Verification of the Miller-Rabin Probabilistic Primality Test

Verification of the Miller-Rabin
Probabilistic Primality Test
Joe Hurd
University of Cambridge

. Introduction

. Computational Number Theory
. Probabilistic Algorithms

. Defining the Miller-Rabin Test
. Extraction to ML

. Conclusion

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

HOL on 1 Slide

We use the HOL theorem-prover, which is
programmed in ML and implements higher-order
logic. The terms of the logic are terms of Church’s
simply-typed lambda calculus (with Hindley-Milner
polymorphism). Don’t panic: most of our terms could

be written in first-order logic.

The usual style of development in HOL is definitional
extension, which means just making definitions and
proving theorems. We never extend the initial
axioms and rules of inference of the logic, and these
remain the only way to create ML values of type

theorem.

We can write arbitrary programs in ML to package up

typical patterns of reasoning (tactics do this), but

ultimately they must create theorems using the initial
axioms and rules of inference. This is called

fully-expansive proof.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Introduction

We define in HOL a probabilistic function
miller_rabin and prove the following two properties
of it:

= Vn,t,s.
primen =

fst (miller_rabinnts) =T
= Vn,t.

—(primen) =
1—27" <P{s:fst (miller_rabinnts) =1}

The Miller-Rabin algorithm is a probabilistic

primality test, used by commercial software such

as Mathematica.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Computational Number Theory

Let’s plunge in and define an auxiliary function in

higher-order logic:

Vn.
factor_twos n =
if 0 <n A evenn then
let (7, s) «— factor_twos (n div 2)
in (sucr,s)

else (0,n)

The HOL recursive definition package (called
TFL) requires the user to prove the definition is

well-formed (i.e., the function terminates), and

behind the scenes makes a constant definition
factor_twos = - - - and derives the above theorem.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Computational Number Theory

Here’s a HOL function to efficiently calculate

modular exponentiations:

= Vn,a,b.
modexp n a b =
if b=0 then 1
else

let 7 < modexp n a (bdiv 2)

in let 7o < (r° mod n)

in if even b then r2 else (r2a mod n)

This uses repeated squaring, and requires O(log b)
modular multiplications. The naive alternative of
calculating a® and then reducing modulo n is
infeasible for large a, b, n.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Computational Number Theory

Here are the correctness theorems for the two
auxiliary functions, derived from their definitions

using the HOL rules of inference:

F Vn,rs.
O<n =

(factor_twos n = (r,8) <= odd s A 2"s =n)

= Vn,a,b.

1 <n = modexpnab=(a”modn)

Note the (non-obvious) side-conditions that have
appeared: verifying the functions in HOL has
made explicit their assumptions.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Computational Number Theory

We next define a HOL function that inputs a
possible prime n and a base a, calls factor_twos to
find r, s such that s is odd and 2"s = n — 1, then
uses modexp to calculate the sequence

2! 2"

*mod n,...,a” * mod n)

0
(a** mod n,a

This sequence provides two primality tests for n:
1. a?* mod n = 1.

2. If a?’* mod n = 1 for some 0 < j < r, then
either a2 *modn = 1 or

j—1
a® Smodn=n—1.

Test 1 is the Fermat Test, and it is used by PGP
to create public/private key pairs.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Computational Number Theory

Here is the definition of the HOL function;
witness n a is true iff a is a ‘witness’ to the
compositeness of n (i.e., the sequence from a
causes n to fail one of the two primality tests).

= (Vn,a. witness_tailna0=a #1) A
(Vn,a,r.

witness_tail n a (suc r) =

let o’ «— (a® mod n)

inifa’'=1thena#1 A a#n—1

else witness_tail n a’)
~ Vn,a.
witness n a =
let (7, s) < factor_twos (n — 1)

in witness_tail n (modexpn a s) r

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Computational Number Theory

We can prove the following correctness theorem
for witness:

- Vn,a.

0<a<mn A witnessn a = —(primen)

This says that there will be no witnesses if n is a

prime: good! But how many witnesses will there

be if n is a composite?

If we just use the Fermat test, then there exist
Carmichael numbers (e.g., 561, 1729) that have
no witnesses except multiples of factors. Testing
these numbers for primality using the Fermat test

is just as hard as factoring them.

Are there Carmichael numbers for the
Miller-Rabin test?

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Computational Number Theory

No. In fact, if n is composite then at least half of

all possible bases a are witnesses:

= Vn.
l<n A oddn A —(primen) =

n—1<2|{a:0<a<n A witnessn a}|

This means that picking bases a at random will
quickly lead to a witness if n is composite, which
forms the basis of the Miller-Rabin probabilistic
primality test.

But first, before we show how to model
probabilistic algorithms in HOL, how did we
formalize the above theorem?

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Formalization

\

fundamental_theorem_arithmetic natural_number_polynomials finite_groups

predicate_sets

arithmetic groups

binomials

probability

abelian_groups

multiplicative_groups

\

miller

\
miller_rabin_ml

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Probabilistic Algorithms

We define in HOL a type B of infinite boolean

sequences, and model a probabilistic function

fra—p
with a corresponding deterministic function

F:a— B> — 3xB~®

This method of ‘passing around the
random-number generator’ is also used in pure
functional languages such as Haskell, and allows
an elegant formulation of probabilistic programs

in terms of state transforming monads:

unit x As. (x,8)

bind f g (A(m,5). gxs)of

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Probability Theory

We build upon Harrison’s construction of the real
numbers; adding ingredients from mathematical
measure theory to allow the essential concepts of

probability and independence to be defined.

We have formalized in HOL a theory of finite
probability, and proved results such as the

following theorem:

Thm: If a probabilistic program can be
constructed using our monadic primitives, then
the returned value is independent of the returned

sequence.

Note: the converse is not true: As. (sg = si,stl s)

This indicates how tricky independence can be.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

The Miller-Rabin Function

Most presentations of the Miller-Rabin in
algorithm textbooks assume a generator of
perfectly uniform random numbers in the range
{0,...,n — 1}, but this this cannot be
implemented by any terminating algorithm using
random bits (unless n is a power of 2).

Instead we define a HOL function that generates
numbers with an approximately uniform
distribution. We pass in an extra parameter ¢,
and the probability of uniform ¢ n returning each

number in the range is within 27* of 1/n.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

The Miller-Rabin Function

How can we use our approximation function

uniform to define a Miller-Rabin function?

If we observe that 1 will never be a witness for
any n, then to find witnesses we can pick bases
from the subset {2,...,n —1}. Now if we can

guarantee that the probability of picking each

element from this subset is at least 1/(n — 1),

then the probability that we pick a witness is still
at least (1/(n—1))((n—1)/2) =1/2.

Using this observation relaxes the requirement for
perfectly uniform random numbers, allowing any

distribution that satisfies the lower bound.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

The Miller-Rabin Function

If we define the unif_bound function (related to

the log, function)

F Vn.
unif _bound n =

if n =0 then 0 else suc (unif _bound (n div 2))

then the desired lower bound can be achieved:

- Vi, n,k.
k<n A 2(unif_bound (n+1)) <t =
1/(n+1) <P{s: fst (uniform t n s) = k}

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

The Miller-Rabin Function

Now we can define one iteration of the
Miller-Rabin probabilistic primality test:
- Vn,s.

miller_rabin_1 n s =

if n =2 then (T,s)

else if (n =1) V evenn then (L,s)

else

let (a,s’) «

uniform (2(unif _bound (n —1))) (n — 2) s

in (—(witness n (a + 2)), s’)

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

The Miller-Rabin Function

This satisfies the correctness theorems

- Vn,s. primen = fst (miller_rabin.1ns) =T
= Vn.

—(prime n) =

1/2 < P{s: fst (miller_rabin.1n s) = 1}
- Vn. indep (miller_rabin_1 n)

We now need to define the full Miller-Rabin

algorithm, which involves independently choosing

many bases and checking each one. The last

correctness theorem above will be critical for this.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

The Miller-Rabin Function

Instead of directly defining miller_rabin, we make

one last generalization: the many monadic
operator.

= (Vf.many fO=unit T) A
vV f,n.

many f (sucn) =

bind f (Az. if x then many f n else unit 1))
= V£, n.

indep f =

P{s:fst (many fns)} = (P{s:fst(fs)}H"
=V f,n.indep f = indep (many f n)

Note that like many preserves independence, and
so can be used as a building block in more

complicated probabilistic programs.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

The Real Miller-Rabin Function

Finally, we may now define the function we want

= Vn,t. miller_rabin n t = many (miller_rabin_1n) t

and the desired properties from the introduction

follow immediately:

= Vn,t,s.
primen =
fst (miller_rabinnt s) =T
= Vn,t.
—(primen) =
1—-27" <P{s:fst (miller_rabinnts) = 1}

Now we have proved the implementation correct,

can we execute it?

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Extraction to Standard ML

Yes! By extracting the function from HOL to ML,
but we must be careful to preserve the context in

which the function was verified.

1. How can we get a source of perfectly random
bits?

. Our HOL algorithm uses arbitrarily large
natural numbers, but the default ML integer
type is signed and fixed width.

. How can we avoid cut-and-paste errors in the
manual extraction from HOL to ML?

Even if we can adequately solve these component

problems, we still must test the resulting program

to find bugs at the interfaces.

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Performance

n
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000

0]
ot

o O O O O o o O O

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Performance

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Performance

Graph of log(MR; time) against log.

Line of best fit is y = 1.32x — 9.24, so from our
experiments MR, time is O(I1-32).

Cormen, Leiserson and Rivest prove it to be
asymptotically the same as modular

exponentiation (=~ O(I*logl)).

University of Cambridge

Verification of the Miller-Rabin Probabilistic Primality Test

Conclusions

We have demonstrated that our HOL probability

theory is powertul enough to formally specify and

verify the Miller-Rabin primality test, a

well-known and commercially used probabilistic
algorithm.

We showed how to implement the Miller-Rabin
algorithm using a generator of random bits
instead of perfect uniformly distributed random

numbers, while preserving correctness.

Finally, we extracted the Miller-Rabin algorithm
to Standard ML, making available to
programmers an implementation with a high

assurance of correctness.

Note: the full paper is available from my website:

http://www.cl.cam.ac.uk/~jeh1004

University of Cambridge

