
Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Theory Engineering Using Composable Packages

Joe Leslie-Hurd

Intel Corp.
joe@gilith.com

SVARM & VMCAI
21 January 2013

Joe Leslie-Hurd Theory Engineering Using Composable Packages 1 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Theory Engineering

Interactive theorem proving is growing up.

The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
The seL4 project recently completed a 20 man-year verification
of an operating system kernel in the Isabelle theorem prover.

There is a need for theory engineering techniques to support
these major verification efforts.

Theory engineering is to proving as software engineering is to
programming.
Slogan: “Proving in the large.”

Joe Leslie-Hurd Theory Engineering Using Composable Packages 2 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Software Engineering for Theories

An incomplete list of software engineering techniques applicable to
the world of theories:

Standards: Programming languages, basis libraries.

Abstraction: Module systems to manage the namespace and
promote reuse.

Multi-Language: Tight/efficient (e.g., FFIs) to loose/flexible
(e.g., SOAs).

Distribution: Package repos with dependency tracking and
automatic installation.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 3 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

OpenTheory Project

In theory, mathematical proofs are immortal.

In practice, proofs that depend on theorem prover
implementations bit-rot at an alarming rate.

Idea: Archive proofs as theory packages.

The goal of the OpenTheory project is to transfer the benefits
of package management to logical theories.1

Slogan: “Logic is an ABI for mathematics.”

1OpenTheory was initiated in 2004 with Rob Arthan.
Joe Leslie-Hurd Theory Engineering Using Composable Packages 4 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Theory Definition

A theory Γ . ∆ of higher order logic consists of:
1 A set Γ of assumption sequents.
2 A set ∆ of theorem sequents.
3 A formal proof that the theorems in ∆ logically derive from

the assumptions in Γ.

This Talk: A common standard for packaging higher order
logic theories that allows us to:

Liberate theories from the theorem proving system in which
they were created.
Compose theories from different origins.
Process theories with a diverse array of tools.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 5 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Talk Plan

1 Proof Articles

2 Application: Sharing Proofs between Theorem Provers

3 Theory Packages

4 Application: Community Theory Development

5 Application: Synthesizing Verified Programs

6 Summary

Joe Leslie-Hurd Theory Engineering Using Composable Packages 6 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Anatomy of an Interactive Theorem Prover

Goals

Theorems*

Interactive theorem provers
are really high assurance
proof checkers.

Users set goals and invoke
automatic tactics to break
goals into subgoals.

Tactics generate pieces of
proof as a by-product of
breaking down goals.

*Made with mechanically extracted proof.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 8 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Theorem Provers in the LCF Design

A theorem Γ ` φ states “if all of
the hypotheses Γ are true, then so
is the conclusion φ”.

The novelty of Milner’s Edinburgh
LCF theorem prover was to make
theorem an abstract ML type.

Values of type theorem can only
be created by a small logical kernel
which implements the primitive
inference rules of the logic.

Soundness of the whole ML
theorem prover thus reduces to
soundness of the logical kernel.

HOL4 theorem prover ∼ the elephant
logical kernel ∼ the ball

Joe Leslie-Hurd Theory Engineering Using Composable Packages 9 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

The OpenTheory Logical Kernel

` t = t
refl t

{φ} ` φ
assume φ

Γ ` φ = ψ ∆ ` φ
Γ ∪∆ ` ψ

eqMp

Γ ` t = u

Γ ` (λv . t) = (λv . u)
absThm v

Γ ` f = g ∆ ` x = y

Γ ∪∆ ` f x = g y
appThm

Γ ` φ ∆ ` ψ
(Γ− {ψ}) ∪ (∆− {φ}) ` φ = ψ

deductAntisym
Γ ` φ

Γ[σ] ` φ[σ]
subst σ

` (λv . t) u = t[u/v]
betaConv ((λv . t) u)

` c = t
defineConst c t

` φ t

` abs (rep a) = a ` φ r = (rep (abs r) = r)
defineTypeOp n abs rep vs

Joe Leslie-Hurd Theory Engineering Using Composable Packages 10 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Proofs are (Stack-Based) Programs

The proof of theorems constructed using the OpenTheory
logical kernel can be represented by an article.

A proof article takes the form of a program for a stack-based
virtual machine.

The program consists of a sequence of commands for building
types and terms, and performing primitive inferences.
The stack avoids the need to store the whole proof in memory.

A dictionary is used to support structure sharing.

The article should preserve structure sharing as much as
possible to avoid a space blow-up.
Implementation Challenge: Structure-sharing substitution.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 11 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Article Commands

Article files consist of a sequence of commands, one per line.

Some commands such as var construct data to be used as
arguments in primitive inferences.

Definition (The “var” article command)
var

Pop a type ty; pop a name n; push a term variable v
with name n and type ty onto the stack.

Stack: Before: Type ty
:: Name n
:: stack

After: Var v
:: stack

Joe Leslie-Hurd Theory Engineering Using Composable Packages 12 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Article Primitive Inferences

There are commands implementing each primitive inference in
the OpenTheory logical kernel (e.g., refl).

Constants and type operators contain pointers to their
definitions, eliminating the need for a global symbol table.2

Definition (The “refl” article command)

refl

Pop a term t; push a theorem with no hypotheses

and conclusion t = t onto the stack.

Stack: Before: Term t
:: stack

After: Thm (` t = t)

:: stack

2An idea of Freek Wiedijk.
Joe Leslie-Hurd Theory Engineering Using Composable Packages 13 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Article Assumptions

The axiom command imports an assumption into the article.

The context supplies the assumption theorem (e.g., by
creating a new axiom).

Definition (The “axiom” article command)

axiom

Pop a term c; pop a list of terms [h1, . . . , hn];
push the theorem {h1, . . . , hn} ` c onto the stack

and add it to the article assumptions.

Stack: Before: Term c
:: List [Term h1, . . ., Term hn]

:: stack

After: Thm ({h1, . . . , hn} ` c)

:: stack

Joe Leslie-Hurd Theory Engineering Using Composable Packages 14 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Article Theorems

The thm command exports a theorem from the article.

The particular form eliminates any differences caused by
capture-avoiding substitution implementations.

Definition (The “thm” article command)

thm

Pop a term c; pop a list of terms [h1, . . . , hn]; pop

a theorem th; alpha-convert the theorem th to

{h1, . . . , hn} ` c and add it to the article theorems.

Stack: Before: Term c
:: List [Term h1, . . ., Term hn]

:: Thm th
:: stack

After: stack

Joe Leslie-Hurd Theory Engineering Using Composable Packages 15 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Example Proof Article

TINY EXAMPLE ARTICLE

#

Construct the hypothesis list

nil

Construct the conclusion term

"T"

const

"bool"

typeOp

nil

opType

constTerm

1

def

Import an assumption: ` T

axiom

Export a theorem: ` T

nil

1

remove

thm

Article commands are executed
by a stack-based virtual machine.

The result is a theory Γ . ∆:

Γ is the set of imported
assumptions.
∆ is the set of exported
theorems.

Theory (Tiny example result)

1 input type operator: bool

1 input constant: T

1 assumption:

` T

1 theorem:

` T

Joe Leslie-Hurd Theory Engineering Using Composable Packages 16 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Sharing Proofs between Theorem Provers

Aim: Share proofs between three interactive theorem provers
in the HOL family:

HOL4, HOL Light and ProofPower.

What do they have in common?
Theorem provers in the LCF design.
They implement the same higher order logic as the
OpenTheory logical kernel.3

What is different?
Contain different theories.
Implement different proof tools.

3The particular higher order logic is Church’s simple theory of types,
extended with Hindley-Milner style type variables.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 18 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Current Practice: Porting Proof Scripts

Porting theories between theorem provers is typically carried out by
manually porting proof scripts:

Code (Example HOL Light proof script)

let MODULAR_TO_NUM_DIV_BOUND = prove

(‘!x. modular_to_num x DIV modulus = 0‘,

GEN_TAC THEN

MATCH_MP_TAC DIV_LT THEN

REWRITE_TAC [MODULAR_TO_NUM_BOUND]);;

This is a labor-intensive process, and its success relies on the target
system containing similar proof tools and dependent theories.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 19 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Alternative: Proof Articles

Idea: Instead of porting the source proof script, execute the
script and record the generated primitive inference rules in the
form of proof articles.

Separates the concerns of proof search and proof storage:

Proof scripts often call proof tools that explore a search space.
Primitive inference proofs simply store the result of the search.

Benefit: Primitive inference proofs do not rely on any proof
tools, so are immune to bit-rot and can be read by any HOL
theorem prover.

Drawback: Primitive inference proofs are not human
readable, so theories should be packaged only when they are
stable enough to be archived and shared.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 20 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Proof Standardization

To share proof articles extracted from a theorem prover, we must
standardize them to remove implementation-dependent data.

We used the following techniques to standardize HOL Light proofs:

1 Mapping HOL Light names of type operators and constants
into the OpenTheory standard namespace.

2 Compiling HOL Light primitive inference rules to OpenTheory.

e.g., expressing TRANS in terms of refl, appThm and eqMp.

3 Removing HOL Light term tags.

e.g., post-processing proofs to rewrite NUMERAL t → t.

Such techniques need to be invertible to import standardized
proofs into HOL Light.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 21 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Compressing Articles

To test the article format, we instrumented HOL Light v2.20
to emit articles for all of the theory files in the distribution.

Challenge: Proofs fully expanded to primitive inferences
result in large article files.

Good News: Automatic compression techniques are effective
on proof articles:

The equivalent of hash-consing for types, terms and theorems.
Dead-inference elimination (garbage collector trick).

Bonus: These compression techniques have little effect on the
compression ratio (∼ 90%) of standard tools such as gzip.

Upshot: A compressed article storing all the HOL Light
theories contains 769,138 primitive inferences.

Further compressing with gzip results in a 18Mb file.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 22 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Cloud Tactics

The proof article format has been used to manually port
theories from HOL Light to HOL4.

The format can also be used to share proof tools between
theorem provers.4

Wrapping a theorem prover in a CGI script creates cloud
tactics available to any theorem prover in the HOL family.

In fact, the proof article format is simple enough that the CGI
script need not even contain a theorem prover.

Kumar wrote a standalone Haskell program to prove
equivalences between different number representations.

4Kumar and Hurd, Standalone Tactics Using OpenTheory, ITP 2012.
Joe Leslie-Hurd Theory Engineering Using Composable Packages 23 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Basic Theory Packages

A basic theory package just wraps a proof article with some
meta-data.

We depict theory packages Γ . ∆ as named proof boxes that
build up from an assumption set Γ to a theorem set ∆.

Theory (Basic theory package)

name: foo-thm

version: 1.0

author: Joe Leslie-Hurd <joe@gilith.com>

main {

article: "foo-thm.art"

}

theory theorems

foo-thm

theory assumptions

Joe Leslie-Hurd Theory Engineering Using Composable Packages 25 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Required Theory Packages

Theorems of required theories listed in a package must
collectively satisfy all theory assumptions.

In this way we can specify and check logical dependencies
between a collection of theory packages.

Theory (Required theories)

name: foo-thm

version: 1.0

author: JLH <joe@gilith.com>

requires: foo-def

requires: foo-lem

main {

article: "foo-thm.art"

}

foo-def foo-lem

foo-thm

Joe Leslie-Hurd Theory Engineering Using Composable Packages 26 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Checking Theory Dependencies

A theory package Γ . ∆ in a collection is up-to-date if it is
possible to prove all of its theorems ‘from scratch’.

This boils down to the following two conditions:
1 Every required theory package Γi . ∆i is up-to-date and

proves the theorem set Θi .
2 The theory Γ . ∆ can be imported into

⋃
i Θi , proving the

theorem set Θ.

Importing a theory Γ . ∆ into a theorem set Θ means:

replacing input symbols with defined symbols in Θ; and
satisfying all assumptions with theorems in Θ.

Proof articles can be imported into Θ while executing them.

Modify the typeOp, const and axiom commands to use Θ.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 27 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

What Can Go Wrong?

Circular Reasoning: Theory package dependency graphs
must not contain any loops!

Theory packages are representations of proofs, which are
directed acyclic graphs.

Inconsistent Definitions: The same constant or type
operator must not be defined in multiple required theory
packages.

Example: The two theories

∅ . {` c = 0} and ∅ . {` c = 1}

are individually fine, but must never be required by the same
theory package.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 28 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Nested Theory Packages

Theory (Nested theories)

name: foo

version: 1.0

author: JLH <joe@gilith.com>

def {

package: foo-def-1.0

}

lem {

package: foo-lem-1.0

}

thm {

import: def

import: lem

package: foo-thm-1.0

}

main {

import: thm

}

Theory packages can contain
nested theories.

Proofs of nested theories are
replayed, with optional
renaming of symbols.

foo

foo-def foo-lem

foo-thm

Joe Leslie-Hurd Theory Engineering Using Composable Packages 29 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Semantic Embeddings

Packaging theories as primitive inference rules solves the
problem of differences in theorem prover proof tools.

But how to deal with differences in the available theories?

To successfully port a theory from theorem prover context A
to B, we must find a semantic embedding A→ B mapping
type operators and constants in A to ones in B with
properties that are at least as logically strong.

We will need semantic embeddings from the core theories of
each theorem prover in the HOL family to the core theories of
the others.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 31 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Standard Theory Library

Instead of maintaining pairwise semantic embeddings, we take
the core theories and release a standard theory library of them
in OpenTheory format.

Distributes responsibility: each theorem prover maintains the
semantic embeddings to and from the standard theory library.

Serves as a published contract of interoperability:

“If your theory uses only the standard theory library, we
promise it will work on all of the supported theorem provers.”

Permits dynamic linking of proofs: theorems proved in the
standard theory library can be used by any theory.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 32 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Identifying Core Theories

By looking at the system documentation and source code for
HOL Light, HOL4 and ProofPower, we can identify a core set
of theories present in each theorem prover.

For the core theories, the semantic embeddings between the
theorem provers are just renamings of the type operators and
constants.

OpenTheory implements hierarchical namespaces for type
operators and constants to help avoid name clashes.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 33 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Standard Theories

The standard theory library lives inside the following namespace:

Data

Bool – The boolean type
List – List types
Option – Option types
Pair – Product types
Sum – Sum types
Unit – The unit type

Function – Theory of functions

Number

Natural – Natural numbers
Real – Real numbers

Set – Theory of sets

Relation – Theory of relations

Joe Leslie-Hurd Theory Engineering Using Composable Packages 34 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Construction Technique

We use the following procedure for converting standardized proofs
extracted from HOL Light into the standard theory library:

1 Create a basic theory package wrapping each emitted proof.

2 Create nested theory packages for higher-level topics, such as
bool or list.

3 Create a theory package called base which is a nesting of the
highest-level theory packages.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 35 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Axioms

It is standard practice in the higher order logic theorem
proving community to avoid axioms.

An exception is made for a small set of standard axioms that
are used to set up the basic theories of higher order logic.

The OpenTheory standard theory library is built on top of the
following three axioms:

1 Extensionality: ` ∀t. (λx . t x) = t
2 Choice: ` ∀p, x . p x =⇒ p (select p)
3 Infinity: ` ∃f : ind→ ind. injective f ∧ ¬surjective f

Joe Leslie-Hurd Theory Engineering Using Composable Packages 36 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Profiling the Standard Theory Library

The standard theory library
consists of:

139 theory packages

= 102 basic
+ 36 higher-level
+ 1 top-level base

3 axioms

6 defined type operators

64 defined constants

450 theorems

Primitive Inference Count
eqMp 55,209
subst 45,651
appThm 44,130
deductAntisym 28,625
refl 17,388
betaConv 8,035
absThm 7,765
assume 2,455
axiom 1,672
defineConst 119
defineTypeOp 9

Total 211,058

Joe Leslie-Hurd Theory Engineering Using Composable Packages 37 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Community Theory Development

The standard theory library is designed to be supported by all
theorem provers in the HOL family.

Therefore any theory that is built on top of the standard
theory library can be shared between HOL theorem provers.

We have implemented a web-based repository to support
community theory development.

Now: Allowing developers to upload packages and share them
with the community.
Soon: Automatically track logical dependencies between
theory versions.
Future: Searching through theories for relevant theorems.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 38 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Theory Repository Demo

Joe Leslie-Hurd Theory Engineering Using Composable Packages 39 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Theory Package Design

What makes a well-designed theory package contribution?
1 A clear topic (e.g., trigonometric functions).
2 All assumptions are satisfied by well-designed theory packages.
3 Any defined symbols are generally useful and occupy

descriptive slots in the hierarchical namespace.
4 A carefully chosen set of theorems (no junk, no free vars).

Note: None of these conditions can be automatically
checked—being well-designed is a matter of taste.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 40 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Packaging Verified Software

Using theory packages for verified software addresses many of the
logistical needs:

Distribution: Download software from repos, check the
proofs, and install on your local machine.

Versioning: Developers can release new versions of software,
obsolete packages can be marked.

Upgrade: Can statically guarantee that an upgrade will be
safe, so long as the required properties still hold of the new
version.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 42 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Formal Verification of Haskell Packages

Haskell is a functional programming language that is rapidly
growing in popularity.

Its package system makes it easy to reuse code.
There are 4,609 unique Haskell packages available at the
Hackage repo.

There is a well-known correspondance between higher order
logic functions and a pure subset of the Haskell language.5

Case Study: Verify higher order logic functions, then
automatically generate Haskell programs.

The synthesis tool operates at the package level: OpenTheory
packages to Haskell packages.

5Haftmann, From Higher-Order Logic to Haskell, PEPM 2010.
Joe Leslie-Hurd Theory Engineering Using Composable Packages 43 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Analyzing the Source OpenTheory Package

Consider a package haskell-foo with three nested theories:

haskell-foo

haskell-
foo-def

haskell-
foo-src

haskell-
foo-test

def: Defining Haskell structures in terms of verified functions.

src: Deriving computational forms for the Haskell structures.

test: Deriving executable properties of the Haskell structures.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 44 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Synthesizing a Haskell Package

The target Haskell package is synthesized from the source
OpenTheory package as follows:

1 The source code is generated by pretty-printing the
computational forms in the src nested package.

2 A QuickCheck test suite is generated from the executable
properties in the test nested package.

3 Most of the package meta-data is derived from the
OpenTheory package meta-data.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 45 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Synthesizing Haskell Package Build Dependencies

Problem: Generating the meta-data that describes the
acceptable version ranges of required Haskell packages.

Solution: Analyze the corresponding OpenTheory packages,
and select a set of version ranges for which the source
package is up-to-date.

“Bringing the benefits of logical theories back to software
engineering!”

Joe Leslie-Hurd Theory Engineering Using Composable Packages 46 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Verified Haskell Packages

The synthesis scheme
was tested on some
example packages.

They are all available
on Hackage.

Code (opentheory-prime)

build-depends:

base >= 4.0 && < 5.0,

random >= 1.0.1.1 && < 2.0,

QuickCheck

>= 2.4.0.1 && < 3.0,

opentheory-primitive

>= 1.0 && < 2.0,

opentheory >= 1.73 && <= 1.74

opentheory-primitive, QuickCheck, random, base

opentheory

opentheory-
parser

opentheory-
char

opentheory-
prime

Joe Leslie-Hurd Theory Engineering Using Composable Packages 47 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Summary

We presented a common standard for packaging higher order
logic theories, allowing them to be processed by diverse tools.

This capability was first used by theorem provers to share
theories and support community theory development.

But new proof-of-concept tools are being developed too:
standalone cloud tactics and verified program synthesizers.

The current challenge is to make theories easier to work with,
for example by automatically tracking their logical
dependencies and making their theorems searchable.

Joe Leslie-Hurd Theory Engineering Using Composable Packages 49 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Any Questions?

joe@gilith.com @gilith

gilith.com/research/opentheory

Joe Leslie-Hurd Theory Engineering Using Composable Packages 50 / 52

joe@gilith.com
@gilith
gilith.com/
re
sear
ch/opentheory

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Compressing the HOL Light Articles

HOL Light article gzip’ed compress gzip’ed
theory (Kb) ratio (Kb) ratio
num 1,820 12% 813 13%
arith 27,469 10% 7,548 13%
wf 29,277 11% 6,330 13%
calc num 3,922 9% 1,570 12%
normalizer 2,845 10% 688 13%
grobner 2,417 10% 748 13%
ind-types 10,625 11% 4,422 13%
list 12,368 12% 4,870 13%
realax 23,628 10% 7,989 13%
calc int 2,844 11% 861 13%
realarith 16,275 8% 4,684 12%
real 30,031 10% 9,346 13%
calc rat 2,555 11% 1,166 13%
int 40,617 8% 9,546 13%
sets 168,586 10% 30,315 13%
iter 207,324 8% 32,422 12%
cart 20,351 10% 3,632 13%
define 82,185 9% 16,409 13%

Joe Leslie-Hurd Theory Engineering Using Composable Packages 51 / 52

Proof Articles Sharing Proofs Theory Packages Community Theory Development Program Synthesis Summary

Profiling the Standard Theory Library

What if we compress the 139 theory packages into one giant proof?

Primitive Inference Count
eqMp 55,209
subst 45,651
appThm 44,130
deductAntisym 28,625
refl 17,388
betaConv 8,035
absThm 7,765
assume 2,455
axiom 1,672
defineConst 119
defineTypeOp 9

Total 211,058

Primitive Inference Count
eqMp 32,386
subst 27,949
appThm 27,796
deductAntisym 17,300
refl 9,332
absThm 6,313
betaConv 3,646
assume 1,169
defineConst 85
defineTypeOp 7
axiom 3

Total 125,986

Joe Leslie-Hurd Theory Engineering Using Composable Packages 52 / 52

	Proof Articles
	Application: Sharing Proofs between Theorem Provers
	Theory Packages
	Application: Community Theory Development
	Application: Synthesizing Verified Programs
	Summary

