
Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Visualizing Information Flow through C Programs

Joe Hurd, Aaron Tomb and David Burke

Galois, Inc.
{joe,atomb,davidb}@galois.com

Systems Software Verification Workshop
7 October 2010

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 1 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Talk Plan

1 Introduction

2 Information Flow Analysis

3 C Information Flow Tool (Cift)

4 Summary

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 2 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Software Security Evaluation

Evaluating the security of a program generally focuses on:

The attack surface (e.g., the interface to the user or network).
The critical data (e.g., crypto keys, database queries).

Typical Question: What are the possible effects of changes
at the attack surface on the critical data?

Answering this requires an understanding of how information
flows through the program.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 4 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Information Flow Diagnostic Tool

Tight time constraints mean that evaluators often cannot look
at every line of the codebase.

Project Goal: Develop an interactive diagnostic tool that
allows an evaluator to scan for anomalies in the program
information flows.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 5 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Information Flow and Security Properties

Many program security properties can be expressed in terms
of potential information flow between program variables.

Confidentiality:
√

There are no information flows from secret variables to public
variables.

Integrity:
√

There are no information flows from tainted variables to
critical variables.

Availability: ×
No way to specify that a flow must happen.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 6 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Information Flow and Confidentiality

Use Case: Ensure Bell-La Padula properties hold for a cross
domain application.

Annotate: Program variables with their sensitivity level.

Check: There are no flows from higher sensitivity to lower
sensitivity variables.

Example:

Code (Confidentiality Bug)

void f() {
int k = get_secret_key();

publish_to_internet(k);

}

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 7 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Information Flow and Integrity

Use Case: Defend against SQL injection attacks.

Annotate: Tainted data variables; critical data variables; and
validation functions.

Check: All flows from tainted variables to critical variables go
through validation functions.

Example:

Code (Integrity Check Succeeds)

void f() {
int data = get_user_input();

data = validate_input(data);

query_sql_database(data);

}

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 8 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

User Centered Design

“All tools are user interfaces” – Clark Dodsworth

Evaluator/Tool Workflow:
1 The evaluator seeds the analysis by annotating some program

variables as sensitive data or dangerous user input.
2 The tool uses the annotations to find candidate insecure

information flows.
3 The evaluator examines the flows, and removes false positives

by providing additional annotations so that the tool can make
a more precise analysis.

Tool Requirements:
1 Scalable analysis of program information flow.
2 Intuitive visualization of information flow in terms of source

code.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 9 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Analysis Evidence

Evidence of Security Bugs: Insecure information flows are
presented as a sequence of assignments on the control flow.

False Positives: The evaluator uses the tool to browse the
insecure information flows, and adds annotations to eliminate
false positives.

Evidence of Assurance: The analysis computes an
conservative over-approximation of information flow on a
subset of the programming language.

False Negatives: The tool will emit a warning message when
the analysis detects that the program is outside of the
conservative subset, allowing the evaluator to assess the
residual risk.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 10 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Static Analysis

Static analysis is a program verification technique that is
complementary to testing.

Testing works by executing the program and checking its
run-time behavior.
Static analysis works by examining the text of the program.

Driven by new techniques, static analysis tools have recently
made great improvements in scope.

Example 1: Modern type systems can check data integrity
properties of programs at compile time.
Example 2: Abstract intepretation techniques can find
memory problems such as buffer overflows or dangling pointers.
Example 3: The TERMINATOR tool developed by Microsoft
Research can find infinite loops in Windows device drivers that
would cause the OS to hang.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 12 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Information Flow Static Analysis: Requirements

Evidence: Generating evidence of assurance relies on the
information flow static analysis being sound:

1 Define a sound static analysis on a simple flow language.
2 Implement a conservative translator from the target

programming language to the simple flow language.

Scalability: To help the static analysis scale up to realistically
sized codebases, we design it to be compositional.

Preserve function calls in the flow language.

Program Understanding: The analysis result must help an
evaluator understand how information flows through the
program source code.

Link each step in the analysis to the program source code.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 13 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Information Flow Static Analysis of C Code

The following front end processing is performed to translate C
code to the flow language:

1 Preprocessing: The C preprocessor.
2 Parsing: The Haskell Language.C package.
3 Simplification: Normalizing expressions (like CIL).
4 Variable Classification: Special handling for address-taken

locals and dynamically allocated memory.
5 Pointer Analysis: Anderson’s algorithm replaces each indirect

reference with a set of direct references.

Key Property: The front end processing is conservative.

Every information flow in the C code is translated to an
information flow in the flow language.
Assumption: the C code is memory safe.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 14 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

The Flow Language

Variables
Global variables.
Local variables of a function.

Statements
Simple variable assignment v1 ← v2.
Function call v ← f (v1, . . . , vn).

Functions
Special local variables representing input arguments
$arg1,...,$argN and return value $ret.
A function contains a set of statements (flow insensitive).

Programs
A set of functions, including a distinguished main function
where execution begins.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 15 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

The Flow Language as a C Subset

Code (Example Program)

/* High global variables */

int high_in; int high_out;

/* Low global variables */

int low_in; int low_out;

int f(int x) { return x + 1; }

int main() {

high_in = 42;

low_in = 35;

high_out = f(high_in);

low_out = f(low_in);

return 0;

}

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 16 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Step 1/4: Compute Function Transformers

For a function f , the transformer Tf is the subset of global
variables and argument variables that can flow into the return
value.

Transformers can be efficiently computed by a bottom-up
traversal of the call graph (using Bourdoncle’s algorithm).

Analysis (Example Function Transformers)

Tf = {$arg1}
Tmain = ∅

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 17 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Step 2/4: Compute Function Contexts

For a function f , the context Cf is a mapping from each
argument of f to the subset of global variables that can flow
into the argument.

Contexts can be efficiently computed by a top-down traversal
of the call graph, starting with main (using Bourdoncle’s
algorithm and the transformers).

Analysis (Example Function Contexts)

Cf = $arg1 7→ {low in, high in}
Cmain = ∅

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 18 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Step 3/4: Compute Function Information Flow Graphs

For a function f , the information flow graph Gf is a directed
graph between global variables, where an edge x→ y indicates
that f enables a possible information flow from x to y.

The function information flow graphs can be efficiently
computed from the transformers and contexts.

Key Property: The information flow analysis is context
sensitive.

Analysis (Example Function Information Flow Graphs)

Gf = ∅
Gmain = {low in→ low out,

high in→ high out}

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 19 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Step 4/4: Compute Program Information Flow Graph

The program information flow graph G is a directed graph
between global variables, where an edge x → y indicates that
the program enables a possible information flow from x to y.

The program information flow graph is the union of all the
function information flow graphs Gf where f is reachable from
the main function.

Key Property: The information flow analysis is sound.

Analysis (Example Program Information Flow Graph)

G = {low in→ low out,
high in→ high out}

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 20 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Cift Architecture

The C Information Flow Tool (Cift) allows evaluators to examine
information flows in C code using a standard web browser.

Standard web
browser

Haskell analysis
server

C source
files

Information flow
analysis

Web server HTTP JavaScript
visualization

The architecture is designed to support multiple simultaneous users
browsing code and sharing annotations.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 22 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Visualizing Information Flow

A program information flow consists of many assignments
distributed across the codebase:

Tracking a long information flow across source code involves
much tedious opening, closing and searching of files.

“Evaluating software is like frying 1,000 eggs”

A different visualization solution is needed.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 23 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Right-Angle Fractal Call Trees

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 24 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Demo

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 25 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Restricting to Variables of Interest

Problem: A typical large program contains many variables V
in the program information flow graph: information overload.

Solution: Allow the user to specify a subset X ⊆ V of
interesting variables.

Remove the uninteresting global variables V − X from the
program information flow graph one by one.

When removing a variable v , an extra edge x → y must be
added between every pair of variables x , y satisfying x → v
and v → y .
This amounts to computing the transitive closure of the
program information flow graph on demand.

A first step towards information flow annotations.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 26 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Emphasizing Call Tree Paths of Interest

Problem: Functions with too many function calls result in an
uninformative hairy spike (left graphic).

Solution: Emphasize function calls contributing to information
flows between variables of interest (right graphic).

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 27 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Open Source Benchmarks

All experiments were carried out on a MacBook Pro 2.2Ghz
Core 2 Duo with 4Gb of RAM, using GHC 6.12.1.

Analyzing the 67 KLoC C implementation of OpenSSH takes
1:53s of CPU time and consumes 1.6Gb of RAM.

Analyzing the 94 KLoC C implementation of the
SpiderMonkey JavaScript interpreter takes 6:49s of CPU time
and consumes 1.3Gb of RAM.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 28 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Cift Development Plan

Milestones:
√

Develop an automatic information flow analysis that scales up
to realistic C codebases.

√
Develop a visualization technique for program information
flow that is grounded in the source code.

√
Implement a research prototype tool to examine information
flows in C programs.

→ Develop an annotation language for information flow
properties of C functions and variables.

→ Allow users to edit annotations through the browser interface
and see the resulting effects on the analysis.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 30 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Future Plans

Extend the scope of the information flow analysis.

Supporting array sensitivity to distinguish the elements of an
array or cells in a memory block.
Adding flow sensitivity and a clobber analysis to detect failures
to sanitize confidential data after use.
Target LLVM to extend the analysis to C++/Ada/etc.

Support higher-level information flow specifications.

Derive program specifications from higher-level security
policies.
Track information flow across module and language barriers.

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 31 / 32

Introduction Information Flow Analysis C Information Flow Tool (Cift) Summary

Summary

This Talk: We have presented a research prototype static
analysis tool that an evaluator can use to visualize how
information flows through C programs.

Feedback Welcome: Please let us know what features you’d
like to see in a program understanding tool.

joe@galois.com

Joe Hurd, Aaron Tomb and David Burke Visualizing Information Flow through C Programs 32 / 32

	Introduction
	Information Flow Analysis
	C Information Flow Tool (Cift)
	Summary

