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Software Security Evaluation

Evaluating the security of a program generally focuses on:

The attack surface (e.g., the interface to the user or network).
The critical data (e.g., crypto keys, database queries).

Typical Question: What are the possible effects of changes
at the attack surface on the critical data?

Answering this requires an understanding of how information
flows through the program.
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Information Flow Diagnostic Tool

Tight time constraints mean that evaluators often cannot look
at every line of the codebase.

Project Goal: Develop an interactive diagnostic tool that
allows an evaluator to scan for anomalies in the program
information flows.
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Information Flow and Security Properties

Many program security properties can be expressed in terms
of potential information flow between program variables.

Confidentiality:
√

There are no information flows from secret variables to public
variables.

Integrity:
√

There are no information flows from tainted variables to
critical variables.

Availability: ×
No way to specify that a flow must happen.
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Information Flow and Confidentiality

Use Case: Ensure Bell-La Padula properties hold for a cross
domain application.

Annotate: Program variables with their sensitivity level.

Check: There are no flows from higher sensitivity to lower
sensitivity variables.

Example:

Code (Confidentiality Bug)

void f() {
int k = get_secret_key();

publish_to_internet(k);

}
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Information Flow and Integrity

Use Case: Defend against SQL injection attacks.

Annotate: Tainted data variables; critical data variables; and
validation functions.

Check: All flows from tainted variables to critical variables go
through validation functions.

Example:

Code (Integrity Check Succeeds)

void f() {
int data = get_user_input();

data = validate_input(data);

query_sql_database(data);

}
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User Centered Design

“All tools are user interfaces” – Clark Dodsworth

Evaluator/Tool Workflow:
1 The evaluator seeds the analysis by annotating some program

variables as sensitive data or dangerous user input.
2 The tool uses the annotations to find candidate insecure

information flows.
3 The evaluator examines the flows, and removes false positives

by providing additional annotations so that the tool can make
a more precise analysis.

Tool Requirements:
1 Scalable analysis of program information flow.
2 Intuitive visualization of information flow in terms of source

code.
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Analysis Evidence

Evidence of Security Bugs: Insecure information flows are
presented as a sequence of assignments on the control flow.

False Positives: The evaluator uses the tool to browse the
insecure information flows, and adds annotations to eliminate
false positives.

Evidence of Assurance: The analysis computes an
conservative over-approximation of information flow on a
subset of the programming language.

False Negatives: The tool will emit a warning message when
the analysis detects that the program is outside of the
conservative subset, allowing the evaluator to assess the
residual risk.
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Static Analysis

Static analysis is a program verification technique that is
complementary to testing.

Testing works by executing the program and checking its
run-time behavior.
Static analysis works by examining the text of the program.

Driven by new techniques, static analysis tools have recently
made great improvements in scope.

Example 1: Modern type systems can check data integrity
properties of programs at compile time.
Example 2: Abstract intepretation techniques can find
memory problems such as buffer overflows or dangling pointers.
Example 3: The TERMINATOR tool developed by Microsoft
Research can find infinite loops in Windows device drivers that
would cause the OS to hang.
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Information Flow Static Analysis: Requirements

Evidence: Generating evidence of assurance relies on the
information flow static analysis being sound:

1 Define a sound static analysis on a simple flow language.
2 Implement a conservative translator from the target

programming language to the simple flow language.

Scalability: To help the static analysis scale up to realistically
sized codebases, we design it to be compositional.

Preserve function calls in the flow language.

Program Understanding: The analysis result must help an
evaluator understand how information flows through the
program source code.

Link each step in the analysis to the program source code.
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Information Flow Static Analysis of C Code

The following front end processing is performed to translate C
code to the flow language:

1 Preprocessing: The C preprocessor.
2 Parsing: The Haskell Language.C package.
3 Simplification: Normalizing expressions (like CIL).
4 Variable Classification: Special handling for address-taken

locals and dynamically allocated memory.
5 Pointer Analysis: Anderson’s algorithm replaces each indirect

reference with a set of direct references.

Key Property: The front end processing is conservative.

Every information flow in the C code is translated to an
information flow in the flow language.
Assumption: the C code is memory safe.
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The Flow Language

Variables
Global variables.
Local variables of a function.

Statements
Simple variable assignment v1 ← v2.
Function call v ← f (v1, . . . , vn).

Functions
Special local variables representing input arguments
$arg1,...,$argN and return value $ret.
A function contains a set of statements (flow insensitive).

Programs
A set of functions, including a distinguished main function
where execution begins.
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The Flow Language as a C Subset

Code (Example Program)

/* High global variables */

int high_in; int high_out;

/* Low global variables */

int low_in; int low_out;

int f(int x) { return x + 1; }

int main() {

high_in = 42;

low_in = 35;

high_out = f(high_in);

low_out = f(low_in);

return 0;

}
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Step 1/4: Compute Function Transformers

For a function f , the transformer Tf is the subset of global
variables and argument variables that can flow into the return
value.

Transformers can be efficiently computed by a bottom-up
traversal of the call graph (using Bourdoncle’s algorithm).

Analysis (Example Function Transformers)

Tf = {$arg1}
Tmain = ∅
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Step 2/4: Compute Function Contexts

For a function f , the context Cf is a mapping from each
argument of f to the subset of global variables that can flow
into the argument.

Contexts can be efficiently computed by a top-down traversal
of the call graph, starting with main (using Bourdoncle’s
algorithm and the transformers).

Analysis (Example Function Contexts)

Cf = $arg1 7→ {low in, high in}
Cmain = ∅
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Step 3/4: Compute Function Information Flow Graphs

For a function f , the information flow graph Gf is a directed
graph between global variables, where an edge x→ y indicates
that f enables a possible information flow from x to y.

The function information flow graphs can be efficiently
computed from the transformers and contexts.

Key Property: The information flow analysis is context
sensitive.

Analysis (Example Function Information Flow Graphs)

Gf = ∅
Gmain = {low in→ low out,

high in→ high out}
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Step 4/4: Compute Program Information Flow Graph

The program information flow graph G is a directed graph
between global variables, where an edge x → y indicates that
the program enables a possible information flow from x to y.

The program information flow graph is the union of all the
function information flow graphs Gf where f is reachable from
the main function.

Key Property: The information flow analysis is sound.

Analysis (Example Program Information Flow Graph)

G = {low in→ low out,
high in→ high out}
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Cift Architecture

The C Information Flow Tool (Cift) allows evaluators to examine
information flows in C code using a standard web browser.

Standard web 
browser

Haskell analysis 
server

C source 
files

Information flow
analysis

Web server HTTP JavaScript  
visualization

The architecture is designed to support multiple simultaneous users
browsing code and sharing annotations.
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Visualizing Information Flow

A program information flow consists of many assignments
distributed across the codebase:

Tracking a long information flow across source code involves
much tedious opening, closing and searching of files.

“Evaluating software is like frying 1,000 eggs”

A different visualization solution is needed.
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Right-Angle Fractal Call Trees
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Demo
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Restricting to Variables of Interest

Problem: A typical large program contains many variables V
in the program information flow graph: information overload.

Solution: Allow the user to specify a subset X ⊆ V of
interesting variables.

Remove the uninteresting global variables V − X from the
program information flow graph one by one.

When removing a variable v , an extra edge x → y must be
added between every pair of variables x , y satisfying x → v
and v → y .
This amounts to computing the transitive closure of the
program information flow graph on demand.

A first step towards information flow annotations.
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Emphasizing Call Tree Paths of Interest

Problem: Functions with too many function calls result in an
uninformative hairy spike (left graphic).

Solution: Emphasize function calls contributing to information
flows between variables of interest (right graphic).
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Open Source Benchmarks

All experiments were carried out on a MacBook Pro 2.2Ghz
Core 2 Duo with 4Gb of RAM, using GHC 6.12.1.

Analyzing the 67 KLoC C implementation of OpenSSH takes
1:53s of CPU time and consumes 1.6Gb of RAM.

Analyzing the 94 KLoC C implementation of the
SpiderMonkey JavaScript interpreter takes 6:49s of CPU time
and consumes 1.3Gb of RAM.
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Cift Development Plan

Milestones:
√

Develop an automatic information flow analysis that scales up
to realistic C codebases.

√
Develop a visualization technique for program information
flow that is grounded in the source code.

√
Implement a research prototype tool to examine information
flows in C programs.

→ Develop an annotation language for information flow
properties of C functions and variables.

→ Allow users to edit annotations through the browser interface
and see the resulting effects on the analysis.
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Future Plans

Extend the scope of the information flow analysis.

Supporting array sensitivity to distinguish the elements of an
array or cells in a memory block.
Adding flow sensitivity and a clobber analysis to detect failures
to sanitize confidential data after use.
Target LLVM to extend the analysis to C++/Ada/etc.

Support higher-level information flow specifications.

Derive program specifications from higher-level security
policies.
Track information flow across module and language barriers.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 31 / 32



Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Summary

This Talk: We have presented a research prototype static
analysis tool that an evaluator can use to visualize how
information flows through C programs.

Feedback Welcome: Please let us know what features you’d
like to see in a program understanding tool.

joe@galois.com
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