP y y′ =⇒ leP (addP x y) (addP x′ y′)
` ∀x, y. ¬leP (addP x y) x
` ∀x, y. ¬leP y x =⇒ addP x (subP y x) = y
` ∀x, y.multP x y = multP y x
` ∀x, y, z.multP (multP x y) z = multP x (multP y z)

PROVIDES
types: n
consts: zero le add neg sub mult (inject : p→ n)
thms: ` ∀x. le x x
` ∀x, y. le x y ∧ le y x =⇒ x = y
` ∀x, y, z. le x y ∧ le y z =⇒ le x z
` ∀x, y. le x y ∨ le y x
` ∀x. add zero x = x
` ∀x. add x zero = x
` ∀x, y. add x y = add y x
` ∀x, y, z. add (add x y) z = add x (add y z)
` ∀x, y, z. add x y = add x z = (y = z)
` ∀x, y, z. le (add x y) (add x z) = le y z
` ∀x, x′, y, y′. le x x′ ∧ le y y′ =⇒ le (add x y) (add x′ y′)
` neg zero = zero
` ∀x. neg x = zero = (x = zero)
` ∀x. neg (neg x) = x
` ∀x. add x (neg x) = zero
` ∀x. add (neg x) x = zero
` ∀x, y. sub x y = add x (neg y)
` ∀x, y. add x (sub y x) = y
` ∀x.mult zero x = zero
` ∀x.mult x zero = zero
` ∀x, y.mult x y = mult y x
` ∀x, y, z.mult (mult x y) z = mult x (mult y z)
` ∀x, y. leP x y = le (inject x) (inject y)
` ∀x, y. inject (addP x y) = add (inject x) (inject y)
` ∀x, y. ¬leP x y =⇒ inject (subP x y) = sub (inject x) (inject y)
` ∀x, y. inject (multP x y) = mult (inject x) (inject y)
` ∀x. ¬(inject x = zero)
` ∀x, y. ¬(inject x = neg (inject y))
` ∀p. (∀x. p (inject x)) ∧ p zero ∧ (∀x. p (neg (inject x))) =⇒ ∀x. p x

Figure 6. A general theory constructing a number system from its positive elements.

example article comp. comp. gzip’ed gzip’ed comp.
theory (Kb) (Kb) ratio article comp. ratio

(Kb) (Kb)
example-ord-1 3,167 1,250 61% 393 173 56%
example-ord-2 15,866 3,782 77% 1,971 521 74%
example-pos-1 74,912 15,756 79% 6,609 2,056 69%

Table 3. Benchmarking the compression algorithm on HOL Light example theories.

6 2009/7/17

From this point of view, the most related work is the AWE
project [2], which builds on the explicit proof terms in Isabelle [1].
Though tied to one theorem prover, it nevertheless focuses on the
theory as the central concept, and has developed sophisticated
mechanisms for theory interpretation based on rewriting proof
terms. The present work differs from AWE by being theorem prover
independent, and also by its technique of processing proofs one step
at a time rather than requiring the whole proof to be in memory,
which may allow it to scale up more effectively.

7. Future Work
There are further opportunities to compress theories in article for-
mat. For example, by renaming variables that are used in proofs but
never appear in a summary theorem, it may be possible to generate
more object sharing.

There is scope for future work in developing more theory oper-
ations, especially more sophisticated theory interpretations. For ex-
ample, it would be useful to specialize constants to arbitrary terms
(with no free variables or additional type variables), instead of sim-
ply renaming them to other constants.

Now that the package format has been developed, the hope is
that the full software engineering benefits of package management
can be applied to higher order logic, including searchable reposito-
ries of packages, and installation with automatic dependency res-
olution. The goal is to develop the opentheory install com-
mand!

8. Summary
This paper has presented the OpenTheory article format for packag-
ing higher order logic theories. Articles can be effectively exported
from and imported into theorem provers without explicit proof ob-
jects, and they carry around their own dependencies in the form of
automatically derived summaries. Articles are nameless, and thus
can be cleanly transplanted into a different theorem proving con-
text, proving the dependencies using theorems in the local environ-
ment. Finally, the examples in the paper show how the restricted
form of theory interpretations in articles can be employed to effi-
ciently develop realistic theories.

Acknowledgments
The OpenTheory project was initiated in 2004 as a result of discus-
sions between Rob Arthan and the author, and the work since then
has been guided by feedback from many other people, including
John Harrison, Rebekah Leslie, John Matthews, Michael Norrish
and Konrad Slind.

References
[1] Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed

higher order logic. In Mark Aagaard and John Harrison, editors, The-
orem Proving in Higher Order Logics, 13th International Conference:
TPHOLs 2000, volume 1869 of Lecture Notes in Computer Science,
pages 38–52. Springer, August 2000.

[2] Maksym Bortin, Einar Broch Johnsen, and Christoph Lüth. Structured
formal development in Isabelle. Nordic Journal of Computing, 13:1–20,
2006.

[3] Duncan Coutts, Isaac Potoczny-Jones, and Don Stewart. Haskell: Bat-
teries included. In Andy Gill, editor, Haskell ’08: Proceedings of the first
ACM SIGPLAN symposium on Haskell, pages 125–126. ACM, Septem-
ber 2008.

[4] William M. Farmer. The seven virtues of simple type theory. Journal
of Applied Logic, 6:267–286, 2008.

[5] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS:
An interactive mathematical proof system. Journal of Automated Rea-
soning, 11:213–248, 1993.

[6] Thomas C. Hales. Introduction to the Flyspeck project. In Thierry Co-
quand, Henri Lombardi, and Marie-Françoise Roy, editors, Mathemat-
ics, Algorithms, Proofs, number 05021 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany, 2006.

[7] John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas
and Albert Camilleri, editors, Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design (FMCAD
’96), volume 1166 of Lecture Notes in Computer Science, pages 265–
269. Springer, 1996.

[8] John Harrison. Theorem Proving with the Real Numbers (Distinguished
dissertations). Springer, 1998.

[9] Joe Hurd. OpenTheory article format (version 3). Available for
download at http://gilith.com/research/opentheory/artic-
le.html, December 2007.

[10] F. Kammüller. Modular reasoning in Isabelle. In David A. McAllester,
editor, Proceedings of the 17th International Conference on Automated
Deduction (CADE-17), volume 1831 of Lecture Notes in Computer Sci-
ence. Springer, June 2000.

[11] D. J. King and R. D. Arthan. Development of practical verification
tools. ICL Systems Journal, 11(1), May 1996.

[12] Xavier Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In J. Gregory Morrisett and
Simon L. Peyton Jones, editors, Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
2006), pages 42–54. ACM, January 2006.

[13] David MacQueen. Modules for Standard ML. In Robert S. Boyer,
Edward S. Schneider, and Jr. Guy L. Steele, editors, LFP ’84: Proceed-
ings of the 1984 ACM Symposium on LISP and functional programming,
pages 198–207. ACM, August 1984.

[14] P. Naur and B. Randell, editors. Software Engineering. Scientific
Affairs Division, NATO, October 1968.

[15] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. Springer, 2002.

[16] Michael Norrish and Konrad Slind. A thread of HOL development.
The Computer Journal, 41(1):37–45, 2002.

[17] Steven Obua and Sebastian Skalberg. Importing HOL into Is-
abelle/HOL. In Ulrich Furbach and Natarajan Shankar, editors, Auto-
mated Reasoning, Third International Joint Conference (IJCAR 2006),
volume 4130 of Lecture Notes in Computer Science, pages 298–302.
Springer, August 2006.

[18] Piotr Rudnicki. An overview of the Mizar project. Notes to a talk at
the workshop on Types for Proofs and Programs, June 1992.

[19] Markus Wenzel. Isar - a generic interpretative approach to readable
formal proof documents. In Yves Bertot, Gilles Dowek, André Hir-
schowitz, Christine Paulin, and Laurent Théry, editors, Theorem Proving
in Higher Order Logics, 12th International Conference, TPHOLs ’99,
volume 1690 of Lecture Notes in Computer Science, pages 167–184.
Springer, September 1999.

[20] W. Wong. Recording and checking HOL proofs. In E. T. Schubert, P. J.
Windley, and J. Alves-Foss, editors, Proceedings of the 8th International
Workshop on Higher Order Logic Theorem Proving and Its Applications,
volume 971 of Lecture Notes in Computer Science, pages 353–368.
Springer, September 1995.

7 2009/7/17

