Composable Packages
for
Higher Order Logic Theories

Joe Hurd

Galois, Inc.
joe@galois.com

VERIFY Workshop
Wednesday 21 July 2010

galois

Joe Hurd Composable Packages for Higher Order Logic Theories 1/27

Talk Plan

@ Introduction
© Combining Theories
© Packaging Theories

@ Implementation Notes

© Summary

galois

Joe Hurd Composable Packages for Higher Order Logic Theories

Introduction
Motivation

@ Interactive theorem proving is growing up.
e The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
o The selL4 project recently completed a 20 man-year verification
of an operating system kernel in the Isabelle theorem prover.

@ There is a need for theory engineering techniques to support
these major verification efforts.
e Theory engineering is to proving as software engineering is to
programming.
e “Proving in the large.”

Joe Hurd Composable Packages for Higher Order Logic Theories 4 /27

Introduction

The OpenTheory Project

@ The goal of the OpenTheory project is to transfer the benefits
of package management to logical theories.!

@ The initial case study for the project is Church’s simple theory
of types, extended with Hindley-Milner style type variables.

e The logic implemented by HOL4, HOL Light and ProofPower.

@ By focusing on a concrete case study we aim to investigate
the issues surrounding:

e Designing theory languages portable across theorem prover
implementations.

e Discovering design techniques for reusable theories.

e Uploading, installing and upgrading theory packages from
online repositories.

e Building a standard theory library.

galois

!OpenTheory was started in 2004 with Rob Arthan.

Joe Hurd Composable Packages for Higher Order Logic Theories 5/27

Introduction

Theory Definition

Joe Hurd

@ A theory I' > A of higher order logic consists of:
@ A set [of assumption sequents.
@ A set A of theorem sequents.
© A formal proof that the theorems in A logically derive from
the assumptions in I,
@ Theories (including their proofs) can be directly represented as
OpenTheory article files.
o A format designed to simplify theory import and export for
theorem prover implementations.
@ This talk will present a language for building up from article
files to theory packages.
o We'll see toy case studies that demonstrate the concepts, but
the true test will be whether it scales up—watch this space!

galois

Composable Packages for Higher Order Logic Theories 6 /27

Combining Theories
Connecting Theories

@ Note that both the input assumptions and output theorems of
a theory are sequent sets.

@ We can therefore connect the output theorems of one theory
to satisfy the input assumptions of another:

B Dy

@ In this illustration, some theories have been connected
together to produce the compound theory

AUBUCCN > SU Couyr -

Joe Hurd Composable Packages for Higher Order Logic Theories 8 /27

Combining Theories
Theory Interpretations

@ A theory I > A can be instantiated in any context where the
assumptions [hold. This is called theory interpretation.

@ Example: The theory
{Fid = Xx. x} > {F Vx. id x = x}

can be applied in any context with a constant id having the
assumed property.

e Constants and type operators can be consistently renamed
(Fl>A)o = Top> Ao

allowing theories to be instantiated in even more contexts.

galois

Joe Hurd Composable Packages for Higher Order Logic Theories 9 /27

Combining Theories

What Can Go Wro

@ When connecting together theories, the connection graph
must not contain any loops!

e Theories are representations of proofs, which are directed
acyclic graphs.

@ In this aspect proofs are more like combinational circuits than
programs.

@ A set of theorems must not have incompatible definitions for
the same constant or type operator.

e Example: The two theories
Op>{c=0} and O {Fc=1}

are individually fine, but must never be imported into the same
context.

galois

Joe Hurd Composable Packages for Higher Order Logic Theories 10 / 27

Packaging Theories
A Language for Theories

@ The following theory language allows article files and theory
packages to be combined into a new theory:

{ theory* }
local theory in theory
interpret { interpretation* } in theory

theory <« article "filename";
| import package-instance;

@ Incompatible definition clashes are prevented by:

e Limiting the scope of contexts using the local construct.
e Renaming constant and type operators using interpret
blocks.

galois

Joe Hurd Composable Packages for Higher Order Logic Theories

Packaging Theories
Theory Package Example

Theory Package (hol-light-unit-def-2009.8.24)

name: hol-light-unit-def
version: 2009.8.24
description: HOL Light definition of the unit type.

theory { article "hol-light-unit-def.art"; }

galois

Joe Hurd Composable Packages for Higher Order Logic Theories 13 /27

Packaging Theories
Theory Package Example

Theory Package Summary (hol-light-unit-def-2009.8.24)

input-types: -> bool

input-consts: ! /\ = ? T select
assumed:

|- T

{rI-@MepP

{3 I-@® P

{.} I-p/\ q

-t =(t=17

|- (?) = \P. P ((select) P)
defined-types: unit
defined-consts: one one_ABS one_REP
thms:

|- ?b. b

|- one = select x. T

|- ('a. one_ABS (one_REP a) = a) /\

Ir. r = (one_REP (one_ABS r) = r)

Joe Hurd Composable Packages for Higher Order Logic Theories

Packaging Theories
Theory Package Design

@ Well-designed theory packages have:
@ A clear topic.
e Example: Trigonometric functions.
@ A simple set of assumptions.
o Satisfied by well-designed packages.
© A carefully chosen set of theorems.

@ No junk.
@ A minimal interface if the package makes definitions.

@ No axioms.
@ No assumptions about defined constants/type operators.

@ Theory Engineering Challenge: Construct a standard library of
well-designed theory packages, available to all the HOL
theorem prover implementations.

galois

Joe Hurd Composable Packages for Higher Order Logic Theories

Packaging Theories

Theory Dependencies

@ Problem: Complex theory dependencies can result in cycles in
the package dependency graph.

function num
Theorem: L Theorem:
Schroeder-Bernstein | induction
A A
Definition: o | Definition:
injective, surjective | natural numbers

@ Solution: Permit compilation theory packages which contain
previously loaded theory packages.

galois

Joe Hurd Composable Packages for Higher Order Logic Theories 16 / 27

Packaging Theories
Theory Package Instances

@ An imported package-instance refers to a required theory
package, specified as a package-instance-spec:

package-instance-spec <+ require package-instance {
import: package-instance*
interpret: interpretation®
package: package-name

}

@ A list of package-instance-specs specify a connection graph
between theory packages.

@ Each package-instance-spec may only import earlier
package-instance-specs, to ensure the absence of loops.

galois

Joe Hurd Composable Packages for Higher Order Logic Theories 17 /27

Packaging Theories
Theory Packages

@ We can now define the grammar for theory packages:
package <« tag*

package-instance-spec™

theory { theory }

@ Tags are package meta-data:

tag <« name: value

Joe Hurd Composable Packages for Higher Order Logic Theories

Packaging Theories

Theory Package Example Il

Theory Package (unit-def-1.

name: unit-def
version: 1.0
description: Definition of the unit type

require hol-light-aux {
package: hol-light-aux-2009.8.24
}

require hol-light-unit-def {

import: hol-light-aux

package: hol-light-unit-def-2009.8.24
}

require hol-light-unit-alt {

import: hol-light-aux

import: hol-light-unit-def

package: hol-light-unit-alt-2009.8.24
}

theory { import hol-light-unit-alt; } i S

Joe Hurd Composable Packages for Higher Order Logic Theories

Packaging Theories
Theory Package Example Il

Theory Package Summary (unit-def-1.0)

input-types: -> bool
input-consts: ! /\ = ==> 7 T select
assumed:
[- 't. (\x. t x) =t
I-T=(\p. p) = \p. p)
|- (') =\P. P=\x.T
|- (==>) =\pq. (P /\q) =p
|- 'P x. P x ==> P ((select) P)
- (/\) =\pq. (\f. £fpqg) =\f. £TT
[- (?) = \P. !q. (!x. P x ==> qg) ==> q
defined-types: unit
defined-consts: one
thms:
|- 'v. v = one

Joe Hurd Composable Packages for Higher Order Logic Theories

Implementation Notes
Symbol Tables Considered Harmful

@ To make it easy to reason about theory package instances, we
would like package instantiation to be a pure function

package-instance-spec — I > A .

@ Possible because the package management tool implements a
purely functional logical kernel (an idea of Freek Wiedijk).

o Constants and type operators contain their definitions, instead
of being inserted in a symbol table, so definitions are
referentially transparent:

(let c = define ¢ in f c ¢) = (f (define ¢) (define ¢))

galois

Joe Hurd Composable Packages for Higher Order Logic Theories

Implementation Notes
Efficient Sharing

@ Referential transparency means there is no difference in
functionality between instantiating a theory package multiple
times in the same way or instantiating it once and reusing.

@ However, there will likely be a big difference in performance
(article files are measured in megabytes).

@ Challenge: Detecting when two package-instance-specs would
result in the same theory.

@ The logical kernel similarly aims to share subterms as much as
possible, in computing free variables, substitutions, etc.

galois

Joe Hurd Composable Packages for Higher Order Logic Theories 23 /27

Summary

@ This talk presented a language for combining and packaging
theories.

@ The next challenge: build the package management
infrastructure for people to contribute to building a standard
library of theories.

@ The project web page:
http://gilith.com/research/opentheory

Joe Hurd Composable Packages for Higher Order Logic Theories

http://gilith.com/
re
sear
ch/opentheory

Summary
Package Instance Semantics

@ The concrete syntax for package-instance-spec evaluates to

the theory
Uriu(re-Jai) » ac

where:

e the imported package-instance-specs evaluate to I'; > Aj;
e the interpretation rules are the renaming o; and
o the package-name is the theory I' > A.

Joe Hurd Composable Packages for Higher Order Logic Theories

Summary
Theory Semantics

@ Here is how the concrete syntax for theory is evaluated in a
context with theorems ® and renaming o:

[article "[I > A]";],, = To—® > Ac
{0Heo, = 0>0
[{ 01 :: 6 }](D’(7 = letl; > A1 = [91](1,’0 in

let T2 > Az =[{ 62 Houn, , in
Mulfa> AjUA,

[Llocal 6 in 92]4,70 = letli> Ay = [91]¢,a in
let F2 > Az = [02] 4 p, , iN
MUl > As
[interpret { p } in 9]4,7(7 = [0]¢,o'op
[import [I > Als], , N A

@ Note that importing a package-instance ignores the theory
context; its context is fixed by the package-instance-spec.
galois

Joe Hurd Composable Packages for Higher Order Logic Theories 27 /27

	Introduction
	Combining Theories
	Packaging Theories
	Implementation Notes
	Summary

