
Verification of the Miller-Rabin Probabilistic Primality Test 1

Verification of the Miller-Rabin

Probabilistic Primality Test

Joe Hurd

University of Cambridge

1. Introduction

2. Computational Number Theory

3. Probabilistic Algorithms

4. Defining the Miller-Rabin Test

5. Extraction to ML

6. Conclusion

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 2

HOL on 1 Slide

We use the HOL theorem-prover, which is

programmed in ML and implements higher-order

logic. The terms of the logic are terms of Church’s

simply-typed lambda calculus (with Hindley-Milner

polymorphism). Don’t panic: most of our terms could

be written in first-order logic.

The usual style of development in HOL is definitional

extension, which means just making definitions and

proving theorems. We never extend the initial

axioms and rules of inference of the logic, and these

remain the only way to create ML values of type

theorem.

We can write arbitrary programs in ML to package up

typical patterns of reasoning (tactics do this), but

ultimately they must create theorems using the initial

axioms and rules of inference. This is called

fully-expansive proof.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 3

Introduction

We define in HOL a probabilistic function

miller rabin and prove the following two properties

of it:

` ∀n, t, s.
prime n ⇒
fst (miller rabin n t s) = >

` ∀n, t.
¬(prime n) ⇒
1− 2−t ≤ P {s : fst (miller rabin n t s) = ⊥}

The Miller-Rabin algorithm is a probabilistic

primality test, used by commercial software such

as Mathematica.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 4

Computational Number Theory

Let’s plunge in and define an auxiliary function in

higher-order logic:

` ∀n.
factor twos n =

if 0 < n ∧ even n then

let (r, s)← factor twos (n div 2)

in (suc r, s)

else (0, n)

The HOL recursive definition package (called

TFL) requires the user to prove the definition is

well-formed (i.e., the function terminates), and

behind the scenes makes a constant definition

factor twos = · · · and derives the above theorem.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 5

Computational Number Theory

Here’s a HOL function to efficiently calculate

modular exponentiations:

` ∀n, a, b.
modexp n a b =

if b = 0 then 1

else

let r ← modexp n a (b div 2)

in let r2 ← (r2 mod n)

in if even b then r2 else (r2a mod n)

This uses repeated squaring, and requires O(log b)

modular multiplications. The naive alternative of

calculating ab and then reducing modulo n is

infeasible for large a, b, n.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 6

Computational Number Theory

Here are the correctness theorems for the two

auxiliary functions, derived from their definitions

using the HOL rules of inference:

` ∀n, r, s.
0 < n ⇒
(factor twos n = (r, s) ⇐⇒ odd s ∧ 2rs = n)

` ∀n, a, b.
1 < n ⇒ modexp n a b = (ab mod n)

Note the (non-obvious) side-conditions that have

appeared: verifying the functions in HOL has

made explicit their assumptions.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 7

Computational Number Theory

We next define a HOL function that inputs a

possible prime n and a base a, calls factor twos to

find r, s such that s is odd and 2rs = n− 1, then

uses modexp to calculate the sequence

(a20s mod n, a21s mod n, . . . , a2rs mod n)

This sequence provides two primality tests for n:

1. a2rs mod n = 1.

2. If a2js mod n = 1 for some 0 < j ≤ r, then

either a2j−1s mod n = 1 or

a2j−1s mod n = n− 1.

Test 1 is the Fermat Test, and it is used by PGP

to create public/private key pairs.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 8

Computational Number Theory

Here is the definition of the HOL function;

witness n a is true iff a is a ‘witness’ to the

compositeness of n (i.e., the sequence from a

causes n to fail one of the two primality tests).

` (∀n, a. witness tail n a 0 = a 6= 1) ∧
(∀n, a, r.

witness tail n a (suc r) =

let a′ ← (a2 mod n)

in if a′ = 1 then a 6= 1 ∧ a 6= n− 1

else witness tail n a′ r)

` ∀n, a.
witness n a =

let (r, s)← factor twos (n− 1)

in witness tail n (modexp n a s) r

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 9

Computational Number Theory

We can prove the following correctness theorem

for witness:

` ∀n, a.
0 < a < n ∧ witness n a ⇒ ¬(prime n)

This says that there will be no witnesses if n is a

prime: good! But how many witnesses will there

be if n is a composite?

If we just use the Fermat test, then there exist

Carmichael numbers (e.g., 561, 1729) that have

no witnesses except multiples of factors. Testing

these numbers for primality using the Fermat test

is just as hard as factoring them.

Are there Carmichael numbers for the

Miller-Rabin test?

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 10

Computational Number Theory

No. In fact, if n is composite then at least half of

all possible bases a are witnesses:

` ∀n.
1 < n ∧ odd n ∧ ¬(prime n) ⇒
n− 1 ≤ 2

∣∣{a : 0 < a < n ∧ witness n a}
∣∣

This means that picking bases a at random will

quickly lead to a witness if n is composite, which

forms the basis of the Miller-Rabin probabilistic

primality test.

But first, before we show how to model

probabilistic algorithms in HOL, how did we

formalize the above theorem?

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 11

Formalization

predicate_sets

groups

lists

orders

natural_number_polynomials

arithmetic

finite_groups

binomials

multiplicative_groupsreals

miller_rabin

probability

fundamental_theorem_arithmetic

abelian_groups

miller_rabin_ml

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 12

Probabilistic Algorithms

We define in HOL a type B∞ of infinite boolean

sequences, and model a probabilistic function

f : α→ β

with a corresponding deterministic function

F : α→ B∞ → β × B∞

This method of ‘passing around the

random-number generator’ is also used in pure

functional languages such as Haskell, and allows

an elegant formulation of probabilistic programs

in terms of state transforming monads:

unit x = λ s. (x, s)

bind f g = (λ (x, s). g x s) ◦ f

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 13

Probability Theory

We build upon Harrison’s construction of the real

numbers; adding ingredients from mathematical

measure theory to allow the essential concepts of

probability and independence to be defined.

We have formalized in HOL a theory of finite

probability, and proved results such as the

following theorem:

Thm: If a probabilistic program can be

constructed using our monadic primitives, then

the returned value is independent of the returned

sequence.

Note: the converse is not true: λ s. (s0 = s1, stl s)

This indicates how tricky independence can be.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 14

The Miller-Rabin Function

Most presentations of the Miller-Rabin in

algorithm textbooks assume a generator of

perfectly uniform random numbers in the range

{0, . . . , n− 1}, but this this cannot be

implemented by any terminating algorithm using

random bits (unless n is a power of 2).

Instead we define a HOL function that generates

numbers with an approximately uniform

distribution. We pass in an extra parameter t,

and the probability of uniform t n returning each

number in the range is within 2−t of 1/n.

n

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 15

The Miller-Rabin Function

How can we use our approximation function

uniform to define a Miller-Rabin function?

If we observe that 1 will never be a witness for

any n, then to find witnesses we can pick bases

from the subset {2, . . . , n− 1}. Now if we can

guarantee that the probability of picking each

element from this subset is at least 1/(n− 1),

then the probability that we pick a witness is still

at least (1/(n− 1))((n− 1)/2) = 1/2.

Using this observation relaxes the requirement for

perfectly uniform random numbers, allowing any

distribution that satisfies the lower bound.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 16

The Miller-Rabin Function

If we define the unif bound function (related to

the log2 function)

` ∀n.
unif bound n =

if n = 0 then 0 else suc (unif bound (n div 2))

then the desired lower bound can be achieved:

` ∀ t, n, k.
k < n ∧ 2(unif bound (n+ 1)) ≤ t ⇒
1/(n+ 1) ≤ P {s : fst (uniform t n s) = k}

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 17

The Miller-Rabin Function

Now we can define one iteration of the

Miller-Rabin probabilistic primality test:

` ∀n, s.
miller rabin 1 n s =

if n = 2 then (>, s)
else if (n = 1) ∨ even n then (⊥, s)
else

let (a, s′)←
uniform (2(unif bound (n− 1))) (n− 2) s

in (¬(witness n (a+ 2)), s′)

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 18

The Miller-Rabin Function

This satisfies the correctness theorems

` ∀n, s. prime n ⇒ fst (miller rabin 1 n s) = >
` ∀n.

¬(prime n) ⇒
1/2 ≤ P {s : fst (miller rabin 1 n s) = ⊥}

` ∀n. indep (miller rabin 1 n)

We now need to define the full Miller-Rabin

algorithm, which involves independently choosing

many bases and checking each one. The last

correctness theorem above will be critical for this.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 19

The Miller-Rabin Function

Instead of directly defining miller rabin, we make

one last generalization: the many monadic

operator.

` (∀ f. many f 0 = unit >) ∧
(∀ f, n.

many f (suc n) =

bind f (λx. if x then many f n else unit ⊥))

` ∀ f, n.
indep f ⇒
P {s : fst (many f n s)} = (P {s : fst (f s)})n

` ∀ f, n. indep f ⇒ indep (many f n)

Note that like many preserves independence, and

so can be used as a building block in more

complicated probabilistic programs.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 20

The Real Miller-Rabin Function

Finally, we may now define the function we want

` ∀n, t. miller rabin n t = many (miller rabin 1 n) t

and the desired properties from the introduction

follow immediately:

` ∀n, t, s.
prime n ⇒
fst (miller rabin n t s) = >

` ∀n, t.
¬(prime n) ⇒
1− 2−t ≤ P {s : fst (miller rabin n t s) = ⊥}

Now we have proved the implementation correct,

can we execute it?

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 21

Extraction to Standard ML

Yes! By extracting the function from HOL to ML,

but we must be careful to preserve the context in

which the function was verified.

1. How can we get a source of perfectly random

bits?

2. Our HOL algorithm uses arbitrarily large

natural numbers, but the default ML integer

type is signed and fixed width.

3. How can we avoid cut-and-paste errors in the

manual extraction from HOL to ML?

Even if we can adequately solve these component

problems, we still must test the resulting program

to find bugs at the interfaces.

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 22

Performance

l n El,n QC MR MR+

10 100000 74352 70262 70683 520

15 100000 82138 72438 80448 85

20 100000 86332 74311 85338 5

50 100000 94347 79480 94172 0

100 100000 97144 82258 97134 0

150 100000 98089 83401 98077 0

200 100000 98565 84370 98557 0

500 100000 99424 86262 99458 0

1000 100000 99712 87377 99716 0

1500 100000 99808 87935 99798 0

2000 100000 99856 88342 99852 0

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 23

Performance

l
Gen

time

QC

time

MR1

time

10 0.0004 0.0014 0.0028

15 0.0007 0.0017 0.0041

20 0.0009 0.0019 0.0054

50 0.0023 0.0034 0.0136

100 0.0068 0.0075 0.0370

150 0.0107 0.0112 0.0584

200 0.0157 0.0156 0.0844

500 0.0443 0.0416 0.2498

1000 0.0881 0.0976 0.7284

1500 0.1543 0.2164 1.7691

2000 0.3999 0.2843 4.2910

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 24

Performance

Graph of log(MR1 time) against log l.

Line of best fit is y = 1.32x− 9.24, so from our

experiments MR1 time is O(l1.32).

Cormen, Leiserson and Rivest prove it to be

asymptotically the same as modular

exponentiation (≈ O(l2 log l)).

Joe Hurd University of Cambridge



Verification of the Miller-Rabin Probabilistic Primality Test 25

Conclusions

We have demonstrated that our HOL probability

theory is powerful enough to formally specify and

verify the Miller-Rabin primality test, a

well-known and commercially used probabilistic

algorithm.

We showed how to implement the Miller-Rabin

algorithm using a generator of random bits

instead of perfect uniformly distributed random

numbers, while preserving correctness.

Finally, we extracted the Miller-Rabin algorithm

to Standard ML, making available to

programmers an implementation with a high

assurance of correctness.

Note: the full paper is available from my website:

http://www.cl.cam.ac.uk/~jeh1004

Joe Hurd University of Cambridge


