
Introduction Combining Theories Packaging Theories Implementation Notes Summary

Composable Packages
for

Higher Order Logic Theories

Joe Hurd

Galois, Inc.
joe@galois.com

VERIFY Workshop
Wednesday 21 July 2010

Joe Hurd Composable Packages for Higher Order Logic Theories 1 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Talk Plan

1 Introduction

2 Combining Theories

3 Packaging Theories

4 Implementation Notes

5 Summary

Joe Hurd Composable Packages for Higher Order Logic Theories 2 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Motivation

Interactive theorem proving is growing up.

The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
The seL4 project recently completed a 20 man-year verification
of an operating system kernel in the Isabelle theorem prover.

There is a need for theory engineering techniques to support
these major verification efforts.

Theory engineering is to proving as software engineering is to
programming.
“Proving in the large.”

Joe Hurd Composable Packages for Higher Order Logic Theories 4 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

The OpenTheory Project

The goal of the OpenTheory project is to transfer the benefits
of package management to logical theories.1

The initial case study for the project is Church’s simple theory
of types, extended with Hindley-Milner style type variables.

The logic implemented by HOL4, HOL Light and ProofPower.

By focusing on a concrete case study we aim to investigate
the issues surrounding:

Designing theory languages portable across theorem prover
implementations.
Discovering design techniques for reusable theories.
Uploading, installing and upgrading theory packages from
online repositories.
Building a standard theory library.

1OpenTheory was started in 2004 with Rob Arthan.
Joe Hurd Composable Packages for Higher Order Logic Theories 5 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Definition

A theory Γ . ∆ of higher order logic consists of:
1 A set Γ of assumption sequents.
2 A set ∆ of theorem sequents.
3 A formal proof that the theorems in ∆ logically derive from

the assumptions in Γ.

Theories (including their proofs) can be directly represented as
OpenTheory article files.

A format designed to simplify theory import and export for
theorem prover implementations.

This talk will present a language for building up from article
files to theory packages.

We’ll see toy case studies that demonstrate the concepts, but
the true test will be whether it scales up—watch this space!

Joe Hurd Composable Packages for Higher Order Logic Theories 6 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Connecting Theories

Note that both the input assumptions and output theorems of
a theory are sequent sets.

We can therefore connect the output theorems of one theory
to satisfy the input assumptions of another:

In this illustration, some theories have been connected
together to produce the compound theory

A ∪ B ∪ CIN . S ∪ COUT .

Joe Hurd Composable Packages for Higher Order Logic Theories 8 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Interpretations

A theory Γ . ∆ can be instantiated in any context where the
assumptions Γ hold. This is called theory interpretation.

Example: The theory

{` id = λx . x} . {` ∀x . id x = x}

can be applied in any context with a constant id having the
assumed property.

Constants and type operators can be consistently renamed

(Γ . ∆)σ = Γσ . ∆σ

allowing theories to be instantiated in even more contexts.

Joe Hurd Composable Packages for Higher Order Logic Theories 9 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

What Can Go Wrong?

When connecting together theories, the connection graph
must not contain any loops!

Theories are representations of proofs, which are directed
acyclic graphs.
In this aspect proofs are more like combinational circuits than
programs.

A set of theorems must not have incompatible definitions for
the same constant or type operator.

Example: The two theories

∅ . {` c = 0} and ∅ . {` c = 1}

are individually fine, but must never be imported into the same
context.

Joe Hurd Composable Packages for Higher Order Logic Theories 10 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

A Language for Theories

The following theory language allows article files and theory
packages to be combined into a new theory:

theory ← article "filename";
| { theory* }
| local theory in theory
| interpret { interpretation* } in theory
| import package-instance;

Incompatible definition clashes are prevented by:

Limiting the scope of contexts using the local construct.
Renaming constant and type operators using interpret
blocks.

Joe Hurd Composable Packages for Higher Order Logic Theories 12 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example

Theory Package (hol-light-unit-def-2009.8.24)

name: hol-light-unit-def
version: 2009.8.24
description: HOL Light definition of the unit type.

theory { article "hol-light-unit-def.art"; }

Joe Hurd Composable Packages for Higher Order Logic Theories 13 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example

Theory Package Summary (hol-light-unit-def-2009.8.24)

input-types: -> bool

input-consts: ! /\ = ? T select

assumed:

|- T

{.} |- (!) P

{.} |- (?) P

{..} |- p /\ q

|- t = (t = T)

|- (?) = \P. P ((select) P)

defined-types: unit

defined-consts: one one_ABS one_REP

thms:

|- ?b. b

|- one = select x. T

|- (!a. one_ABS (one_REP a) = a) /\

!r. r = (one_REP (one_ABS r) = r)

Joe Hurd Composable Packages for Higher Order Logic Theories 14 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Design

Well-designed theory packages have:
1 A clear topic.

Example: Trigonometric functions.

2 A simple set of assumptions.

Satisfied by well-designed packages.

3 A carefully chosen set of theorems.

No junk.
A minimal interface if the package makes definitions.

4 No axioms.

No assumptions about defined constants/type operators.

Theory Engineering Challenge: Construct a standard library of
well-designed theory packages, available to all the HOL
theorem prover implementations.

Joe Hurd Composable Packages for Higher Order Logic Theories 15 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Dependencies

Problem: Complex theory dependencies can result in cycles in
the package dependency graph.

numfunction

Definition:
 injective, surjective

Definition:
 natural numbers

Theorem:
 Schroeder-Bernstein

Theorem:
 induction

Solution: Permit compilation theory packages which contain
previously loaded theory packages.

Joe Hurd Composable Packages for Higher Order Logic Theories 16 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Instances

An imported package-instance refers to a required theory
package, specified as a package-instance-spec :

package-instance-spec ← require package-instance {
import: package-instance∗

interpret: interpretation∗

package: package-name
}

A list of package-instance-specs specify a connection graph
between theory packages.

Each package-instance-spec may only import earlier
package-instance-specs, to ensure the absence of loops.

Joe Hurd Composable Packages for Higher Order Logic Theories 17 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Packages

We can now define the grammar for theory packages:

package ← tag∗

package-instance-spec∗

theory { theory }

Tags are package meta-data:

tag ← name: value

Joe Hurd Composable Packages for Higher Order Logic Theories 18 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example II

Theory Package (unit-def-1.0)

name: unit-def

version: 1.0

description: Definition of the unit type

require hol-light-aux {

package: hol-light-aux-2009.8.24

}

require hol-light-unit-def {

import: hol-light-aux

package: hol-light-unit-def-2009.8.24

}

require hol-light-unit-alt {

import: hol-light-aux

import: hol-light-unit-def

package: hol-light-unit-alt-2009.8.24

}

theory { import hol-light-unit-alt; }

Joe Hurd Composable Packages for Higher Order Logic Theories 19 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example II

Theory Package Summary (unit-def-1.0)

input-types: -> bool

input-consts: ! /\ = ==> ? T select

assumed:

|- !t. (\x. t x) = t

|- T = ((\p. p) = \p. p)

|- (!) = \P. P = \x. T

|- (==>) = \p q. (p /\ q) = p

|- !P x. P x ==> P ((select) P)

|- (/\) = \p q. (\f. f p q) = \f. f T T

|- (?) = \P. !q. (!x. P x ==> q) ==> q

defined-types: unit

defined-consts: one

thms:

|- !v. v = one

Joe Hurd Composable Packages for Higher Order Logic Theories 20 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Symbol Tables Considered Harmful

To make it easy to reason about theory package instances, we
would like package instantiation to be a pure function

package-instance-spec → Γ . ∆ .

Possible because the package management tool implements a
purely functional logical kernel (an idea of Freek Wiedijk).

Constants and type operators contain their definitions, instead
of being inserted in a symbol table, so definitions are
referentially transparent:

(let c = define φ in f c c) ≡ (f (define φ) (define φ))

Joe Hurd Composable Packages for Higher Order Logic Theories 22 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Efficient Sharing

Referential transparency means there is no difference in
functionality between instantiating a theory package multiple
times in the same way or instantiating it once and reusing.

However, there will likely be a big difference in performance
(article files are measured in megabytes).

Challenge: Detecting when two package-instance-specs would
result in the same theory.

The logical kernel similarly aims to share subterms as much as
possible, in computing free variables, substitutions, etc.

Joe Hurd Composable Packages for Higher Order Logic Theories 23 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Summary

This talk presented a language for combining and packaging
theories.

The next challenge: build the package management
infrastructure for people to contribute to building a standard
library of theories.

The project web page:

http://gilith.com/research/opentheory

Joe Hurd Composable Packages for Higher Order Logic Theories 25 / 27

http://gilith.com/
re
sear
ch/opentheory

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Package Instance Semantics

The concrete syntax for package-instance-spec evaluates to
the theory ⋃

Γi ∪
(

Γσ −
⋃

∆i

)
. ∆σ

where:

the imported package-instance-specs evaluate to Γi . ∆i ;
the interpretation rules are the renaming σ; and
the package-name is the theory Γ . ∆.

Joe Hurd Composable Packages for Higher Order Logic Theories 26 / 27

Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Semantics

Here is how the concrete syntax for theory is evaluated in a
context with theorems Φ and renaming σ:

[article "[Γ . ∆]";]Φ,σ = Γσ − Φ . ∆σ

[{ [] }]Φ,σ = ∅ . ∅
[{ θ1 :: θ2 }]Φ,σ = let Γ1 . ∆1 = [θ1]Φ,σ in

let Γ2 . ∆2 = [{ θ2 }]Φ∪∆1,σ
in

Γ1 ∪ Γ2 . ∆1 ∪∆2

[local θ1 in θ2]Φ,σ = let Γ1 . ∆1 = [θ1]Φ,σ in

let Γ2 . ∆2 = [θ2]Φ∪∆1,σ
in

Γ1 ∪ Γ2 . ∆2

[interpret { ρ } in θ]Φ,σ = [θ]Φ,σ◦ρ
[import [Γ . ∆];]Φ,σ = Γ . ∆

Note that importing a package-instance ignores the theory
context; its context is fixed by the package-instance-spec .

Joe Hurd Composable Packages for Higher Order Logic Theories 27 / 27

	Introduction
	Combining Theories
	Packaging Theories
	Implementation Notes
	Summary

