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Abstract.

The article reports on our preliminary research activities towards the

verification of database transaction scripts. It gives a first order speci-

fication language for database transaction scripts and its accompanying

logic. The logic is expressed in terms of weakest pre-condition rules and

is quite simple and intuitive. The logic is sound, and, if the underlying

basic expression language is limited, specifications in our language are

decidable. Tables in a database are usually guarded by various integrity

constraints. At the moment the logic only supports single attribute pri-

mary key constraint. The language has been embedded in HOL theorem

prover. A verification case study on Student Entrance Test Application

is described.

1 Introduction

Many organizations, like banks and ministries, run mission critical data process-
ing applications that must be highly reliable. Unfortunately, however, in practice
there are only few organizations that seriously verify and test their code in order
to assure a certain level of quality. Moreover, programmers and managers do
not consider verification and testing to be as important as coding, and most of
the time they consider it as something you do if there is some time and budget
left. Programming languages also contribute to the fact that data processing
applications are not always as reliable as they should be. Modern database ap-
plications are built with high-level languages like PL/SQL, that, while providing
good abstraction, also offer lower level programming constructs for optimization.
Although, this means that performance can be improved, the resulting code de-
grades in reliability and readability, and the cost of debugging and maintenance

? Supported by the Menristek-RUTI II grant 2003-2005.
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can increase. In addition, most languages do not treat verification and valida-
tion (V&V) as an integral part of programming, which translates into the current
attitude of engineers and managers towards testing.

This paper discusses our ideas for a database transaction scripting language.
We consider a simple but still quite expressive database transaction scripting
language, which we will refer to as Lingu . Lingu is a light weight high level
language to program data transformations on databases. Optimization features,
usually present in other languages, are absent for example, Lingu does not have
arrays. This forces the programmers to keep their code abstract.

Even when compared to the abstract part of other languages, Lingu is small.
In Lingu we will not be able to write all kind of database constraints and op-
erations like those available in PL/SQL. For example, Lingu does not have a
String[32] type and the sort by modifier. However, Lingu should provide enough
expressibility to program a large class of useful data transformations. Keep-
ing the language small simplifies Lingu s internal logic and the verification of
Lingu programs.

The Lingu language and logic has been externally[1] embedded in the HOL
theorem prover[2]. This allows us to reason about a Lingu programs in the
HOL environment as well as the availability of an ML implementation of a
Lingu verification condition generator.

For illustration purposes, we have conducted a case study with a Student
Entrance Test (SET) application. Based on the positive results of this case study,
we believe that the Lingu , in the future, could contribute to more reliable
database applications.

The article is organized as follows. Section 2 and 3 summarize the Lingu scripting
and specification language, Section 4 summarizes the logic, Section 5 describes
the semantics. We will briefly discuss the soundness and decidability of the logic
in Section 6. A very brief possible optimization for the verification condition
generator is mentioned in Section 7. The case study is explained in Section 8 .
Section 9 briefly describes how the language is used on the case study as HOL
embedding. Section 10, finally, contains some discussions on related and future
work.

2 The Scripting Language

An example of a script is shown below:

Example 1. Lingu Code of Safe Module

safe ( HealthyAFormTab : AnswerFormTable,

SolutionsTab : SolutionTable,

MasterTab : RegistrationTable,

PassTab : RegistrationTable,

): Bool

var r : Bool;
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{

r := forall (0<=i /\ i < #d.PassTab)

(find r<-d.MasterTab

where r.ID = id found T otherwise F

/\

find r<-d.HealthyFormTab

where r.ID = id found T otherwise F

);

return r

}

Safe module is used to check and guarantee that the evaluation process of
answer forms will not pass a person that is illegal. Illegal term refers to a person
that does not take the test or is not officially registered in the examinee list.

A script starts with a header, consisting of the script’s name followed by a list
of formal parameters and their types. Formal parameters can only be of primitive
or record type. All parameters are passed by value. After the header, there is a
list of declarations of local variables, followed by a series of instructions4 enclosed
within brackets { }. The syntax of the possible instructions is given below.

Instr → skip

| V ar := Tpred

| if Bexpr then Instr else Instr

| {Instr; . . . ;Instr}
| V ar := SelectExpr

| insert Bexpr to V ar

| delete V ar from V ar where Tpred

| update V ar in V ar to BExpr where Tpred

SelectExpr → select V ars → Bexpr from DomainExpr where Tpred

V ars → V ar | (V ar, . . . , V ar)
DomainExpr → V ar | V ar × . . . × V ar

Note that Lingu does not have an imperative loop (in comparison, neither does
SQL without a PL extension). In this paper, we will not concern ourselves with
the question of how to efficiently implement Lingu . In principle, however, it
should map easily to SQL, of which many efficient implementations exist.

The notation t1× t2 in a select expressions stands for a full cartesian product
of t1 and t2.

In the above grammar, Tpred stands for a predicate over a table. The gram-
mar of Tpred is presented in the next section. Bexpr stands for a basic expres-
sion; it is an expression that only concerns values of primitive types and record
types. Available primitive types are limited to Bool, numerical types, and String.

4 Notice the use of instruction find which is not mentioned in the grammar. It is just
a syntactic sugar of ∃ in Tpred.
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Bexpr → Literal of primitive type

| Var of primitive or record type

| { AttributeName=Bexpr, . . . , AttributeName=Bexpr }
| Bexpr.AttributeName

| Bexpr = Bexpr

| Bexpr NumOp Bexpr

| Bexpr BoolOp Bexpr

| ¬Bexpr

| if Bexpr then Bexpr else Bexpr

Available numerical operators are limited to +,−, <,≤, >,≥, and multiplication
with constants. Available Boolean operators are ∧,∨,⇒.

3 The Specification Language

We will use Hoare triples to specify various properties that a Lingu script must
satisfy. The pre- and post-conditions of a Hoare triple are the aforementioned
table predicates Tpred, which are first order formulas over Bexpr:

Tpred → Bexpr (of Bool type)
| ∀Rvar::Tvar. Tpred

| ∃Rvar::Tvar. Tpred

| ¬Tpred

| Tpred BoolOp Tpred

Where, Rvar is a (bound) variable of a record type and Tvar is a variable of a
table type. A predicate ∀r::t. P means that all records r in the table t satisfies
P . The meaning of ∃r::t. P is analogous.

Some Additional Notation

We write r ∈ t to mean ∃r′::t. r′ = r. We write if P then Q else R to mean
(P ⇒ Q)∧ (¬P ⇒ R). We abbreviate ∀r::t. (∀s::t. P ) by ∀r, s::t. P . An example
of a script property is below:

{r ∈ t0 ∨ r ∈ tP} collectPass(n) {r ∈ t0 ∨ r ∈ tP}

which says that with respect to the tables t0 and tP , the script collectPass

can only move (or duplicate) records among them.

4 The Logic

Let U be a Lingu script. A specification for U can be expressed in terms of a
Hoare triple specification of U ’s instructions, with, when necessary, additional
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assignments to auxiliary variables. Consider a specification {P} S {Q} where S

is an instruction. As usual, wp S Q denotes the weakest pre-condition of S with
respect to Q. Since the language Lingu does not contain imperative loops nor
recursions, we can construct wp S Q. Consequently it is sufficient to prove that
P implies wp S Q.

For the first four kinds of instructions (i.e. skip, assignment to a variable of
a primitive or record type, conditional, and sequence) wp can be constructed in
the standard way.

The remaining Lingu instructions are called table instruction, because they
may change a table. These instructions behave as assignments in that they
change some rows in a table t.

Given a post-condition Q, the standard way of dealing with an assignment
t := e is to replace t in Q with e. In Lingu , however, we cannot do that
since the variable t can occur in a quantified expression, such as ∀r::t. P and
∃r::t. P (actually, this is the only way a variable of type table can occur in
a specification). We cannot replace t in those expressions with an arbitrary e

because Lingu ’s grammar requires that only a variable of a table type can
occur after ::. As we will see later in Section 6, this restriction has something
to do with the decidability of Lingu . The trick to get around this is to use a
notion of ’substitution’ that is a bit more complicated than usual and rewrite
t’s enclosing expression instead.

We will represent a ’substitution’ on t with a pair (t, π) where π is a function
that will replace t′s enclosing expression with something else. The function subst

below will recursively apply π on a given target Tpred.

Definition 1. Basic Substitution

subst (t, π) bexpr = bexpr

subst (t, π) (¬R) = ¬(subst (t, π) R)
subst (t, π) (R1 BoolOp R2) = (subst (t, π) R1) BoolOp (subst (t, π) R2)
subst (t, π) (∀r′::t. R) = π (∀r′::t. subst (t, π) R)
subst (t, π) (∃r′::t. R) = π (∃r′::t. subst (t, π) R)

and if t′ and t are not syntactically equal:

subst (t, π) (∀r′::t′. R) = (∀r′::t′. subst (t, π) R)
subst (t, π) (∃r′::t′. R) = (∀r′::t′. subst (t, π) R)

In Figure 1 we list the usual equations for constructing the wp of Lingu ’s table
instructions. We assume here that the target table has no constraint.

When the target table has integrity constraints calculating wp becomes more
complicated. First, let us take the convention that Lingu instructions will simply
perform a skip if it would otherwise cause a constraint on the target table to be
violated. For each table instruction S and a given target table t, we can formalize
what we call a safety condition, a condition under which S can be executed safely
without violating any constraint on t. Notice that for sophisticated constraints,
the formalization as a safety condition can be complicated and thus expensive to
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Definition 2.

wp (t := select (r) → e from u where P ) Q = subst (t, πS) Q
πS (∀r′::t. R) = (∀r::u. P ⇒ R[e/r′])
πS (∃r′::t. R) = (∃r::u. P ∧ R[e/r′])

Definition 3.

wp (t := select (r, s) → e from u × v where P ) Q = subst (t, πS2) Q
πS2 (∀r′::t. R) = (∀r::u. (∀s::v. P ⇒ R[e/r′]))
πS2 (∃r′::t. R) = (∃r::u. (∃s::v. P ∧ [e/r′])

Definition 4.

wp (insert r to t) Q = subst (t, πI) Q
πI (∀r′::t. R) = R[r/r′] ∧ (∀r′::t. R)
πI (∃r′::t. R) = R[r/r′] ∨ (∃r′::t. R)

Definition 5.

wp (delete r from t where P ) Q = subst (t, πD) Q
πD (∀r′::t. R) = (∀r′::t. ¬P [r′/r] ⇒ R)
πD (∃r′::t. R) = (∃r′::t. ¬P [r′/r] ∧ R)

Definition 6.

wp (update r in t to e where P ) Q = subst (t, πU ) Q
πU (∀r′::t. R) = (∀r::t. if P then R[e/r′] else R[r/r′])
πU (∃r′::t. R) = (∃r::t. (P ∧ R[e/r′]) ∨ (¬P ∧ R[r/r′]))

Fig. 1. wp of the table instructions when the target table has no constraint.

verify. In Section 7 we will discuss some conditions that can be checked statically
and from which we can infer whether a safety condition can be dropped, or at
least simplified.

In this paper we will only consider one sort of constraint: we will allow tables
to have a single attribute as its primary key. If K is an attribute of a table t, we
write K key t to mean that K is the primary key of t. Formally:

K key t = (∀r, r′::T. r.K = r′.K ⇒ r = r′) (1)

Note that this notion of primary key allows duplicate rows. It is necessarily to
catch the possible error of duplicate ID in the input data which happen in the
case study.

For every table t with primary key K which is manipulated by a script U ,
the pre-condition in the specification of U should be strengthened with K key t.

Only the delete instruction will not violate a primary key constraint, so we
do not have to change its wp equation. The other table instructions may violate
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such a constraint if they don’t skip. We alter their wp equations, as shown in
Figure 2. The equations in the figure assumes that the target table t has K as
its primary key.

Definition 7.

wp (t := select r → e from u where P ) Q = if SafeS

then subst (t, πS) Q
else Q

where

SafeS = (∀r, r′::u. P ∧ P [r′/r] ∧ (e.K = e[r′/r].K) ⇒ e = e[r′/r]))

Definition 8.

wp (t := select (r, s) → e from u × v where P ) Q = if SafeS2

then subst (t, πS2) Q
else Q

where

SafeS2 = (∀r, r′::u. (∀s, s′::v. P ∧ P [r′/r] ∧ (e.K = e[r′/r, s′/s].K)
⇒
e = e[r′/r, s′/s]))

Definition 9.

wp (insert r to t) Q = if SafeI then subst (t, πI) Q else Q
where

SafeI = (∀r′::t. r′.K 6= r.K)

Definition 10.

wp (update r in t to e where P ) Q = if SafeU then subst (t, πU ) Q else Q
where

SafeU = (∀r, r′::t. (P ∧ P [r′/r] ∧ (e.K = e[r′/r].K) ⇒ e = e[r′/r])
∨
(P ∧ ¬P [r′/r] ∧ (e.K = r′.K) ⇒ e = r′)
∨
(¬P ∧ P [r′/r] ∧ (r.K = e[r′/r].K) ⇒ r = e[r′/r])
∨
(¬P ∧ ¬P [r′/r] ∧ (r.K = r′.K) ⇒ r = r′))

Fig. 2. wp when the target table has a primary key constraint.

5 Semantics

We will use sets of records to express the semantic of tables. Consequently, the
semantics of quantified table predicates in terms of sets is straightforward:
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|[(∀r::t. P )]| = (∀r. r ∈ t ⇒ P ) (2)

|[(∃r::t. P )]| = (∃r. r ∈ t ∧ P ) (3)

The semantics of the Lingu instructions will be expressed in terms of a
standard simple command language (without table instructions).

It is sufficient to give the semantics of the Lingu table instructions, which
are given below. For a target table t that has primary key K, the definitions of
SafeS , SafeI , and SafeU can be found in Figure 2. If t has no primary key,
the Safe predicates are always true.

|[ t := select r → e from u where P ]|
=
if |[SafeS ]| then t := {e | r ∈ u ∧ P} else skip

(4)

|[insert r to t]| = if |[SafeI ]| then t := t ∪ {r} else skip (5)

|[delete r from t where P ]| = t := {r | r ∈ t ∧ ¬P} (6)

|[update r in t to e where P ]|
=
if |[SafeU ]| then t := {if P then e else r | r ∈ t} else skip

(7)

6 Soundness and Decidability

Theorem 1. Lingu Logic is Sound.

Proof: We only need to focus on the wp equations of the table instructions,
since these are non-standard. These equations can be quite straight forwardly
verified against the given semantic of Lingu .

Theorem 2. Lingu specifications are decidable.

Proof: Notice that the wp equations of Lingu in Figure 2 produce formulas
which are within the syntax of Tpred. Formulas from Tpred are first order
formulas over atoms of primitive types or record types. Tpred only allows records
to be compared for equality, which can be reduced to equalities on atoms of
primitive types. Atoms of string types can only be compared for equalities, which
is decidable. Atoms of numeric types can be compared using standard numeric
relations like < and ≤. These are decidable if we do not include multiplication
of variables. It explains why we restrict the expression on table expression as
mentioned in Section 4.
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7 Optimizations

Below we give some conditions that will allow the Safe predicates in the wp of
the table instructions to be dropped. The optimizations are limited to work on
a primary key constraint. More precisely, we assume the target table t has only
one constraint, namely one attribute K as its primary key.

1. update r in t to e where P is safe if e does not modify K.
2. update r in t to e where r = r′ is a single update. It affects only r′ (if it is in

t). This instruction is safe if ∀r::t. r 6= r′ ⇒ r.K 6= e.K.
3. t := select r → e from u where P is safe if K is also a primary key of u and

if e does not change its value.
4. t := select (r, s) → e from u × v where P such that e copies the value of K

from u. The instruction is safe if K is also a primary key of u. The situation
if e copies K from v is analogous.

8 Case Study

We will describe a case study to show how our ideas can be applied to a real
database application. We use the Student Entrance Test (SET) application as the
case study for Lingu development. It is a critical application that involves vast
collections of data, and thus heavily relies on database processing. And because
of its nature of importance, especially the examinees, then it is mandatory that
this SET application processes are fully verified.

SET in Indonesia is named SPMB[3], but for further discussion we will use
the term SET to avoid confusion. Computerized SET processing in Indonesia has
been held for about 45 years started from the early 60s. It has been an important
national annual event. For most of the high school students, this test result will
determine their future. Either they will be accepted to go to their preferred
prestigious university or get rejected. Lately, the number of forms to be evaluated
is on the magnitude of 300.000. The evaluation process takes approximately one
month until all result can be delivered. The evaluation result will be ranked and
placed on universities available seats.

During the evaluation process, a lot of things can happen with the forms
that will affect the outcome of its result. For example, it can happen that the
examinee writes the incorrect identity number or name on the form, or the
examinee forgot to submit all set of answer forms. When these things happen,
it can cause the test result to fail even though the answer is mostly correct.
Worse scenarios occur when the examinee writes a wrong identity number on
its form that turns out to be the identity number of another examinee. Both
candidates could then be automatically excluded from the evaluation. Cases like
these are the kind that we are trying to avoid by identifying it sooner and handle
it accordingly.

We believe that verifying the described SET application with Lingu can
significantly reduce the kind of errors as stated above. Verification of the appli-
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cation involves writing a specification that lays down the rules that the applica-
tion should obey. By giving strict specification, we can anticipate and investigate
potential problems that could degrade the credibility of SET’s results.

Currently, we have identified 7 potential problems that could arise in this
SET case study. We will use the term critical modules to refer to these potential
problem areas. It is by no means that the set of critical modules identified are
complete, but it is sufficient enough to show how far can Lingu automatically
verify this case study. The critical modules identified are: (1) answer evaluation,
(2) unknown id check, (3) double id check, (4) safeness check, (5) fairness check,
(6) completeness check, and (7) consistency check. In this paper we will show the
work on (4) safeness check as an example of verification on the critical modules.
The code can be seen in Example 1.

9 Embedding on HOL

We use our Lingu embedding in the HOL theorem prover [2] to help us verify
the Lingu code. The HOL code for check safeness critical module of Example 1
is shown below.

Example 2. HOL code of Safe Module

safe ( HealthyAFormTab : AnswerFormTable set,

SolutionsTab : SolutionTable set,

MasterTab : RegistrationTable set,

PassTab : RegistrationTable set,

val : bool

)

(dummy)

=

let val1 = forall PassTab

(\r. (exists MasterTab (\t. r.ID = t.ID))

/\

(exists HealthyAFormTab (\y. r.ID = y.ID)))

in

val ::= val1

Safe takes 5 arguments, HealthyAFormTab, SolutionsTab, MasterTab, PassTab,
and val. For all records on PassTab, if there exist a record on MasterTab that
have the same ID, and if there exist a record on HealthyAFormTab that have
the same ID, then the it will return a true value. This value is returned to be
compared with existing specification for this critical module.

The specification of check safeness critical module is shown below.

Example 3. Specification
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(* pre: *) (PassTab = {}) /\ (val = F),

(* script: *) safe(HealthyAFormTab,SolutionsTab,MasterTab,

PassTab,val)

(dummy),

(* post: *) val = forall PassTab

(\r. exists MasterTab (\t. r.ID = t.ID)

/\

exists HealthyAFormTab (\y. r.ID = y.ID))

This specification is a Hoare logic triplet, where the process is verified by
the precondition and postcondition defined by the user. The precondition of
this critical module is that the PassTab is in empty state, and the val value is
false. Then after the process is run, the expected postcondition is that the value
of val is true if for every records in PassTab has its clone on MasterTab and
HealthyAFormTab.

The specification above then will be solved by using HOL theorem prover.
The proof code for check safeness critical module is shown below.

Example 4. Proof Script

val cert_safe = certify (spec_safe, NORMALIZE_TAC [I_THM]

THEN PROVE_TAC [] );

The verification above uses normalization tactic with identity theorem which
basically unfolds some definitions and applies standard reduction. The resulted
formulas are solved by HOL theorem prover automatic theorem solver. The
above script generates a theorem which can be used as the certificate of the
proven module.

We have successfully test the other six critical modules with the same step
as sample above. The specifications are unique for each critical module, and the
verification steps are done with little or no modification from the verification
code shown on the sample. It is caused by the fact that we only use small and
simplified rules for the critical modules. Simplification is necessary to achieve
our current objective: showing how far Lingu verification can be done in an
automatically fashion.

10 Concluding remarks

10.1 Related Works

One of the earliest formal approaches to database application verification was
done by Barros [4]. It gives a complete description of a general method for the
specification of a relational database using Z. It also gives a description of a set
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of rules to translate such a Z specification into a relational DBMS called DBPL
implementation.

The work of Laleau and Mammar [5, 6] provides an approach that enables the
elaboration of an automatic prover dedicated to the refinement of B specification
into a relational database implementation. A set of generic refinement rules are
described that take into account both data and operations. The approach is
based on the strategy of proof reuse and on the specific characteristic of such
application.

The work of Locuratolo and her collaborators [7] deals with refinement for
object oriented database design.

10.2 Future Work

The logic as it is, only supports a very simple kind of table constraints. While it
is possible to formalize more sophisticated kinds of constraints, we believe it is
more useful to focus on identifying conditions, as in Section 7 that can lead to
the elimination, or at least simplification, of the corresponding safety conditions.

The certification as shown in Example 4 can be used for verification of proce-
dure call as part of modular verification. The snapshot version of the HOL code
(which is available by the authors) is capable to verify script with procedure call.
Complete description and reasoning on the matter is still in progress.

Validation will be an important concept in Lingu . A Lingu method can be
equipped with validation scripts. As the name suggests, these are scripts used
to test the class. It is a combination of formal verification and testing. The test
requires a built-in feature to generate random inputs and to report the test
results. The work on validation and random input generator are still in progress.

There is no Lingu compiler nor Lingu interpreter yet. The embedded code
of Lingu in the HOL environment can also be mechanized together with the
compiler which may bring an important topic of embedded verification in com-
pilation.
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Abstract. The paper describes an implementation in the HOL theo-
rem prover of the quantitative Temporal Logic (qTL) of Morgan and
McIver [18, 14]. qTL is a branching-time temporal logic suitable for rea-
soning about probabilistic nondeterministic systems. The interaction be-
tween probabilities and nondeterminism, which is generally very difficult
to reason about, is handled by interpreting the logic over real- rather than
boolean-valued functions. In the qTL framework many laws of standard
branching-time temporal logic generalize nicely giving access to a number
of logical tools for reasoning about quantitative aspects of randomized
algorithms.

1 Introduction

Randomization is very useful for improving algorithms’ efficiency and solving
problems where standard methods fail, but reasoning about randomized algo-
rithms is notoriously difficult. As a result the interest in the computer-aided
verification of randomized algorithms has been increasing, both in the model-
checking as well as in the theorem-proving communities. Recent work on using
theorem provers for such verifications includes Hurd et al.’s [9] mechanization in
HOL [5] of Morgan’s probabilistic Guarded Command Language (pGCL) [19] and
its associated program logic [21]. We extend this work with the mechanization
of the quantitative Temporal Logic (qTL) — the probabilistic generalization of
temporal logic — and its associated algebra [18, 14].

Our interest in the mechanization of qTL is several-fold. To start with,
pGCL and qTL provide a unified framework in which to model, specify tem-
poral properties of, and reason about probabilistic systems. The properties that
can be specified and verified are quantitative and thus very general. For example,
one can reason about “the probability that a walker eventually reaches a position
on the number line”; more generally one can reason about the expected value
of a random variable of interest when certain strategies for deciding whether
to continue executing the program are applied. That nondeterminism — the
mathematical notion underlying abstraction and refinement — is retained in
the framework makes it possible to work at various abstraction levels, including
at the level of program code. Moreover, nondeterminism’s ability to abstract
over probability distributions enables switching from quantitative to qualitative
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analyses, when one is interested in properties that hold with probability 1 [13].
Another useful application of qTL is provided by the relationship of its oper-
ators to McIver’s operators for reasoning about performance-related aspects of
probabilistic programs [16].

Our newly-mechanized qTL is suitable for both high-level analyses of prop-
erties of probabilistic programs, which may make use of the many algebraic laws
we verify for qTL, as well as for concrete verifications, which are supported by
the HOL interactive correctness tools built for pGCL programs [9].

In this paper we describe how qTL is implemented in HOL. Although we
briefly summarize qTL itself, we refer the reader to [14] for a thorough discussion
of it. In Sec. 2 we describe the probabilistic semantics and HOL theories [9] on
which the implementation of qTL builds. In Sec. 3 the syntax and semantics of
qTL is given. We then continue in Sec. 4 with showing the algebra of qTL which
supplies many useful properties for verification. A non-trivial result for (non-
homogeneous) random walkers satisfying certain properties is verified in Sec. 5.
Finally, we conclude with some remarks on the present state of computer-aided
verification for probabilistic programs in Sec. 6.

Notation: We use “.” for function application. x =̂ t denotes that x is defined as
t. We write α for a (fixed) underlying state space, and α for the set of discrete
probability distributions over α, where a probability distribution is a function
from α to the interval [0, 1] which is normalized to 1. Functions from α to the
non-negative reals are called expectations; they are ordered by lifting pointwise
the order ≤ on the reals — we denote the order on expectations by V. Given
two expectations A and B, they are equivalent, denoted A ≡ B, exactly when
A V B and B V A. Operations on expectations are pointwise liftings of those
on the reals. We write c for the constant function returning c for all states. cA
denotes c×A, where A is an expectation. If f is a probability distribution and A
is a measurable function then

∫

f
A denotes the expected value of A with respect

to f . When f is in α and A is an expectation, this reduces to
∑

s∈α(f.s)× (A.s)
(if defined). If pred is a predicate, then we write [pred] for the characteristic
function which takes states satisfying pred to 1, and to 0 otherwise.

2 Probabilistic Semantics

In this section we briefly describe the quantitative program logic [21, 14] — the
probabilistic semantics that has inspired the choice of semantics for qTL.

Unlike standard programs, probabilistic programs do not produce definite
final states — although any single execution of such a program will result in
the production of some specific state, which one in particular might well be
impossible to predict (if its computation is governed by some random event).
However over many executions the relative frequencies with which final states
occur will be correlated with the program’s known underlying random behavior.
For example executing the probabilistic choice

b := T 2/3⊕ b := F , (1)
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a large number of times results in roughly 2/3 of the executions setting b to T.
The language pGCL [19] — the Guarded Command Language [3] augmented

with the probabilistic choice construct mentioned above — and its associated
quantitative logic [14] were developed to express such programs and to derive
their probabilistic properties by extending the classical assertional style of pro-
gramming [20]. Programs in pGCL are modeled (operationally) as functions (or
transitions) which map initial states in α to (sets of) probability distributions
over final states — the program at (1) for instance operates over a state space
of size 2, and has a single transition which maps any initial state to a (sin-
gle) final distribution; we represent that distribution as a normalized function d,
evaluating to 2/3 when b = T and to 1/3 when b = F.

Since properties now involve numeric frequencies they are expressed via a
logic of (non-negative) real-valued functions, or expectations. For example the
property “the final value of b is T with probability 2/3” can be expressed as
∫

d
[b = T] ≡ 2/3 — the expected value of the function [b = T] with respect to d

evaluates to 2/3×1+1/3×0 = 2/3. However, direct appeal to the operational se-
mantics is often unwieldy — better is the equivalent transformer-style semantics
which is obtained by rationalizing the above calculation in terms of expectations
rather than transitions. The expectation [b = T] has been transformed to the
expectation 2/3 by the program (1) above so that they are in the relation “2/3 is
the expected value of [b = T] with respect to the program’s result distribution”.

More generally having access to real-valued functions makes it possible to
express many properties as “random variables” of interest, which for us are
synonymous with expectations. Then given a program P , an expectation A and
a state s ∈ α, we define wp.P.A.s to be the expected value of A with respect to
the result distribution of program P if executed initially from state s [14]. We
say that wp.P is the expectation transformer relative to P . In our example that
allows us to write

2/3 ≡ wp.(b := T 2/3⊕ b := F).[b = T] . (2)

In the case that nondeterminism1 is present, execution of P results in a set
of possible distributions and the definition of wp is modified to take account of
this — in fact wp.P.A.s may be defined so that it delivers either the least- or
greatest-expected value with respect to all distributions in the result set. Those
choices correspond respectively to a demonic or angelic resolution of the nonde-
terminism — which interpretation is used depends very much on the application.
Operationally such interpretations of nondeterminism can be justified by viewing
the underlying computation as a game — the agent responsible for resolving the
nondeterminism is trying to minimize/maximize the random variable of interest.

With the transformer approach it is possible to express temporal properties
of systems. For example, fixing the underlying computation to be the expecta-
tion transformer relative to the program at (1), the modal primitive next time
“◦” has a natural interpretation relative to an expectation, say [b = T] — the

1 Nondeterminism represents genuinely unquantifiable uncertainty in systems.
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intended interpretation of ◦[b = T] is “2/3”, and expresses as Eqn. 2 does, that
the probability of (b = T)’s holding after one execution step is 2/3. More gen-
erally, given an expectation transformer step, and an expectation A, ◦A is the
expected value of A when transformed as explained above by step.

Reachability properties can also be expressed, using while-loops. For example
since the following loop

do (b = F) → b := T 2/3⊕ b := F od ,

iterates as long as (b = F) holds, its termination probability is in fact the proba-
bility of eventually establishing (b = T) by repeatedly executing the probabilistic
choice. By a simple fact of probability theory this probability is 1. Although many
temporal properties can be expressed and reasoned about in the pGCL frame-
work, analysis of more complex temporal behavior requires the introduction of
an extra logical layer.

The quantitative Temporal Logic (qTL) [18, 14] — the probabilistic extension
of temporal logic — was developed to express such properties and provide a set
of logical tools to reason about them. The underlying computation is viewed
as an expectation transformer, as described above, and the temporal operators
eventually (3), always (2), and unless (�), are defined in terms of fixed points
over expectation transformers. We will set out the formal semantics in Sec. 3; in
the remainder of this section we describe the HOL theories of non-negative reals,
expectations and their transformers, which are the basis of the qTL theory.

2.1 Formalized Expectation Transformers

Non-negative reals have been formalized in HOL by Hurd et al. [9] as a type of
higher-order logic, called posreal. A nice feature of the theory is that the posreal

type also includes a constant ∞, which dominates other elements of the type
with respect to the natural order ≤ on posreal. The usual arithmetic operations
are defined over this type.

Expectations, formalized in HOL by Hurd et al., are functions of type:

(α)expect =̂ α → posreal .

where α, the type of the state space, is polymorphic and can be instantiated
to any type of higher-order logic. The order and operations on posreal are lifted
pointwise to operations on expectations. Since all expectations are bounded by ∞
the expectations form a complete partial order. In fact, the space of expectations
bounded by any constant expectation c forms a complete partial order, and fixed
points are well-defined for any monotonic function on such expectations.

We define some extra operations on expectations which are needed in the
probabilistic context; in Fig. 1 we name a few. These operations can be viewed
as generalizations of standard operations on predicates; however since we are
working in the more general context of the reals there might be several suitable
generalizations for each operation on predicates. For example, both “u” and
“&” are suitable, in different contexts, as generalizations of conjunction. The
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first sanity check when picking the operators is whether the truth tables are as
expected for standard predicates. The choice of the operators is fully-motivated
in [14].

A u B =̂ (λs • A.s min B.s) minimum
A t B =̂ (λs • A.s max B.s) maximum
¬A =̂ (λs • 1 − A.s) complement
A & B =̂ (λs • A.s + B.s − 1) conjunction
A −. B =̂ (λs • 1 − (A.s − B.s)) implication, V-adjoint of &
P ⇒ Q =̂ [P ⇒ Q] “standard” implication

A, B range over (α)expect; P, Q over standard (boolean-valued) predicates.
¬ binds tightest, whereas the order relations V,≡ weakest.
We will also use more general versions of some of the above operations, with β —
a scalar from posreal — substituted for 1. They can be viewed as scaling by β the
corresponding operation. Such operators will be denoted by say &β instead of &.

Fig. 1. Some operations on expectations.

Expectation transformers are functions from expectations to expectations:

(α)transformer =̂ (α)expect → (α)expect .

For us the interesting expectation transformers are those that determine the
wp-meaning of pGCL programs, that is, describe how pGCL commands trans-
form post-expectations into pre-expectations. For example, assignments induce
substitutions, and probabilistic choices average according to the specified prob-
abilities. We show in Fig. 2 the definitions for the straight-line commands; the
wp-semantics for the complete pGCL (including Boolean choice, and while-loops)
has been formalized in HOL by Hurd et al. [9].

We do not discuss the full semantics of pGCL here because the structure of
the wp-operator is not of importance in the development of the qTL theory.2,3

More important are the properties characterizing the wp-transformers, which
generalize Dijkstra’s healthiness conditions characterizing standard programs.
The healthiness conditions for demonic probabilistic transformers are shown in
Fig. 3; they are part of the HOL expectations theory formalized in HOL by Hurd
et al. [9]. Monotonicity, for example, ensures that the fixed-points (µX • t.X)
(least), and (νX • t.X) (greatest) are well defined for a transformer t.

2 It is however imperative when verifying concrete algorithms. For such verifications
correctness tools [9] can be used to reduce reasoning about goals of the form “A V

wp.Prog.B” to reasoning about relationships between ordinary expectations.
3 We will not make any assumptions about how the state space is implemented, which

increases the utility of the mechanized theory.
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skip wp.skip.A =̂ A ,

assignment wp.(x := E).A =̂ A[x := E] ,

sequential composition wp.(r; r′).A =̂ wp.r.(wp.r′.A) ,

probabilistic choice wp.(r p⊕ r′).A =̂ p × wp.r.A + (1−p) × wp.r′.A ,

multi-way prob. choice wp.(r0@p0 | . . . | rn@pn).A =̂ p0 × wp.r0.A + · · · + pn × wp.rn.A ,

nondeterm. choice wp.(r [] r′).A =̂ wp.r.A u wp.r′.A .

The state space here is instantiated to string → Z.
E is an integer-valued state function, p is an expectation bounded by 1, p0 . . . pn sum
to 1.
Nondeterminism is interpreted demonically, that is minimal-seeking.

Fig. 2. Structural definitions of wp for straight-line pGCL.

feasible t =̂ ∀A, c • A V c ⇒ t.A V c

monotonic t =̂ ∀A, B • A V B ⇒ t.A V t.B

sublinear t =̂ ∀A, B, c, c1, c2
• t.(c1A + c2B − c) V c1(t.A) + c2(t.B) − c

t ranges over (α)transformer, A, B over (α)expect, and c, c1, c2 over posreal.
Feasibility implies t.A V tA, so t.0 ≡ 0.
Sublinearity generalizes conjunctivity of standard predicate transformers.
Monotonicity is a consequence of sublinearity.
The wp-operator (part of which is given in Fig. 2) satisfies all three conditions [14, 9].

Fig. 3. Healthiness conditions for demonic transformers.

3 qTL and its Semantics

In this section we show the syntax and semantics of qTL, Morgan and McIver’s [18,
14] probabilistic extension of temporal logic.

The syntax of qTL formulas, set out in Fig. 4, is defined in HOL as a new
datatype called formula. Note that any expectation can be transformed into
a qTL formula of the form Atom(A).

As hinted in the previous section, when interpreting the temporal formulas
we do so with respect to a fixed expectation transformer step, which describes
the underlying computation; the intention is that most of the time and whenever
convenient step is wp.Step, where Step is a syntactic pGCL program.

The formal semantics of qTL is defined on the structure of the formulas and is
set out in full in Fig. 5 — it essentially generalizes standard modal µ-calculus [11]
from Booleans to reals, and takes the temporal subset of that [14]. We postpone
explaining β’s appearance in the definitions until further down in this section.

The operational interpretation of the quantitative temporal operators re-
quires thinking in terms of games. Take 3(Atom(A)): if A is a standard expecta-
tion — there exists a predicate P such that A ≡ [P ] — then the interpretation of
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formula =̂ Atom(A)
| ¬a | a t b | a u b | a & b | a −. b | a ⇒ b

| ◦a | 3a | a � b

A is an expectation. Lower-case letters a, b, . . . range over formulas.
The second row contains state formulas. To improve readability here we use the same
symbols as for the operators on expectations.
The third row describes proper temporal formulas, which are read as usual: next time,
eventually, (weak) unless. always is defined in terms of unless:

2a =̂ a � (Atom(false))

where false =̂ 0.
Temporal operators associate to the right, and apart from ¬ bind tighter than the rest
of the operators.

Fig. 4. The syntax of qTL.

3(Atom(A)) is in fact the probability that P is eventually established. However,
in the more general case when A is a proper expectation, thinking in terms of
“establishing A” does not make sense. The interpretation of 3(Atom(A)) in the
general case relies on a game-like analogy, and we quote directly from [13]:

[I]t is the supremum, over all strategies that determine in each state
whether to make another transition or to stop, of the expected value of
A when the strategy says “stop”; the strategy “never stop” gives 0 by
definition.

The other operators are interpreted similarly. Note for example that non-
termination in the case of 2 is interpreted as a success, and that the interpreta-
tion of � involves a mixture of minimizing and maximizing strategies.

With the game analogy in mind it is clear that there is no need to focus
exclusively on expectations bounded by 1 when specifying the semantics of qTL,
although admittedly most of the time this is sufficient (since most often than
not we are interested in temporal behavior relative to standard expectations).
Especially as far as the implementation in HOL is concerned, it is advantageous
to parameterize the semantic operator with the bound “β”. This is so because
proving properties for an arbitrary bound β (although sometimes under the as-
sumption that β 6= ∞) is no more difficult than in the 1-bounded case. Moreover,
specializing to the 1-bounded expectations is trivial, and clearly we also have
access to reasoning about unbounded expectations, although as expected the
properties available in this case are fewer.

We conclude this section with a few words on the expressibility of qTL.
Recall that in the wp-definition (Fig. 2) we interpreted nondeterminism demoni-
cally. With such an interpretation we can only describe universal versions of the
temporal operators, since demonic interpretations give us guarantees on least
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||Atom(A)||(β,step) =̂ A u β

||¬a||(β,step) =̂ β − ||a||(β,step)

||a u b||(β,step) =̂ ||a||(β,step) u ||b||(β,step)

||a t b||(β,step) =̂ ||a||(β,step) t ||b||(β,step)

||a & b||(β,step) =̂ ||a||(β,step) &β ||b||(β,step)

||a −. b||(β,step) =̂ ||a||(β,step) −.β ||b||(β,step)

||b ⇒ b||(β,step) =̂ ||a||(β,step) ⇒β ||b||(β,step)

||◦a||(β,step) =̂ step.||a||(β,step)

||3a||(β,step) =̂ (µA • ||a||(β,step) t step.A)
||a � b||(β,step) =̂ (νA • ||b||(β,step) t (||a||(β,step) u step.A))

step is a (α)transformer. β is a posreal scalar.
The (least µ and greatest ν) fixed points are defined over the complete partial order of
expectations bounded by β. For a monotonic step the fixed points are well-defined.
For finite β, t and u are duals: ||a t b||(β,step) ≡ ||¬(¬a u ¬b)||(β,step).

Fig. 5. The semantics of qTL.

expected values. For a logic that also admits existential versions of the oper-
ators the transformer step should also allow angelic interpretations. However,
the price to pay is that sublinearity does not generally hold for transformers
containing angelic nondeterminism4. Note however that for the semantics to be
well-defined monotonicity is all that is needed.

4 The Algebra of qTL.

In this section we show some properties that hold under the main general health-
iness assumptions about the transformer step. The properties are generalizations
of Ben-Ari et al.’s [1]. They are essential logical tools when verifying algorithms
since often direct appeal to the semantics is impractical. The results have been
verified in HOL so we do not show the proofs here.

A useful property in concrete verifications is feasibility, which can be proved
easily if step is feasible:

∀β, step, a • ||a||(β,step) V β .

From now on to improve readability we identify formulas with their seman-
tics; we identify the semantic bound β when that can be ambiguous, in partic-
ular, we mark those properties that assume that the bound is finite. We also
pretty-print Atom(A) as simply A. As far as the computation step is concerned

4 Purely angelic transformers are suplinear

suplinear t =̂ ∀A, B, c, c1, c2
• c1(t.A) + c2(t.B) − c V t.(c1A + c2B − c) .
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we assume that the basic properties it satisfies are feasibility and monotonicity.
However many of the interesting properties require step be sublinear (i.e. de-
monic). We will then show which properties rely on this assumption. Although
a (purely) demonic step is in most situations expressive enough, there are some
situations when it is more advantageous to interpret nondeterminism angeli-
cally. McIver [16], for example, showed how temporal operators working with an
angelic transformer can be used to reason about the efficiency of probabilistic
programs.

The properties of “◦” are trivially inherited from those of the transformer
step. In Fig. 6 we show some basic properties; they are proved directly from
monotonicity of step.

a V b ⇒ ◦a V ◦b monotonic, next time
a V b ⇒ 3a V 3b monotonic, eventually
a V b ⇒ 2a V 2b monotonic, always
a V b ⇒ ¬b V ¬a antimonotonic, complement (∗)

(∗) assumes β 6= ∞.
Because some of the formulas, e.g. those containing −. , are neither “logically positive”
nor “negative”, a more general result for the (anti)monotonicity of positive (negative)
formulas cannot be established.
For op any of the monotonic operators, it is easy to prove:

op(a) t op(b) V op(a t b) subdistributes t
op(a u b) V op(a) u op(b) supdistributes u

Fig. 6. (Anti)Monotonicity properties.

Next we prove the basic fixed points properties for 3,�,2, which are shown
in Fig. 7. The greatest property for always, for example, is a very useful tool for
bounding from below the probability that invariance properties hold. Moreover
the verification conditions in such cases can be discharged with the help of total
correctness calculators [9].

We also note that the usual “double” laws hold in our setting, and the proofs
do not require anything but the monotonicity assumption:

33a ≡ 3a double, eventually ,
22a ≡ 2a double, always .

The most challenging and interesting properties are shown in Fig. 8. As noted
in [14] it can require some ingenuity to describe the intuition behind some of
them. However, what is clear is that these properties allow breaking down the
reasoning to more manageable pieces, and achieving modularity of proofs. The
example in the next section illustrates the usefulness of such properties.
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3a ≡ a t ◦3a fixed point, eventually
a t ◦b V b ⇒ 3a V b least, eventually

◦a t ◦3a V 3a

a � b ≡ b t (a u ◦(a � b)) fixed point, unless
d V b t (a u ◦d) ⇒ d V a � b greatest, unless

2a ≡ a u ◦2a fixed point, always
b V a u ◦b ⇒ b V 2a greatest, always

2a V ◦a u ◦2a

The monotonicity of step suffices for these properties.

Fig. 7. Fixed point properties of 3, �, 2.

2a & 2b V 2(a & b) always subdistributes &
2(a −. b) V 2a −. 2b always supdistributes−.

a & 2(a ⇒ ◦a) V 2a

2(a −. b) & 3a V 3b

2a V ¬3(¬a) always-eventually duality
3a & 2(◦a ⇒ a) V a

3a & 2b V 3(a & b)

The properties assume β 6= ∞, and that step is sublinear.

Fig. 8. Duality properties and more.

5 Example: The Jumping Bean

The verification of the example presented in this section follows very closely
Morgan’s presentation of the proof [17]; the same result is also proved in [14],
although the presentation there is given in terms of while-loops. Throughout this
section we assume that the semantic bound β is 1. Moreover, we assume that
the computation step is given in terms of wp.

The Jumping Bean sits on the number line and hops some integer distance,
either up or down. Informally, the Bean must move according to the following
rules:

1. With some nonzero probability, it must move at least one unit up or down.
2. There is a uniform maximum distance, arbitrarily large but fixed, that it can

travel in one jump.
3. Its expected movement is never down: on average, it either moves up or stays

where it is.

For example, the symmetric walker :

SymmetricWalker =̂ n := n − 1 1/2⊕ n := n + 1 , (3)
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trivially satisfies the required behavior: it moves with probability 1, the maxi-
mum distance of each jump is 1, and on average it stays in place. A less trivial
example of an acceptable behavior is that of this demonic walker :

DemonicWalker =̂





n := n + 2 @ 1/4
skip @ 5/12
n := n − 1 @ 1/3



 []

(

n := n + 1 @ 1/2
n := n − 1 @ 1/2

)

(4)

On each step the walker can choose to move according to the distribution spec-
ified in the left statement or the one in the right — which choice will be made
cannot be predicted in advance. However, each of the alternatives satisfies the
movement conditions set above, thus the demonic walker ’s behavior is in the
acceptable range.

We will prove that under the three assumptions above (which we state for-
mally below), and given any number H on the integer line, the Bean will even-
tually jump over it with probability 1:

3[H ≤ n] ≡ 1 . (5)

Here n is the variable recording the current position of the Bean on the line.
First we note that

3[H ≤ n] V 1 ,

from the feasibility of the formulas and [H ≤ n]’s being a standard expectation
(as such it is bounded pointwise from above by 1). As expected, it is the other
direction that is nontrivial to show — the least fixed point property is not helpful
since it works the other way around. Moreover, since we do not know the exact
probabilities involved in the jumps we cannot just solve the fixed-point equation.
This is an indication that we need to check whether some zero-one law is at work.
The next theorem shows an example of such a law for eventually.

Theorem 1 (Zero-one law for eventually) 5If the probability of eventually
establishing a standard predicate P is everywhere bounded away from 0 then it
is in fact 1:

(∃c • 0 < c ∧ cV 3[P ]) ⇒ 3[P ] ≡ 1

Note that we are assuming that step is nondivergent.6

Another zero-one law we have available for 3 of a standard expectation [P ]
is a lot like the variant-rule for probabilistic loops [14]. Informally, if we can find
an integer-valued function of the state — a variant — that

5 The theorem works for nondeterministic programs — Morgan [17] shows the proof
for the deterministic case; the proof for the nondeterministic case made use of a
property of the wp-semantics which says that for any pGCL program Prog and post-
expectation A, there exists a deterministic (probabilistic) program Prog’ such that
∀B • wp.Prog.B V wp.Prog’.B and wp.Prog.A ≡ wp.Prog’.A [14].

6 Nondivergence characterizes computation steps that do not have any effect on con-
stant expectations, that is (∀c • ◦c ≡ c) — for pGCL programs this means that they
terminate with probability 1 [14].
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– is bounded from below and above while P is not established,
– and the probability of its increasing on every computation step is bounded

away from 0,

then we know that with probability 1, P will eventually be established.

Theorem 2 (Variant-rule for eventually) For any standard predicate P , an
integer-valued state variant V ,

(∃c, L,H •

0 < c ∧ ¬(P ⇒ L ≤ V < H) ∧ (∀N • c[¬P ∧ (V = N)] V ◦[N < V ])) ⇒
3[P ] ≡ 1

From the informal assumptions the position of the Bean must increase with some
probability, if the Bean must move on each step and its expected movement is
never down. However, we cannot apply Thm. 2 directly to our initial goal because
we cannot bound our variant n from below.

Instead we argue that given any (finite) position L to the left of H, if the
Bean starts from a position within the interval [L . . .H) then

– it eventually escapes from that interval with probability 1,
– the probability of its escaping from the right can be bounded away from 0

— this probability depends on how low L is chosen.

The glue to all the pieces is the following lemma:

Lemma 3 7 For any H,L

3[¬(L ≤ n < H)] & [L ≤ n] � [H ≤ n] V 3[H ≤ n] .

The part that needs some explanation is when for the chosen L the initial position
of n falls to the left of the interval [L . . .H). Then trivially the first conjunct
of the left-hand side is 1, however since both [L ≤ n] and [H ≤ n] are 0, by the
semantics of � and the definition of & we get on the left-hand side 0, which in
other words means that we cannot say anything nontrivial about the probability
of (H ≤ n)’s establishment. Clearly L should be chosen such that it is lower
than n’s initial position (when this itself is lower than H). We in fact show that
it can be chosen low enough so that the probability of escaping to the right of
H is at least 1/2, which allows us to prove the following:

3[¬(L ≤ n < H)] & [L ≤ n] � [H ≤ n]
W 1 & 1/2 To show later (8,9)

≡ 1/2 . Definition of &, Fig 1

7 The lemma is an instance of a more general one:

∀A, P • (3(A −. [P ]) & A � [P ] V 3[P ]) .

If A ≡ [Q] then directly from the definition of −. , [Q] −. [P ] ≡ [¬Q ∨ P ].



26 Orieta Celiku

Having bounded 3[H ≤ n] away from 0, by appeal to Thm. 1, we can conclude
that the Bean’s eventual escape to the right of H is almost certain, i.e. occurs
with probability 1.

Now we fill in the missing steps, for which we first state the assumptions
about the Jumping Bean formally in Fig. 9.

∀L, H • L ≤ H ⇒
∃c • 0 < c ⇒ JB1

∀N • c[L ≤ n < H ∧ (n = N)] V ◦(N < n)

JB1 encodes the requirement that the Bean must move on each step; more precisely
that it must move up with some probability.8

∃K • 0 < K∧
∀L, H • L ≤ H ⇒ JB2

〈L : n : H〉 V ◦〈L : n : H + K〉

where
〈L : n : H〉 =̂ [L ≤ n ≤ H] × (n − L) + [H < n] × (H − L) .

K in JB2 is the maximum distance the Bean can travel in one step; recall that in our
informal assumption we required that such a distance be bounded. JB2 also encodes
the requirement that the movement never be down: take L + 1 = H = N , where N is
the Bean’s initial position (in state s). Then 〈L : n : L + 1〉 in s is 1, and the only way
for 1 ≤ ◦〈L : n : L + 1 + K〉.s is if finally N ≤ n.
We also assume that the jump is nondivergent.

Fig. 9. Jumping Bean assumptions.

Appealing to Thm. 2 with state-variant n we directly conclude from JB1
that:

∀L,H • L ≤ H ⇒ 3[¬(L ≤ n < H)] ≡ 1 . (8)

8 Note that a stronger (and simpler-looking) alternative for JB1 would be:

∃c • 0 < c ∧ (∀N • c[n = N ] V ◦[N < n]) . (6)

Here is an example of a jump that satisfies JB1 but not the assumption at (6):

LazyBean =̂

n := n + 1 @ 1
2(|n| max 1)

skip @ 1 − 1
(|n| max 1)

n := n − 1 @ 1
2(|n| max 1)

(7)

Clearly for any interval [L . . . H), it is possible to bound away from 0 the probability
of jumping up but a more general bound cannot be established, as the farther the
Bean goes from 0 the lazier it gets.
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Next we prove that under assumption JB2 the bound L can be chosen such
that:

1/2 V [L ≤ n] � [H ≤ n] . (9)

First we note that given an initial position N of the Bean, if H ≤ N then
the right-hand side trivially evaluates to 1, and thus it is enough to choose any
L ≤ H (for which also (8) is true). So we can safely assume that N < H initially.

Using the least-fixed point property for unless, and some transformations of
JB2 which we do not show here because the details are rather unenlightening,
we can prove:

〈L : n : H + K〉

H + K − L
V [L ≤ n] � [H ≤ n] .

For any initial position of the Bean N (to the left of H), we can see that choosing
L = 2N − (H + K), makes the left-hand side 1/2.

We have thus proved the claim we set about to:

Theorem 4 (Jumping Bean) Given any number H on the number line, a
Jumping Bean satisfying the assumptions JB1 and JB2 (see Fig. 9) will eventu-
ally jump over it with probability 1:

3[H ≤ n] ≡ 1 .

This result is more general than similar ones found in probability textbooks: the
actual transition probabilities may vary from place to place (see LazyBean (7))
so our walkers may be non-homogeneous. Allowing nondeterministic moves is a
further generalization to traditional such theorems — the transition probabilities
may vary not only on different places of the number line but also on different
visits to the same place (see DemonicWalker (4)). We also note that the state
space is infinite, and the theorem is parameterized on the limit on the jump.

To give an idea of the mechanization effort involved in the verification, the
proofs of this section (including those for the zero-one laws) required around
2000 lines of proof script. However, proving that the SymmetricWalker, Demon-
icWalker and LazyBean satisfy the assumptions is by comparison much easier,
and the proofs were around 100, 150, 300 lines respectively. The latter verifica-
tions can also be supported by correctness tools built for pGCL [9], cutting the
verification effort further.

Verifications in a theorem prover are most useful if properties about classes
of probabilistic programs can be proved — this is possible either as in our ex-
ample, by stating the assumptions as generally as possible, or by specifying the
syntactic pGCL program as abstractly as possible and using refinement to de-
rive the property for concrete programs. The refinement approach is justified by
theorems such as the following:

∀β, step, step′ • step v step′ ⇒ ||a||(β,step) V ||a||(β,step′) ,

where step v step′ denotes that step′ refines step, i.e. ∀A • wp.Step.AV wp.Step′.A,
and a is a positive formula.
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6 Conclusions and Related Work

The importance of having methods suitable for reasoning about randomized algo-
rithms is already widely recognized. A recent survey on a number of approaches
used to verify the correctness of such algorithms is presented by Norman [22].
As far as computer-aided verification is concerned much work has been done
in the area of model checking, with PRISM [12, 23], ETMCC [4], Ymer [24],
RAPTURE [10], and ProbVerus [6] being some of the model-checking tools for
probabilistic systems. They differ in whether they model-check purely proba-
bilistic systems (ETMCC, Ymer, ProbVerus), or probabilistic nondeterministic
systems (PRISM, RAPTURE); the temporal logics used to express the proper-
ties to be model-checked also vary, although they mainly fall into two categories:
logics that keep the formulas standard and associate probabilities with computa-
tion paths, and those that have formulas denote probabilities rather than truth
values. qTL falls into the latter category.

Although impressive work has been done to tackle the problems inherent in
model-checking approaches, such as state explosion, model-state finiteness, and
the inability to parameterize systems, as concluded in [22] most of the prob-
abilistic model-checking tools are not yet sufficiently developed compared to
their non-probabilistic peers; as such they still are applicable to only complete,
finite-state models.

Theorem provers can deal with infinite-state systems, and parameterization
— our Jumping Bean theorem is one such example. However, verification using
theorem provers is still labor-intensive. Compared to model-checking efforts not
much work has been done on providing theorem prover support for verifying
probabilistic systems. To our knowledge the first work on verifying probabilistic
programs using a theorem prover is that of Hurd [8], who formalized probabil-
ity theory in HOL and implemented tools for reasoning about correctness of
(purely) probabilistic algorithms. More recently work on formalizing pGCL and
its quantitative logic in HOL has appeared [9, 2], and it is this work that we ex-
tended. Similarly, support for probabilistic reasoning in the pGCL style is being
incorporated in the B method [7, 15].

Acknowledgments

I thank Annabelle McIver for answering my questions with regard to qTL and
commenting on a draft of this paper. I also thank Carroll Morgan for making
available the nice Jumping Bean slides.

References

1. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta
Informatica, 20:207–226, 1983.

2. O. Celiku and A. McIver. Cost-based analysis of probabilistic programs mechanised
in HOL. Nordic Journal of Computing, 11(2):102–128, 2004.



Quantitative Temporal Logic Mechanized in HOL 29

3. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
4. Erlangen-Twente Markov Chain Checker.

http://www.informatik.uni-erlangen.de/etmcc/.
5. M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving

environment for higher order logic). Cambridge University Press, 1993.
6. V. Hartonas-Garmhausen, S. V. A. Campos, and E. M. Clarke. Probverus: Prob-

abilistic symbolic model checking. In Formal Methods for Real-Time and Proba-
bilistic Systems, 5th International AMAST Workshop, Proceedings, volume 1601
of Lecture Notes in Computer Science, pages 96–110. Springer, 1999.

7. T. S. Hoang, Z. Jin, K. Robinson, A. McIver, and C. Morgan. Probabilistic invari-
ants for probabilistic machines. In ZB 2003: Formal Specification and Development
in Z and B,Proceedings, volume 2651 of Lecture Notes in Computer Science, pages
240–259. Springer, 2003.

8. J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge, 2002.

9. J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands mechanized
in HOL. In Proc. of QAPL 2004, Mar. 2004.

10. B. Jeannet, P. D’Argenio, and K. Larsen. Rapture: A tool for verifying Markov
Decision Processes. In I. Cerna, editor, Tools Day’02, Brno, Czech Republic, Tech-
nical Report. Faculty of Informatics, Masaryk University Brno, 2002.

11. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In Proceedings of TOOLS 2002, volume 2324 of Lecture Notes in Computer
Science, pages 200–204. Springer, Apr. 2002.

13. A. McIver and C. Morgan. Almost-certain eventualities and abstract probabilities
in the quantitative temporal logic qTL. Theoretical Computer Science, 293(3):507–
534, 2003.

14. A. McIver and C. Morgan. Abstraction, refinement and proof for probabilistic
systems. Springer, 2004.

15. A. McIver, C. Morgan, and T. S. Hoang. Probabilistic termination in B. In ZB
2003: Formal Specification and Development in Z and B, Proceedings, volume 2651
of Lecture Notes in Computer Science, pages 216–239. Springer, 2003.

16. A. K. McIver. Quantitative program logic and expected time bounds in proba-
bilistic distributed algorithms. Theoretical Computer Science, 282:191–219, 2002.

17. C. Morgan. Probabilistic temporal logic: qTL. Lectures on Probabilistic For-
mal Methods for the 2004 RSISE Logic Summer School. Slides available at
http://www.cse.unsw.edu.au/∼carrollm/canberra04/.

18. C. Morgan and A. McIver. An expectation-transformer model for probabilistic
temporal logic. Logic Journal of the IGPL, 7(6):779–804, 1999.

19. C. Morgan and A. McIver. pGCL: Formal reasoning for random algorithms. South
African Computer Journal, 22:14—27, 1999.

20. C. C. Morgan. Programming from Specifications. Prentice-Hall, 1990.
21. C. C. Morgan, A. K. McIver, and K. Seidel. Probabilistic predicate transformers.

ACM Transactions on Programming Languages and Systems, 18(3):325–353, May
1996.

22. G. Norman. Analysing randomized distributed algorithms. In Validation of
Stochastic Systems, volume 2925 of Lecture Notes in Computer Science, pages
384–418. Springer-Verlag, 2004.

23. Probabilistic Symbolic Model Checker. http://www.cs.bham.ac.uk/dxp/prism/.
24. Ymer. http://www.cs.cmu.edu/∼lorens/ymer.html.



Embedding a fair CCS in Isabelle/HOL

Michael Compton

Computer Laboratory,
University of Cambridge,

JJ Thomson Avenue,
Cambridge CB3 0FD, UK

Michael.Compton@cl.cam.ac.uk

Abstract. This paper presents an embedding of Milner’s CCS, mod-
ified to include fairness constraints. The embedding is of interest due
to the use of Higher Order Abstract Syntax (HOAS) to represent the
CCS terms. This removes some of the burden of explicit syntax manipu-
lation, but requires well-formedness predicates, to remove exotic terms,
and some extra machinery for writing recursive functions over the struc-
ture of terms. The main focus of the paper is on the derivation of a fair
version of CCS. I modify the fair CCS calculus originally presented by
Costa and Stirling [2], to produce a CCS theory in which I can distin-
guish the strongly- and weakly-fair traces. The theory is derived as a
definitional extension of Isabelle/HOL.

1 Introduction

Milner’s process calculus CCS [6] is generally presented without any notion of
fairness. This is not a problem for most abstract modelling. However, if one
wishes to derive temporal properties, especially progress properties, some notion
of fairness is required.

As noted by Puhakka and Valmari [11], fairness has received less attention in
process algebra than in other areas such as classical model checking or temporal
logic. However, there are a number of approaches to fairness in process algebraic
verification. For example Puhakka and Valmari have developed a system where
fairness constraints can be expressed as temporal logic formulae [11]. Also the
proof rules of µCRL incorporate fairness notions [5], which have been used in
verification of protocols [3].

Here I will investigate a method for achieving fairness based on the fair CCS
semantics presented by Costa and Stirling [2]. Their goal was to define an oper-
ational semantics in which only the fair execution sequences could be derived.
Their fair semantics was based on a labelled CCS calculus. In the labelled cal-
culus, one can determine the live processes in any CCS term: live processes are
those which are ready to contribute to an action. Costa and Stirling gave an
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operational semantics for the labelled calculus with two levels; the first (the fa-
miliar CCS semantics) gave semantics for single steps, the second level filtered
out unfair execution sequences by inspecting the set of live processes at each step
in the sequence. Thus in second level semantics only the fair execution sequences
were derivable.

The approach is not without difficulties. The most salient is that it seems
impossible to derive the strongly fair sequences without, in some way, enforcing
choices on the execution [4]. I will avoid this unnatural construction by altering
the theory.

Costa and Stirling’s fair calculus reappeared in Francez’s book Fairness [4].
The mechanisation in this paper will begin by following Francez’s presentation.
However, my theory differs in that I do not develop a fair operational semantics.
Instead, I give a definition of traces and use the theory to rule out the unfair
traces outside the semantics. This choice removes the problem of generating the
strongly fair execution sequences.

Fairness. Here fairness may be viewed as ruling out the unreasonable be-
haviors of CCS processes. For example, an unreasonable execution is one where
one component of a distributed system is simply ignored and is never given the
opportunity to execute.

This paper will consider two common forms of fairness, weak and strong
fairness. Intuitively, weak fairness states that no action will remain possible
indefinitely. Strong fairness states that no action can be possible infinitely often.
Clearly all the strongly fair traces are also weakly fair.

CCS. Milner’s CCS is a calculus for the abstract description of the interaction
(communication) between distributed and concurrent processes [6]. I present a
theory of value passing CCS, which includes mutually recursive functions. Mech-
anisations of the basic theory have appeared before; perhaps the most closely
related is Monica Nesi’s HOL embedding [7,8,9], though the treatment of re-
cursion differs significantly. I follow Röckl et al. [12] in defining predicates for
well-formed processes, which rule out exotic terms.

Isabelle/HOL. This theory is presented as a definitional extension of Is-
abelle/HOL [10]. Isabelle has powerful tools for generating readable formal the-
ories. All definitions and theorems in this documents are imported directly and
automatically by Isabelle from the formal theory, so you can be sure that Is-
abelle accepts them as theorems. Isabelle’s LATEX translations have been used
to make the theory look, as far as possible, like ordinary semantics, so I give no
introduction to Isabelle. The symbol −→ is logical implication (I use a simlar

symbol, t l−→ t ′, in the semantics but there should be no confusion). Note that
free variables in theorems are implicitly universally quantified.

Paper Outline. Section 2 presents the syntax (Section 2.1) and semantics
(Section 2.3) of the CCS embedding. I also describe efforts in writing recursive
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functions over the CCS terms (Section 2.2). Labelled CCS is introduced (Sec-
tion 3) and I show how to determine the live processes (Section 3.2). Using the
definition of live processes I show how to define the fair traces of CCS terms (Sec-
tion 3.3). Next I give predicates describing well-formed processes (Section 4.1)
and derive some correctness properties of the embedding (Section 4.2). Finally
I conclude with a brief discussion of this work (Section 5).

2 CCS Language and Semantics

Assume some fixed value domain, ranged over by x, y and z, which acts as a
parameter to the theory.

Assume a set of value carrying actions which are partitioned into two sets,
those which may synchronise and those that don’t require synchronisation. For
the synchronising actions write c?x for input on channel c, c!x for output, and
cτx for the synchronisation of the two. For the non-synchronising actions write
c for simple actions, c x for actions with values, and also include the τ action.
Let a, a1, a ′, etc. range over actions and c, d, etc. range over channel names.

The function sync determines if two actions can synchronise, there are only
two successful cases.

sync c!x c?x = Some cτx
sync c?x c!x = Some cτx

2.1 Syntax of CCS terms

The terms of the CCS embedding are defined by the following grammar:

t = nil | a · t | c!x · t | c ? t | t1 + t2 | t1 ‖ t1 |
t\L | X | t x | tf | fix X . recs

The terms nil, sum t1 + t2, parallel (or product) t1 ‖ t1 and restriction
t\L appear in most presentations of CCS. Restriction is used to force processes
to synchronise. In the prefix term a · t the action a may be any of the non-
synchronising actions. The send term c!x · t can perform action c!x and then
continue as the process term t.

The abstraction term tf is a function from values to processes. It is used
to allow Isabelle to handle substitution at the meta level, rather than encoding
it explicitly. This sort of abstraction is called Higher Order Abstract Syntax
(HOAS) and is a well known way of handling issues of syntax and substitution.
The application term, t x, applies value x to term t. Obviously application only
makes sense if t is an abstraction. Abstraction and application work together in
handling the input term, written c ? t. Here we expect t to be an abstraction
and this term may receive a value, say x, on channel c (emitting the action c?x )
and then continue as the process t x.
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The process variable X and recursive definitions fix X . recs allow the cre-
ation of mutually recursive terms. These terms, unlike abstractions, can produce
infinite behaviour. Here recs is a family of recursive terms: in Isabelle it is a list
of pairs of process variables and terms. Essentially the variable may be viewed as
the name of a function and the term viewed as the function code. For example,
the term

fix X . [ (X , c ? (λ x . τ ·(Y x ))), (Y , (λ x . d !x ·(nil +X )))],

can input a value on channel c, output the same value on d, and then either
terminate or recurse over the same behaviour. As Milner notes [6], it is theo-
retically more convenient to have recursions defined as above; however, they are
easier to read if written as

X ≡ c ? (λx . τ · Y x )
Y x ≡ d !x · nil + X.

I will only write mutually recursive terms using the fix X . recs syntax.
Using HOAS has relieved the burden of dealing with substitution or envi-

ronments for input terms. However, this abstraction raises problems of its own.
Firstly the terms above include many so called exotic terms, which could not be
created in CCS. For example the terms

P ≡ (λx . if x = y then c!x · t1 else τ · t2) and
Q ≡ c ? (λx . x !x · t1)

are not able to be expressed in the usual presentation of CCS. P is not expressible
in CCS because it is built from the HOL conditional statement, which is not part
of CCS. Q behaves more like a π-calculus term than a CCS term. The second
difficulty with HOAS is that, writing functions over the terms has become more
difficult, care needs to be taken if we ever need to peek inside an abstraction.

I discuss exotic terms further in Section 4.1. Next I show how to write func-
tions over the CCS terms.

2.2 Writing recursive functions over CCS terms

In Higher Order Logic all functions must terminate for all inputs, but the termi-
nation of functions written over the syntax above might not be obvious. In fact,
Isabelle already accepts primitive recursive functions where the abstraction case
is of the form f (tf ) = (λ x . f (tf x )). However, for total recursive functions (Is-
abelle’s recdef functions) the user is required to establish the termination. Here
we must establish that recursions like f (f (f (tf )))). . . eventually terminate.

For functions defined over the structure of terms the usual method is to
show that the size of the terms decreases on each recursive call. Here this is
not appropriate as it is not clear how to define a size function for abstractions.
Instead, I create an ordering on terms, show that the ordering is well-founded
and then use the well-founded ordering as the measure that terms decrease with
each recursive call.
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The ordering turns out to be quite natural. Begin by defining a predecessor
relation over terms. Most of the cases are obvious, for example, nil is a predeces-
sor of everything except itself, t is a predecessor of c!x · t, terms t1 and t2 are
predecessors of t1 + t2. Take the predecessors of the abstraction tf as all terms
in the set

⋃
x tf x. The transitive closure of this relation yields a well-founded or-

dering on terms. The well-foundedness proof proceeds by simultaneous induction
over terms, lists of terms and process variable-term pairs.

Proofs over the syntax of terms require the simultaneous induction mentioned
above, this is due to the recursive terms which are defined using lists and pairs.
However, using the ordering on terms we can derive a principle of well-founded
induction which is easier to use.

With this machinery in place Isabelle will admit the definition of functions
such as substitution of mutually recursive definitions.

subst (nil , S , MRL) = nil

subst (l · t , S , MRL) = l · subst (t , S , MRL)
subst (c!a · t , S , MRL) = c!a · subst (t , S , MRL)
subst (c ? t , S , MRL) = c ? subst (t , S , MRL)
subst (t1 + t2, S , MRL) = subst (t1, S , MRL) + subst (t2, S , MRL)
subst (t1 ‖ t2, S , MRL) = subst (t1, S , MRL) ‖ subst (t2, S , MRL)
subst (t\L, S , MRL) = subst (t , S , MRL)\L
subst ( X , S , MRL) =

if X ∈ S ∧ fp-mem X MRL then fix X . MRL else X
subst (t a, S , MRL) = subst (t , S , MRL) a
subst ( tf , S , MRL) = (λx . subst (tf x , S , MRL))
subst (fix X . recs, S , MRL) =

fix X . map (λ(Y , tY ). (Y , subst (tY , S − list-fst recs, MRL))) recs

subst is a somewhat lazy definition of substitution: in the recursive case I
make no attempt to avoid variable capture. However, this doesn’t turn out to be
a problem as for the bulk of this theory I only consider closed terms, in which
there are no free variables to capture.

2.3 CCS LTS semantics

The labelled transition system semantics presented in Figure 1 is a standard
rendering of the semantics for CCS. Each step in the reduction is labelled with
the action that was performed.

Note that while input is handled in HOAS, I explicitly deal with substitu-
tions for the recursive terms. This is a bit incongruous but it seems that explicit
substitution for recursive terms is the correct choice. In the first instance, fix
terms are actually required to create infinite behaviour: Section 2.2 shows that
abstraction terms can not create infinite behaviour. Further substitution is han-
dled explicitly for these terms as they require a very precise treatment in order
to make any sense. Section 5 evaluates the use of HOAS.
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a · t a−−→ t c!x · t c!x−−−→ t c ? tf
c?x−−−→ tf x

tf x l−→ t ′

tf x l−→ t ′
App

t1
l−→ t1

′

t1 + t2
l−→ t1

′
Suml

t2
l−→ t2

′

t1 + t2
l−→ t2

′
Sumr

t l−→ t ′ l /∈ L

t\L l−→ t ′\L
Res

t1
l−→ t1

′

t1 ‖ t2
l−→ t1

′ ‖ t2
Parl

t2
l−→ t2

′

t1 ‖ t2
l−→ t1 ‖ t2

′
Parr

t1
l1−−→ t1

′ t2
l2−−→ t2

′ sync l1 l2 = Some ls

t1 ‖ t2
ls−−→ t1

′ ‖ t2
′

Pars

[(a, b)∈recs . a = X ] = [(X , tX)] subst (tX , list-fst recs, recs) l−→ tX
′

fix X . recs l−→ tX
′

MRec

[(a, b)∈recs . a = X ] = [(X , tf )] subst ( tf , list-fst recs, recs) x l−→ tf
′

fix X . recs x l−→ tf
′

MRecApp

Fig. 1. Isabelle rules for the CCS semantics.

3 A Fair CCS

The semantics just presented does not respect any notion of fairness. For exam-
ple, consider the process

fix X . [(X , a · X )] ‖ fix Y . [(Y , b · Y )]

which performs sequences of a and b actions. There are many valid traces of
such a term, most will interleave a and b actions. However, one valid trace is a,

a, a, a, a, a, . . . which only performs actions in the term on the left. Clearly
this behaviour isn’t fair to the term on the right: in a fair execution we would
expect that a b would eventually be performed.

I now define process fairness for CCS terms. It is not the only possible choice
of fairness for CCS. Apt et al. [1] lists 6 possible notions of fairness for CSP,
similar notions could be considered for CCS. For example one could study notions
like channel fairness where we require that actions on certain channels would
not be indefinitely delayed.

To remove any confusion, in this paper I will use term to describe a CCS term
and process to describe the notion of a process within a CCS term (this concept
will be formally defined shortly). Process fairness requires each individual process
within a term to eventually proceed if it is able to do so.1

1 Note that the model of fairness presented here is not non-deterministically fair : the
process

fix X . [(X , b · X + a · X )]
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The development now follows the ideas for labelled processes and live pro-
cesses presented by Frances [4], which differs slightly from the original presenta-
tion by Costa and Stirling [2].

3.1 Labelling Processes

In any CCS term there may be many constituent terms which are live – capable
of proceeding by performing some action. Here I will talk of the processes and live
processes of a CCS term, by which, essentially, I mean the sub-terms obtained by
breaking apart sum and parallel. The immediate problem in achieving process
fairness for CCS is to determine which processes are live. The solution presented
here is to label every process with a unique label. At each step in an execution
sequence we can inspect the structure of the whole term and determine which
of these labelled processes are live.

I define a new grammar for labelled processes

t = nil l | al · t | (c!x)l · t | c?l tf | t1 +l t2 | t1 ‖ t1

t \ L | Xl | t x | tf | fix Xl. recs

The terms are similar to the original grammar except some are labelled with
natural numbers. Immediately the processes of a term can be defined.

procs nil l = {l} procs t1 ‖ t2 = procs t1 ∪ procs t2

procs al · t = {l} procs t \ L = procs t
procs (c!x)l · t = {l} procs Xl = {}
procs c?l t = {l} procs t x = procs t
procs t1 +l t2 = {l} procs ( tf ) =

⋃
x procs (tf x )

procs fix Xl. recs =
if ∃ tX . [(a, b)∈recs . a = X ] = [(X , tX)]
then procs (snd (hd [(a, b)∈recs . a = X ]))
else {}

Some restrictions will be required of the labelling. For example, if all labels
are, say 10, then we will be unable to distinguish individual processes. I will
require labelled terms to be well-labelled, essentially this requires a term to be
labelled like a binary tree. Figure 2 explains what it means for a term to be
well-labelled, giving an example with the term a1 · t1 +11 b112 · t2 ‖ t3.

Labelling terms as binary trees is not difficult, label takes an unlabelled term
and labels it. I also define the function relabel which takes a labelled process and
relabels it using exactly the same scheme.

will be able to perform an infinite sequence of a’s or an infinite sequence of b’s.
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a (1)

+ (11)

t 1(111) b (112)

|| (1121)

t 2 (11211) t 3 (11212)

.

.
.(lm1) . (lm2)

. (lm1n)

(lm)

(l)

Fig. 2. Well-labelled terms: The term shown as a tree on the left is well labelled.
However we needn’t be so strict in fact all we require is that labels higher in
the tree are prefixes of lower labels, of course ensuring that the tree structure is
maintained with 1’s and 2’s, as shown in the right hand tree (assume that l, m
and n are arbitrary numbers).

label (nil , l) = nil l
label (a · t , l) = al · label (t , l ∗ 10 + 1 )
label (c!a · t , l) = (c!a)l · label (t , l ∗ 10 + 1 )
label (c ? tf , l) = c?l label (tf , l ∗ 10 + 1 )
label (t1 + t2, l) = label (t1, l ∗ 10 + 1 ) +l label (t2, l ∗ 10 + 2 )
label (t1 ‖ t2, l) = label (t1, l ∗ 10 + 1 ) ‖ label (t2, l ∗ 10 + 2 )
label (t\L, l) = label (t , l) \ L
label ( X , l) = Xl

label (t a, l) = label (t , l) a
label ( tf , l) = (λx . label (tf x , l))
label (fix X . recs, l) =

fix Xl. map (λ(Y , tY ). (Y , label (tY , l ∗ 10 + 1 ))) recs

Using a well-founded induction for labelled terms I can prove that label and
relabel result in a well-labelled terms.

Lemma 1. well-labelled (label (t , l)) l

Lemma 2. well-labelled (relabel (t , l)) l

I also define an unlabel function, which simply strips labels from labelled
terms. The two functions label and unlabel satisfy the obvious identity.

Lemma 3. unlabel (label (t , l)) = t

An important property of well-labelled terms is that no two processes are
given the same label.

Lemma 4. If well-labelled t l then unique-labelling (t , {}).
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Note that label gives each term in the recs list of fix Xl. recs the same
labelling. So the entire list doesn’t have a unique labelling. However, the only
term that gets executed is the one corresponding to X, see Figure 1 (the other
terms will be relabelled before execution, see below). So I only require that its
labelling be unique.

Substitution can be defined for labelled terms in the same way as for unla-
belled terms. The only difference between the two definitions is in the case of
process variables where the terms are relabelled after substitution.

substl (Xl, S , MRL) =
(if X ∈ S ∧ fp-mem X MRL
then fix Xl. map (λ(Xa, F ). (Xa, relabel (F , l ∗ 10 + 1 ))) MRL
else Xl)

The reason terms are relabelled is so that each recursive invocation has dif-
ferent labels, and is thus considered as a different process. This means that we
are fair to a term every time it occurs not just the first time it occurs.

Substitution in a well-labelled term results in a well-labelled term.

Lemma 5. If well-labelled t l then well-labelled (substl (t , S , recs)) l .

A LTS semantics for labelled processes, where reductions are written t
a

==⇒
t ′, is defined in the same manner as Figure 1: the labels are simply ignored in
the labelled semantics. By induction over the relevant transition system I can
formally show that the two semantics coincide.

Lemma 6. If t a−−→ t ′ then ∃ t ′′. label (t , l)
a

==⇒ t ′′.

Lemma 7. If t
a

==⇒ t ′ then unlabel t a−−→ unlabel t ′.

Finally well-labelling is preserved by reduction in the semantics.

Lemma 8. If t
a

==⇒ t ′ and well-labelled t l then well-labelled t ′ l .

As further example of labelling take the term

A ≡ d !x · nil ‖ c!y · a · Y + τ · X

and label it to get

label(A, 1 ) = (d!x)11 · nil111 ‖ (c!y)121 · a1211 · Y12111 +12 τ122 · X1221.

3.2 Determining the live processes

Now that the process terms have been labelled, the live processes can be deter-
mined. The live processes are those which can contribute to an action. Capturing
this idea is complicated by the interaction of parallel and restriction. Consider
the term
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(c!x)l · t1 ‖ c?l ′ t2 \ L

If L restricts c?x and c!x actions, then each side of this parallel is unable
to move without help from the other. Thus both l and l ′ are live: they can
contribute to an cτx action, but not to c?x or c!x actions. From this we can see
that in determining the live processes of a term, both the restrictions and the
possible actions of both sides of parallel terms need to be considered.

The function next-acts computes all possible next actions (ignoring synchro-
nisations) of a term (only some cases shown).

next-acts al · t = {a}
next-acts (c!x)l · t = all-values c!x
next-acts c?l t = all-values c?arbitrary
next-acts t1 +l t2 = next-acts t1 ∪ next-acts t2

next-acts t1 ‖ t2 = next-acts t1 ∪ next-acts t2

next-acts t \ L = next-acts t − L
next-acts tf x = next-acts (tf x )

Take the co-actions of action a to be {a ′ | ∃ as. sync a a ′ = Some as}, this
notion can be extended to the co-actions of a set of actions in the obvious way.
The function live-procs determines the set of live processes under a restriction
set. Note how passing under a restriction increases the restriction set, while the
co-actions of parallel processes can decrease the restriction set.

live-procs (al · t , A) = if a /∈ A then {l} else {}
live-procs ((c!x)l · t , A) = if c!x /∈ A then {l} else {}
live-procs (c?l t , A) = if all-values c?arbitrary ∩ A = {} then {l} else {}

live-procs (t1 +l t2, A) =
if live-procs (t1, A) ∪ live-procs (t2, A) 6= {}
then {l} else {}

live-procs (t1 ‖ t2, A) =
live-procs (t1, A − co-actions (next-acts t2)) ∪
live-procs (t2, A − co-actions (next-acts t1))

live-procs (t \ L, A) = live-procs (t , A ∪ L)

live-procs ( tf x , A) = live-procs (tf x , A)

live-procs (fix Xl. recs, A) =
if ∃ tX . [(a, b)∈recs . a = X ] = [(X , tX)]
then live-procs (snd (hd [(a, b)∈recs . a = X ]), A)
else {}

The live processes of a term represents exactly the set of processes that can
perform some action. This claim is formally verified in section 4.

Above we have already computed the labelling for the process A as

label(A, 1 ) = (d!x)11 · nil111 ‖ (c!y)121 · a1211 · Y12111 +12 τ122 · X1221.

Now we can also compute the live processes of A.

live-procs(label(A, 1 ), {}) = {12 , 11}

Of course the live processes are a subset of all processes.

Lemma 9. live-procs (t , A) ⊆ procs t
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3.3 Weak and Strong fairness

Using the above definitions I define weak and strong fairness on the traces of
labelled-CCS terms. I define traces in a standard way. An action trace is an
infinite sequence a1, a2, a3 . . . of actions, while a term trace is an infinite
sequence t1, t2, t3 . . . of terms. I represent both in Isabelle with a generic type
of infinite traces.

α trace :: nat ⇒ α

A trace of a labelled term is a pair of an action trace and a labelled term
trace.

labelled-ccs-trace :: labelled-ccs-term trace × action trace

For a trace tr to represent an execution in the semantics of term t I require
the following condition to hold

is-ccs-labelled-trace t tr =
(labelled-terms tr) 0 = t ∧

(∀ i . (labelled-terms tr) i
actions tr i

==========⇒ (labelled-terms tr) (i + 1 ) ∨
(labelled-terms tr) i = (labelled-terms tr) (i + 1 ) ∧ actions tr i = τ)

labelled-terms and actions project out the term trace and the action trace
respectively. I add stuttering, the extra τ steps, to ensure that all traces are
infinite.

The definitions of weak and strong fairness are now immediate.2 A trace
satisfies weak fairness if no process becomes live and then remains live forever,
i.e. all processes eventually lose their liveness. A trace tr satisfies weak fairness
iff

∀ p i . ∃ k . i < k ∧ p /∈ live-procs ((labelled-terms tr) k , {}).

A trace is strongly fair if no process is live infinitely often, i.e. no process
can become live, lose its liveness, become live again, etc. forever. Formally we
require that for every process there be some point beyond which it never again
becomes live. A trace tr satisfies strong fairness iff

∀ p. ∃ i . ∀ k . i ≤ k −→ p /∈ live-procs ((labelled-terms tr) k , {}).

2 Similarly the concept of minimal progress could be defined. A trace satisfies minimal
progress if whenever something can happen then eventually something does. This
means that we never idle indefinetely with τ actions when some useful action could
be performed. Formally we would require

∀ i a t ′. (labelled-terms tr) i
a

==⇒ t ′ −→ (∃ j . i ≤ j ∧ (labelled-terms tr) j
actions tr j

==========⇒
(labelled-terms tr) (j + 1 )).
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Note that, in both cases, processes are not required to perform an action,
just to lose their liveness. A live process that performs an action is immediately
removed from both the processes and the live processes. However, a process
may remain in the set of processes but no longer be live if, for example, a
communication partner is removed by some other action.

4 Correctness of fairness definitions

I now show that the definitions given above satisfy some properties that we
would expect. However first I will restrict the set of terms. Too many terms are
admitted by the definition given in Section 3.1. In this section only consistent
terms are considered. A consistent term is

– well-formed (Section 4.1),
– well-labelled (Section 3.1 and Figure 2),
– guarded,
– and has well-formed recursive terms.

These are quite natural restrictions, in fact, they are meant to denote the set
of terms that most CCS theories rely on. In guarded terms recursive variables
only occur below some prefixing action. For example, (c!x)l · Xl ′ is guarded but
Xl ′ +l t is not. Most CCS theories require guarded terms. A term has well-formed
recursions if all recursive sub-terms are closed, i.e. for all sub-terms fix Xl. recs
we have ∀ tX . tX ∈ set (snd recs) −→ fv tX ⊆ set (fst recs) – this restriction is,
in fact, required by the definition of subst which doesn’t avoid variable capture;
however, requiring closed terms is a also sensible choice.

Well-formed terms are those which do not have exotic terms introduced by
HOAS, I explain how to ensure such terms in the next section.

4.1 Removing exotic terms

It may not be immediately clear that the terms defined in Sections 2.1 and
3.1 represent the usual definition of CCS terms. Indeed, the use of HOAS has
introduced many terms which are not terms in CCS. These exotic terms can
be a problem when trying to prove properties that should be true of all CCS
terms: the exotic terms may not satisfy the same properties as regular CCS
terms. Further, if the terms do not exactly represent CCS terms then one could
question if this is indeed a theory of CCS. In this section I will rule out exotic
terms to recover a more natural set of CCS terms.

I introduce predicates, based on similar predicates for the π-calculus defined
by Röckl et al. [12], to rule out exotic terms. The predicate wf, see Figure 3,
defines the set of well formed process terms, while the second order predicate
wfa defines well formed process abstractions.

Though I introduced consistent terms to represent the usual definition of CCS
terms, I make no attempts to prove this relationship. The essential property of
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well-formed abstractions is that, for any value the set of processes remains the
same.

Lemma 10. If wfa tf then procs (tf x ) = procs (tf y).

The relationship between the two predicates is revealed by the following
lemma.

Lemma 11. If wfa tf then wf (tf x ).

wf nil l
wf t

wf (c!x)l · t

wfa tf

wf c?l tf

wf t1 wf t2

wf t1 +l t2

wf t1 wf t2

wf t1 ‖ t2

wfa tf

wf ( tf )

wfa (λx . nil l)
wfa tf

wfa (λx . (c!f x)l · tf x )

wfa tf 1 wfa tf 2

wfa (λx . tf 1 x +l tf 2 x )

wfa tf 1 wfa tf 2

wfa (λx . tf 1 x ‖ tf 2 x )

∀ x . wfa (tf x ) ∀ x . wfa (λy . tf y x )

wfa (λx . (tf x ))

Fig. 3. Part of the definitions of well-formed terms, wf, and well-formed process
abstractions, wfa.

4.2 Francez’s correctness lemmas

Francez proposes three key properties that go some way to showing the correct-
ness of this development [4, pg. 248, lemmas i, ii & iii]

Theorem 1. If consistent t and t
a

==⇒ t ′ and p ∈ procs t − live-procs (t , {})
then p ∈ procs t ′.

Theorem 2. If consistent t and p ∈ live-procs (t , {}) then ∃ a t ′. t
a

==⇒ t ′ ∧
p /∈ procs t ′.

Theorem 3. If consistent t and t
a

==⇒ t ′ then ∃ p. p ∈ live-procs (t , {}) ∧ p
/∈ procs t ′.
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Theorem 1 says that processes that aren’t live don’t participate in transitions.
Theorem 2 shows that live process must be able to participate in a transition.
Theorem 3 shows that a every transition is performed by some live process. These
rules show that the live processes match with the intuition of a live process, i.e.
that a live process is a subterm that is ready to perform an action.

Theorems 3 and 1 are proved by induction over the labelled semantics, while
Theorem 2 is proved by well founded induction over labelled terms. The proof
of Theorem 2 is the most difficult. Essentially this is because after induction
over term t in each case the inductive hypothesis claims that Theorem 2 holds
for all smaller terms, but in the case for recursive terms I am required to argue
about terms after substitution (see the rules MRec and MRecApp in Figure 1),
which are larger. So first a number of key lemmas relating terms to their larger
substituted counterparts need to be derived.

In fact none of the lemmas are provable in their current form. Each contains
a reference to a constant, the empty set {}. Inductive proofs often require one
to first abstract away such constants. For example, in order to prove Theorem 3
I must first prove the more abstract property

If consistent t and t
a

==⇒ t ′ and wf-restriction A and a /∈ A then ∃ p. p ∈

live-procs (t , A) ∧ p /∈ procs t ′.

Clearly taking A = {} produces theorem 3 above. Similar abstractions need
to be found before proving Theorems 1 and 2.

5 Discussion

In this paper I have shown how to embed a fair CCS in Higher Order Logic.
I embedded the syntax and semantics for value passing CCS with recursive
functions. Following an earlier theory I extended the basic definition of CCS
by defining a labelled calculus and showed how to define live processes in this
calculus. I used the definition of live processes to encode a definition of the fair
traces of the labelled CCS terms. As I have proved a correspondence between
the transitions systems of labelled and unlabelled terms (lemmas 7 and 6) I can
also talk of the fair executions of ordinary CCS terms, not just the labelled ones.

An interesting feature of the embedding is the attempt to handle substitu-
tion and function application at the meta level. The introduction of mutually
recursive terms (and the requirement to define substitution) creates a strange
marriage of HOAS and substitution. HOAS saved some hassle in dealing with
syntax but introduced a few extra issues. The effort associated with dealing with
HOAS terms wasn’t excessive. After derivation of a well-founded ordering and
induction principle they essentially had little impact except the requirement to
prove lemmas 10 and 11.

Another approach would be to avoid the syntactic approach and define in-
stead some sort of environment, treating variables as having values in the en-
vironment rather than performing substitution. Though undoubtedly such an
approach would have it’s own drawbacks.
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As future work I intend to embed a temporal logic in which I can reason a
about fair CCS processes.
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Abstract. This paper reports an investigation into the link between
failed proofs and non-theorems. It seeks to answer the question of whether
anything more can be learned from a failed proof attempt than can be
discovered from a counter-example. We suggest that the branch of the
proof in which failure occurs can be mapped back to the segments of code
that are the culprit, helping to locate the error. This process of tracing
provides finer grained isolation of the offending code fragments than is
possible from the inspection of counter-examples. We also discuss ideas
for how such a process could be automated.

The use of mathematical proof to show that a computer program meets its
specification has a long history in Computer Science (e.g. [13, 12]). However the
techniques and tools are only used in very specialised situations in industry where
programmers generally rely on testing and bug reports from users to assess the
extent to which a program meets its specification. One of the many reasons to
which this poor uptake is attributed is that the final proof will tell you if the
program is correct, but failing to find a proof does not, on immediate inspection,
help in locating errors. This problem can be particularly severe when using
automated proof techniques which generally produce no proof trace in the case
of failure. However cases have been reported where the process of attempting
a proof by hand has highlighted an error. Anecdotal evidence suggests that
errors are located by examining and reflecting on the process of the failed proof
attempt.

It is worth noting the comparative success of model checking techniques
(e.g. [9]), part of which has been attributed to the fact that model-checkers
return counterexamples when they fail. As a result, there has been a great deal
of interest recently in the detection of counter-examples for software programs
and protocols (e.g. [17]). The purpose of the work reported here was to see if the
process of attempting and then failing to find a proof could tell a user anything
further about software errors than could be extracted from a counter-example.

We start by outlining our methodology (§1) and give a broad categorisation
of the errors we encountered (§2), we then examine some specific examples of
buggy programs, the failed proof attempts they generated, how these attempts
can be used to assign “blame” to particular segments of the original source code
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and in some cases to suggest patches(§3). Lastly we discuss ideas for automating
this process and some challenges that such a system would face (§4).

1 Methodology

We have opted to study programs produced by novice programmers, specifically
undergraduates working on functional programming modules. There were three
main reasons why we selected this domain: it is relatively easy to acquire a large
number of such programs; they are likely to be well suited to attempts at correct-
ness proofs and easy to translate into the object language of theorem provers;
and they tend to be relatively small so the associated correctness proofs can be
generated comparatively rapidly allowing us to focus on surveying errors. There
are clearly also some problems with selecting such a domain, in particular that
the errors produced by novices may be dissimilar to those produced by profes-
sional programmers. It is also the case that conclusions drawn about the utility
of failed proof attempts in functional programming may not tell us anything
about their utility in other paradigms.

We gathered a test bed of such programs and used standard testing to identify
those which were incorrect. This process also generated counter-examples for
those programs. We then attempted hand proofs in the Isabelle/HOL theorem
prover [15, 14] to see if anything further could be learned about the nature of
the error above that already learned from the counter-examples.

Our choice of Isabelle was dictated by an interest in extending this work to
an automated system to produce program error diagnoses based on failed proof
attempts. We have already performed some initial investigations in this area
using the proof planning paradigm [5]. IsaPlanner [6] is a proof planning system
built on top of Isabelle so this made the combination of Isabelle/IsaPlanner an
attractive option. Furthermore our test database contained, almost exclusively,
recursive programs suitable for proof by mathematical induction, an area in
which the IsaPlanner system specialises.

The proof planning paradigm [2] works by capturing patterns of proof across
families of similar problems. The work reported here discusses hand proof at-
tempts in Isabelle performed with the intention of defining patterns of failure
which could then be expressed within a proof planning system.

Our initial investigations involved a set of ML and Haskell Programs gen-
erated by students at the Universities of Edinburgh1 and Nottingham2 respec-
tively. We performed a naive shallow embedding by hand of these programs into
Isabelle/HOL. We assumed that all datatypes mapped directly to the corre-
sponding Isabelle datatype (i.e. Isabelle lists behave in the same way as ML lists
etc.) and that built-in functions (such as list append, list membership etc.) could
also be directly transferred. In some cases we had to edit definitions so they used

1 The original author of these exercises is unknown. They were set as part of the
Computer Science 2 module.

2 Exercise authored by Dr. Graham Hutton for the Functional Programming module.
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structural recursion – for instance when writing functions on the natural num-
bers students often used n and n - 1 when defining the recursive case, rather
than n + 1 and n. However, given the similarity between the Isabelle/HOL the-
ories and ML these assumptions are relatively safe and certainly adequate for
an initial investigation. The Haskell programs provided greater challenges. We
had issues with the representation of type classes and lazy evaluation and we
also found that the match between the functions in the Haskell prelude and Is-
abelle’s existing theories was often insufficient3. This reduced our confidence in
the conclusions we could draw from the Haskell examples. In this paper we shall
only examine ML examples however the Haskell examples do broadly support
our conclusions.

In what follows we shall use the typewriter font family to represent ac-
tual fragments of program code from our corpus and latex math environment

to represent Isabelle definitions and goals so it is clear when we are talking about
actual ML and when we are discussing our translation into Isabelle/HOL.

2 Categorisation of Errors

2.1 Errors in the Basis Case of a Recursive Program

Our previous work investigated the errors that occur in the basis cases of recur-
sive programs [5] and identified two common classes of error in novice programs:
that one or more base cases are omitted or that a base case is incorrect. These are
distinguished in proofs by reaching a proof goal in the base case of an inductive
proof which contains a “user-defined” function which can not be simplified or al-
ternatively by the derivation of False. These observations were largely confirmed
by this study. In some cases we gained extra information from Isabelle’s recursive
definition mechanisms. For instance primrec (Isabelle’s mechanism for defining
primitive recursive functions) will issue a warning that there is no equation for a
particular constructor if a case is omitted. However, often functions with missing
cases required the use of the more general recdef definition mechanism4 which
did not issue such warnings. We also found that there were instances where a
student would ensure that a sub-function was never called on particular cases
and therefore the fact that it was only partially defined was not an issue for the
overall correctness of the program.

2.2 Errors in the Recursive Case of a Recursive Program

Initially we observed three different kinds of error in recursive cases. Firstly, the
recursive case contained insufficient information (it was embeddable within a

3 We also had problems with an exercise specification which under-specified the type
of bits to integers although it was clear the functions were only to be tested on 0
and 1.

4 These errors tended to arise when the student was attempting a two step recursive
scheme which primrec would not allow.



48 Louise A. Dennis and Pablo Nogueira

“correct” recursive case), secondly the recursive case contained too much infor-
mation (a “correct” recursive case was embeddable within it), and thirdly there
was no embeddability relation with the correct recursive case. We had hoped
that these three errors would map to three different styles of failure observed in
our proofs. However experimentation with a number of artificially created ex-
amples revealed that this was not the case. Furthermore experimentation with
our actual corpus revealed that finer distinctions could be drawn (eg. indicating
that a particular sub-expression in the recursive case was to blame). This made
us realise that an approach based on a broad categorisation of types of error and
then an attempt to sort programs into categories was misguided. Instead, where
an error is attributed to the recursive case of a program, the trace of the proof
attempt can be used to further localise the error to a sub-expression.

2.3 Specification Errors

Additionally some errors in the corpus could be broadly classified into programs
which simply omitted to satisfy some part of the specification. In this case it
is unclear that proof had much to offer over and above any sort of counter-
example generation. A counter-example could quickly show that this part of the
specification was not met and, usually, a major redesign of the program was
required in order to accommodate the omitted feature so identifying a culpable
program fragment was not really an issue.

3 Analysis of Some Specific Examples

In this paper we focus on three ML list processing exercises:

1. Write a function removeAll x l which removes all occurrences of the item

x in the list l.

2. Write a function onceOnly l which returns a list containing exactly one

copy of every item that appears in l.

3. Write a function insertEverywhere x l which returns the list of all lists

obtained from l by inserting x somewhere inside.

We created several auxiliary functions in Isabelle for expressing the specifi-
cations of these exercises. In particular we used count list and sub list shown
below. count list counts the number of appearances of an element in a list and
sub list only evaluates to true if one list is contained in another and if the
elements of that list appear in the same order as the super-list. Our Isabelle
definitions of our specification functions are5:

5 We have preserved much Isabelle syntax in this presentation. For instance the un-
curried format; the use of # for list concatenation and the use of Suc to indicate
the successor function on natural numbers. However in some cases with have used
standard mathematical notation instead. Most notably ∈ for list membership (the
Isabelle function mem) and 6= for inequality.
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count list a [] = 0, (1)

count list a (h#t) = if a = h then Suc(count list a t)
else count list a t.

(2)

sub list l [] = if l = [] then True else False, (3)

sub list l h#t = if l = [] then True else

if hd l = h then sub list (tl l) t

else sub list l t.

(4)

The full specification we used for each exercise can be found in Appendix A.
Following proof planning literature we will refer, in what follows, to the use

of the induction hypothesis in an inductive proof as fertilisation.

3.1 Case 1: Fertilisation Fails

This example occurs in the removeAll exercise. It is important to note here that
in a previous exercise the student had been asked to create a function removeOne

which removed one occurrence of the item x from the list l. The student has
defined removeAll as follows:

fun removeAll _ [] = []

| removeAll x (h::t) = if x = h then removeAll x t

else h::removeOne x t;

Presumably the student is programming by analogy, starting with their
removeOne function. They have forgotten to change the recursive step to
removeAll.

This program generates rather obscure counter-examples. All the following
calls succeed:

> removeAll 1 [];

val it = [] : int list

> removeAll 1 [1, 1, 1];

val it = [] : int list

> removeAll 1 [1, 2, 1];

val it = [2] : int list

Our first counter-example was:

> removeAll 1 [1, 1, 2, 3, 4, 1, 1];

val it = [2, 3, 4, 1] : int list

careful investigation with additional counter-examples reveals that the problem
arises when the item to be removed occurs more than once in the list after an
element that is not to be removed.
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We translated the student code into Isabelle as:

removeAll x [] = [], (5)

removeAll x (h#t) = if x = h then removeAll x t

else h#removeOne x t.

(6)

The attempted proof against the first part of the specification,

¬(x ∈ removeAll(x, l)),

gets blocked at an unsuccessful fertilisation attempt,

¬x ∈ removeAll x l ∧ x 6= a ⇒ ¬x ∈ removeOne x l.

It is easy to see from this goal that the “blame” lies with the use of the function
removeOne and it is also possible to work out the correction that is needed to
make the proof complete successfully. Indeed an automated technique such as
difference unification [1] would probably be able to generate a patch.

In this case the proof trace much more directly localises the error in the
program than the counter-example did.

3.2 Case 2: Fertilisation succeeds

This is a case where the student has been asked to write the insertEverywhere
function. The attempt is

fun insertEverywhere x [] = [[x]]

| insertEverywhere x (x1 :: xs) = (x :: x1 :: xs)

:: insertEverywhere x (xs);

and they have, in fact, added the comment

“this function only returns the list of lists given by inserting the value
x before all the elements in the list. It does not take into account the
values before which x has already been inserted. For example 1[2,3];
would return[ [1,2,3],[1,3],[1]] not sure how to implement the function to
include the previous values in the list”

indicating that they are well aware of the bug in their program. The prob-
lem can be solved by mapping \l. x1::l over all the lists produced by
insertEverywhere6.

As part of verifying this we attempted to prove

l ∈ insertEverywhere x l1 → count list x l = Suc(count list x l1).

6 Although the correct student programs generally used a sub-function with an accu-
mulator argument to achieve the same effect.
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The step case is

∀xa.xa ∈ insertEverywhere x list → count list x xa = Suc(count list x list)
⇒ ∀xa.xa ∈ insertEverywhere x (a#list) →
count list x xa = Suc(count list x (a#list)).

This simplifies to

∀xa.xa ∈ insertEverywhere x list → count list x xa = Suc(count list x list)
⇒ x = a → (∀x.(a#a#list = x → count list a x = Suc(Suc(count list a list))) ∧

(a#a#list 6= x →
x ∈ insertEverywhere a list → count list a x = Suc(Suc(count list a list)))).

NB. This shows that Isabelle has automatically proved a branch where x 6= a.
Repeated use of introduction rules then case splits this into two goals depending
on whether xa = a :: a :: list or whether xa ∈ insertEverywhere a list. These
two branches can be mapped to sub-expressions of the original recursive case
of the function definition: (x :: x1 :: xs) and insertEverywhere x (xs)

respectively. The first of these goals is true and we can derive false from the
second with the following sequence of steps:

∀xa.xa ∈ insertEverywhere a list → count list a xa = Suc(count list a list)
∧x = a ∧ a#a#list 6= xa ∧ xa ∈ insertEverywhere a list

⇒ count list a xa = Suc(Suc(count list a list)).

Fertilisation occurs

count list a xa = Suc(count list a list)∧
x = a ∧ a#a#list 6= xa ∧ xa ∈ insertEverywhere a list

⇒ count list a xa = Suc(Suc(count list a list)).

and we now have a contradiction between the first hypothesis and the conclusion.
In order to prevent this contradiction arising it is necessary to prevent

the unification of xa ∈ insertEverywhere a list with the antecedent of
xa ∈ insertEverywhere a list → count list a xa = Suc(count list a list). The
goal, xa ∈ insertEverywhere a list, was obtained by rewriting the formula
xa ∈ insertEverywhere a (a#list) with the definition of insertEverywhere

and then taking the tail of the resulting term. Clearly this tail needed some extra
structure somewhere to prevent immediate fertilisation. In this case the extra
structure was needed around insertEverywhere a list but conceivably it could
have required extra structure in one of the argument positions.

It is not clear that we know anything more at this point than we did from the
counter-examples detailed by the student (and the ones we generated ourselves
in testing) since these clearly indicate that successive calls to insertEverywhere

are losing necessary information. It is, however, possible to see how an automated
mechanism could isolate the responsible sub-expression using a proof trace more
easily, perhaps, than it could from analysis of a counter-example alone.

It is also possible that some form of deductive synthesis [3] or corrective
predicate construction [11] at this point might allow the correct sub-expression
to be synthesized.
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Case 3: Fertilisation not expected

In this case another student, also attempting to write insertEverywhere, has
met problems. They have defined a subsidiary function, ie:

fun ie n R [] = [R@[n]]

| ie n R (h::t) = (n::h::t)::[R]@(ie n (R@[h]) t);

Again they are aware that the function does not work correctly “I have had

massive problems trying to concatenate the list R and the tail”. There are several
problems here. R needs to appear within the head of the list of lists; and it should
appear before and not after (n::h::t).

This program produces an odd set of counter-examples:

> insertEverywhere 0 [1, 2];

val it = [[0, 1, 2], [], [0, 2], [1], [1, 2, 0]] : int list list

> insertEverywhere 0 [1, 2, 3];

val it = [[0, 1, 2, 3], [], [0, 2, 3], [1], [0, 3], [1, 2],

[1, 2, 3, 0]] : int list list

However insertEverywhere [] produces the correct answer which together
with the counter-examples strongly suggests that the problem lies with the re-
cursive rather than the basis case of the functions. So the question is whether
proof can isolate the problem further.

In our Isabelle development it was easy to establish that

insertEverywhere x l = ie n [] l

We then attempted to establish a generalised version of our specification includ-
ing

l ∈ (ie x l1 l2) ⇒ count list x l = Suc(count list x l2) + count list x l1

The proof follows a similar pattern to that in the previous example. We
perform induction on l2 considering a#list in the step case and then case split
on whether l = x#a#list. In this instance the first branch of the case split
causes problems resulting in the goal

∀xaxb.xb ∈ ie x xa list →
count list x xb = Suc(count list x list) + count list x xa

∧ l = x#a#list ⇒
count list x (x#a#list) = Suc(count list x (a#list)) + count list x l1,

which rewrites to

∀xaxb.xb ∈ ie x xa list →
count list x xb = Suc(count list x list) + count list x xa

∧ l = x#a#list ⇒
Suc(count list x (a#list)) = Suc(count list x (a#list)) + count list x l1,
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which simplifies to

∀xaxb.xb ∈ ie x xa list →
count list x xb = Suc(count list x list) + count list x xa

∧ l = x#a#list ⇒ count list x l1 = 0

which is satisfiable but not always true.
In this case we wouldn’t have expected fertilisation to be possible because of

the structure of the case splits. However this has still shown there is a problem
with (n::h::t). In fact exploration of the remaining branches of the proof
further suggests that [R] is also a problem while (ie n (R@[h]) t) is not. In
this case the proof trace once again appears to have provided more information
than the counter-example. For instance the fact that the actual recursive call
itself is correctly formed is not at all obvious from the counter-examples.

3.3 Case 4: Combined Problems

We conclude by examining an example where there are a combination of errors
in the program. In this case in the basis cases. This is an example where the
student has been asked to write the onceOnly function. They have created a
complex set of sub-functions, not required by the program specification, in order
to achieve this:

fun insert x [] = []

| insert x(h::t) =

if x <= h then x :: h :: t

else h :: insert x t;

fun sort [] = []

| sort (x :: xs) = insert x (sort xs);

fun Once [] = []

| Once (x1 :: x2 :: xs) =

if x1 = x2 then Once (x2 :: xs)

else x1 :: x2 :: Once xs;

fun onceOnly [] = []

| onceOnly (x :: xs) = Once (sort (x :: xs));

There are two errors here. Firstly the basis case for insert should be insert

x [] = [x] and secondly we are missing a basis case for Once where there is a
singleton list. Our counter-examples indicate that all calls to onceOnly evaluate
to [].

It is fairly simple to prove that

onceOnly l = Once(sort l).
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We then needed to establish a number of theorems about sort and insert. We
introduced two new functions min list and less min list (which evaluate tot he
minimum element in a list, and a list less its minimum element respectively):

min list(a#[]) = a, (7)

min list(h#t) = min h (min list t). (8)

less min list [] = [], (9)

less min list (h#t) = if h = min list(h#t) then t

else h#(less min list t).
(10)

and attempted to prove

l 6= [] ⇒ (sort l) = (min list l)#sort(less min list l).

The step case of this proof introduces the goal:

list 6= [] ⇒ sort list = (min list list)#(sort (less min list list))
a#list 6= [] ⇒ sort a#list = (min list a#list)#(sort (less min list a#list))

which triggers a case split on whether list = []. In the case where this is true the
induction hypothesis evaluates to true and rewriting the induction conclusion
reaches the goal

insert a [] = [a]

which rewrites to
[] = [a]

and then we derive False. From this it is obvious that the appropriate fix is to
edit the basis case of insert to insert x [] = [x]. It is important to note
here that the lemma we have chosen is dependent our intuitions about the way
insert and sort should behave. If the student had named these functions less
informatively the process of locating the insert error would have been consid-
erably complicated.

It isn’t possible to detect the additional problem with Once even continuing
from this point with enthusiastic use of Isabelle’s sorry command in order to
establish theorems that can’t be proved. Once is only ever applied to expressions
of the form sort l which, because of the bug in insert, all evaluate to [] so
the missing case in Once is undetectable.

In other examples we were able to identify combinations of problems where
they caused the proof to break down in different branches of the trace. How-
ever this example illustrates some limitations of the proof approach in terms of
detecting all the errors within a program.

4 Discussion and Related Work

We have picked some representative examples of problems in our corpus of study.
Unsurprisingly these illustrate that the structure of a program correctness proof
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is related to the structure of the underlying program. It is important to realise
that the structure of the proof is also affected by the structure of the specification
functions and so a direct mapping between branches of a proof and cases within
a program is not always possible. Also of note is the fact that there may not be
an explicit if ... then ... else structure in a program and yet the structure
of the code can still induce a case split on the proof allowing us to focus our
attention on particular sub-expressions. In our examples by the interaction of
Isabelle’s list membership function and the head::tail structure of lists.

It is also possible to see that the proof traces provide hints about how a
proof can be patched sometimes directly providing the correct evaluation of an
expression (the insert example) and sometimes highlighting where information
may be missing, etc.

Our examples raise a number of interesting questions:

1. How could the proof traces shown here be produced automatically. In par-
ticular how should such a system decide when it has reached an informative
failure? and how can a programmer’s intended behaviour for sub-functions
be determined?

2. Given a trace how can useful information be extracted and presented to a
user?

3. How might patches for problem areas of code be constructed?

Automating Proof Tracing Although in many cases the programs we are
studying are only a few lines long the proofs we have produced raise a number
of challenges for automation, even when the programs are correct. For instance
we frequently needed to generalise our goals to accommodate the presence of
accumulators in sub-functions and occasionally needed to speculate new func-
tions and lemmas entirely (e.g. the need to provide a rule for expressing sort l

in terms of the head and tail of a list). Proof planning already has an account of
how new lemmas and generalisations can be found [8] but our examples present
considerable challenges to the state-of-the-art in this area.

Leaving aside the issue of appropriate lemma speculation we also found that
in order to extract the useful information from the failed proofs we had to by-
pass Isabelle’s simplifier to step through a number of rewrite steps and other
simplifications by hand before we reached a goal that was “informative”. In gen-
eral we used the simplifier to narrow the investigation to particular branch of
the proof, but then found we needed to retract the simplification to gain finer
grained information about exactly which case was causing problems and the
steps that led to an unprovable goal. This process would need to be controlled
carefully in any automated system. As a related issue an important part of this
process was identifying goals that were satisfiable but not always true, existing
counter-example discovery technology clearly has a role to play here. Possibly
a call to quickcheck or similar should be employed each time a proof attempt
branches in order to ascertain whether a system should attempt to prove that
branch or gather error information.
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Lastly there is the issue of programmer introduced sub-functions. In an ideal
world a programmer would specify the behaviour of all sub-functions as well
as the main program however there are many situations where this will not
be the case, for instance if an error diagnosis system were used as a marking
aid rather than as a program construction aid for students. In some cases it
may be possible to use ontology matching and repair methods [10] to deduce the
intended behaviour. In case 4 the fact that the function was named insert would
allow us to compare its behaviour to a correct list insertion function7. It might
also be possible, in some cases, to get a programmer to provide sample inputs
and outputs and use conjecture forming technology [4] to deduce appropriate
lemmas.

Extracting Information from Proof Traces Once a proof trace has been
produced there is then the question of how useful information can be extracted
from it. There would appear to be a number of ways in which this could work,
some general and some related to specific forms of failure. For instance, when
fertilisation has failed it seems plausible to attempt difference unification [1]
of the induction conclusion and the induction hypothesis in order to highlight
differences and suggest patches. Similarly where we are attempting to prove an
equality, it may be possible to compare the LHS and RHS in order to adapt a
function’s output.

It is also often possible to extract generalised counter-examples or counter-
example classes from a failed proof branch which may provide more focused
information than individual counter-examples. For instance, in the insert ex-
ample, it is possible to deduce there is a problem with all one element lists.

Patching Problem Code Monroy [11] has already used proof planning to
examine faulty conjectures. He follows work by Franova and Kodratoff [7] and
Protzen [16] and attempts to synthesize a corrective predicate in the course of
proof. The idea is that the corrective predicate will represent the theorem that
the user intended to prove. This predicate is represented by a meta-variable,
P , such that P → G where G is the original (non)theorem. This process can
correctly fill in missing base cases8 but the approach would need modification
if it were to remove a piece of faulty code and then replace it with a different
correct fragment.

An alternative approach might be to look to deductive synthesis technol-
ogy [3]. Deductive synthesis uses meta-variables in existence proofs to synthesise
a program that meets its specification. Once an offending program fragment
has been identified it should be possible to replace it with a meta-variable and
attempt to use similar techniques to instantiate this variable. Similarly where
premature fertilisation has occurred indicating missing structure, the possible lo-

7 Our thanks to Fiona McNeill for this suggestion.
8 Monroy and Dennis, Fault Diagnosis, Edinburgh Dream Group Blue Book Note

1485.
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cations for this structure could be represented by meta-variables and deductive
synthesis used to instantiate these.

5 Conclusion and Further Work

In this paper we have reported the results of of a case study in the use of
proof to locate program errors. We have shown that the structure of the proof
can be used to narrow the focus of attention to specific parts of program and
made some suggestions about how such a trace could, in some situations, also
be used to suggest appropriate patches. We have compared the information we
could extract from our failed proof attempts with the information deducible
from counter-examples and concluded that it is generally, although not always,
possible to narrow the focus to the culpable piece of code better using a proof
trace than it is using the counter-example.

We now intend to construct an automated system based on proof planning to
produce these proof traces and then use this system to automatically generate
diagnoses and patches.

Acknowledgements

This research was funded by EPSRC grant GR/S01771/01 and Nottingham NLF
grant 3051.

References

1. D. A. Basin and T. Walsh. Difference unification. In R. Bajcsy, editor, Proceedings
of IJCAI-93, pages 116–122. Morgan Kaufmann, 1993.

2. A. Bundy. A science of reasoning. In J.-L. Lassez and G. Plotkin, editors, Com-
putational Logic: Essays in Honor of Alan Robinson, pages 178–198. MIT Press,
1991.

3. A. Bundy, L. Dixon, J. Gow, and J. D. Fleuriot. Constructing induction rules for
deductive synthesis proofs. In Constructive Logic for Automated Software Engi-
neering, ENTCS. Elsevier, 2005. To Appear.

4. S. Colton. The HR program for theorem generation. In A. Voronkov, editor, 18th
International Conference on Automated Deduction, volume 2392 of LNCS, pages
285–289. Springer, 2002.

5. L. A. Dennis. The use of proof planning critics to diagnose errors in the base
cases of recursive programs. In W. Ahrendt, P. Baumgartner, and H. de Nivelle,
editors, IJCAR 2004 Workshop on Disproving: Non-Theorems, Non-Validity, Non-
Provability, pages 47–58, 2004.

6. L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
F. Baader, editor, 19th International Conference on Automated Deduction, volume
2741 of Lecture Notes in Computer Science, pages 279–283. Springer, 2003.

7. M. Franova and Y. Kodratoff. Predicate synthesis from formal specification. In
B. Neumann, editor, 10th European Conference on Artificial Intelligence, pages
97–91. John Wiley and Sons, 1992.



58 Louise A. Dennis and Pablo Nogueira

8. A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of
Automated Reasoning, 16(1–2):79–111, 1996.

9. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.
10. F. McNeill, A. Bundy, and C. Walton. Diagnosing and repairing ontological mis-

matches. In Starting AI Researchers’ Symposium, 2004. Also available as Edin-
burgh Informatics Report EDI-INF-RR-0251.

11. R. Monroy. Predicate synthesis for correcting faulty conjectures: The proof plan-
ning paradigm. Automated Software Engineering, 10(3):247–269, 2003.

12. F. L. Morris and C. B. Jones. An early program proof by Alan Turing. Annals of
the History of Computing, 6:139–143, 1984.

13. P. Naur. Proof of algorithms by general snapshots. BIT, 6:310–316, 1966.
14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
15. L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.
16. M. Protzen. Patching faulty conjectures. In M. A. McRobbie and J. K. Slaney,

editors, 13th Conference on Automated Deduction, volume 1104 of Lecture Notes
in Artificial Intelligence, pages 77–91. Springer, 1996.

17. G. Steel, A. Bundy, and E. Denney. Finding counterexamples to inductive con-
jectures and discovering security protocol attacks. AISB Journal, 1(2):169–182,
2002.

Appendix A: Isabelle Specifications Used

1.1 removeAll

removeAll spec1: ¬(x ∈ removeAll(x, l))
removeAll spec2: x 6= a ⇒ count list(x, removeAll(a, l)) = count list(x, l)
removeAll spec3: ¬(x ∈ l) ⇒ removeAll(x, l) = l

1.2 onceOnly

onceOnly spec1: ¬(x ∈ l) ⇒ count list x (onceOnly l) = 0
onceOnly spec2: (x ∈ l) ⇒ count list x (onceOnly l) = 1

1.3 insertEverywhere

insertEverywhere spec1: l1 ∈ insertEverywhere x l ⇒ count list x l1 =
Suc(count list x l)

insertEverywhere spec2: l1 ∈ insertEverywhere x l ⇒ sub list l l1
insertEverywhere spec3: l1 ∈ insertEverywhere x l ∧ x1 6= x ⇒ count list x1 l1 =

count list x1 l

insertEverywhere spec4: (count list x l1 = Suc(count list x l) ∧ sub list l l1 ∧
∀x1. x1 6= x → count list x1 l1 = count list x1 l) ⇒ l1 ∈ (insertEverywhere x l)
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Abstract. Higher order logic (HOL) is a modelling language suitable for
specifying behaviour at many levels of abstraction. We describe a com-
piler from a ‘synthesisable subset’ of HOL function definitions to correct-
by-construction clocked synchronous hardware. The compiler works by
theorem proving in the HOL4 system and goes through several phases,
each deductively refining the specification to a more concrete form, until
a representation that corresponds to hardware is deduced. It also pro-
duces a proof that the generated hardware implements the HOL func-
tions constituting the specification. Synthesised designs can be translated
to Verilog HDL, simulated and then input to standard design automa-
tion tools. Users can modify the theorem proving scripts that perform
compilation. A simple example is adding rewrites for peephole optimi-
sation, but all the theorem-proving infrastructure in HOL4 is available
for tuning the compilation. Users can also extend the synthesisable sub-
set. For example, the core system can only compile tail-recursions, but
a ‘third-party’ tool linRec is being developed to automatically generate
tail recursive definitions to implement linear recursions, thereby extend-
ing the synthesisable subset of HOL to include linear recursion.

1 Introduction

In the HOL4 proof system for higher order logic, a function f satisfying an
equation f(x) = e, which may be recursive, is defined by executing:

Define ‘f(x) = e‘

We describe an extension to Define, called cirDefine, that generates hardware
implementations for a ‘synthesisable subset’ of higher order logic. Executing:

cirDefine ‘f(x) = e‘

first defines f (i.e. invokes Define) and then automatically generates an imple-
mentation of f as a circuit suitable for executing in hardware.

The synthesised circuit is generated by proof and is thus correct by construc-
tion. A correctness theorem is proved by cirDefine for each circuit generated.
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Our system is implemented in HOL4, but the ideas could be realised in other
programmable proof systems.

In the next section we walk through a pedagogical example to illustrate
the flow from higher order logic to Verilog HDL. We then outline how the proof-
producing compiler works. It is a specialised theorem prover and we describe how
deductions are used to generate hardware, and the sense in which synthesised
circuits implement higher order logic functions. Next we discuss related work.
Finally we outline future plans. An appendix contains technical details, including
the formal description of the constructors used to build circuits and the four-
phase handshake protocol that they implement.

2 Compiling higher order logic definitions to circuits

Let’s dive in: cirDefine is an extension of HOL4’s standard command Define

for defining functions. Before using cirDefine one needs to load appropriate
modules and start a new theory in which to store definitions and theorems.
Assume this is done, and also assume that the word32 library [6] is loaded, so
that arithmetic operations like + and - default to 32-bit versions. Numerals like
0w and 1w denote the appropriate 32-bit word values, and w2n:word32->num

converts a 32-bit word to a natural number. The HOL4 top level is Standard
ML (SML); consider the following declaration:
- val (Mult32Iter_def,Mult32Iter_ind,Mult32Iter_cir) =

cirDefine
‘(Mult32Iter(m,n,acc) = if m = 0w then (0w,n,acc) else Mult32Iter(m-1w,n,n+acc))
measuring (w2n o FST)‘;

The right hand side of the declaration applies the SML function cirDefine to
an argument of the form ‘equation measuring measure-function‘. The term
equation is a recursive definition of a function Mult32Iter that takes a triple
of 32-words and returns another triple of the same type. The measure function1

w2n o FST maps a triple of 32-bit words to the natural number denoted by the
first member of the triple (it is used to show termination).

The result of cirDefine is a triple of theorems in higher order logic. The first
component of the triple, which is bound to Mult32Iter def in the declaration
above, is the theorem resulting from applying the HOL4 function definition tool
(Define), using the measure function to aid proof of termination. A side effect of
this definition is to define Mult32Iter as a constant and prove the appropriate
‘definitional’ theorem, which is the theorem returned. Thus the first output from
the input shown above would be:
> val Mult32Iter_def =

|- Mult32Iter(m,n,acc) = (if m = 0w then (0w,n,acc) else Mult32Iter(m-1w,n,n+acc))

The second output is a theorem that is bound to Mult32Iter ind. This is
a custom induction principle for the constant Mult32Iter that can be used for
proofs about it. We show this for completeness, but we do not discuss any proofs.

val Mult32Iter_ind =
|- ∀P. (∀m n acc. (¬(m = 0w) ==> P(m-1w,n,n+acc)) ==> P(m,n,acc)) ==> ∀v v1 v2. P(v,v1,v2)

1 Measure functions are not always necessary as they can be inferred using heuristics
by the termination prover. We expect future releases of the compiler to figure out
the measure function automatically for simple recursions like the one here.
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The final component of the triple of theorems returned by cirDefine is the
result of compiling the definition of Mult32Iter to a circuit. We show this now,
and then follow it by some explanation.

val Mult32Iter_cir =
|- InfRise clk

==>
(∃ v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34
v35 v36 v37 v38 v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50
v51 v52 v53 v54 v55 v56 v57.

DtypeT (clk,load,v21) ∧ NOT (v21,v20) ∧ AND (v20,load,v19) ∧

Dtype (clk,done,v18) ∧ AND (v19,v18,v17) ∧ OR (v17,v16,v11) ∧

DtypeT (clk,v15,v23) ∧ NOT (v23,v22) ∧ AND (v22,v15,v16) ∧

MUX (v16,v14,inp1,v3) ∧ MUX (v16,v13,inp2,v2) ∧

MUX (v16,v12,inp3,v1) ∧ DtypeT (clk,v11,v26) ∧ NOT (v26,v25) ∧

AND (v25,v11,v24) ∧ MUX (v24,v3,v27,v10) ∧

Dtype (clk,v10,v27) ∧ DtypeT (clk,v11,v30) ∧ NOT (v30,v29) ∧

AND (v29,v11,v28) ∧ MUX (v28,v2,v31,v9) ∧ Dtype (clk,v9,v31) ∧

DtypeT (clk,v11,v34) ∧ NOT (v34,v33) ∧ AND (v33,v11,v32) ∧

MUX (v32,v1,v35,v8) ∧ Dtype (clk,v8,v35) ∧

DtypeT (clk,v11,v39) ∧ NOT (v39,v38) ∧ AND (v38,v11,v37) ∧

NOT (v37,v7) ∧ CONSTANT 0w v40 ∧ EQ32 (v3,v40,v36) ∧

Dtype (clk,v36,v6) ∧ DtypeT (clk,v7,v44) ∧ NOT (v44,v43) ∧

AND (v43,v7,v42) ∧ AND (v42,v6,v5) ∧ NOT (v6,v41) ∧

AND (v41,v42,v4) ∧ DtypeT (clk,v5,v48) ∧ NOT (v48,v47) ∧

AND (v47,v5,v46) ∧ NOT (v46,v0) ∧ CONSTANT 0w v45 ∧

Dtype (clk,v45,out1) ∧ Dtype (clk,v9,out2) ∧

Dtype (clk,v8,out3) ∧ DtypeT (clk,v4,v53) ∧ NOT (v53,v52) ∧

AND (v52,v4,v51) ∧ NOT (v51,v15) ∧ CONSTANT 1w v54 ∧

SUB32 (v10,v54,v50) ∧ ADD32 (v9,v8,v49) ∧ Dtype (clk,v50,v14) ∧

Dtype (clk,v9,v13) ∧ Dtype (clk,v49,v12) ∧

Dtype (clk,v15,v56) ∧ AND (v15,v56,v55) ∧ AND (v0,v7,v57) ∧

AND (v57,v55,done))
==>
DEV Mult32Iter

(load at clk, (inp1<>inp2<>inp3) at clk, done at clk, (out1<>out2<>out3) at clk)

This theorem, which is bound to the ML name Mult32Iter cir, has the form:

|- InfRise clk ==> circuit ==> device specification

The variable clk represents the clock and is modelled by a function from time
(natural numbers) to clock values (Booleans). The term InfRise clk asserts
that clock has an infinite number of rising edges. This is a standard precondition
for temporal abstraction [10] and is needed because of the use of the at-operator
(explained below) in the device specification.

The circuit is a standard representation as a conjunction of component in-
stances with internal lines existentially quantified (ibid). The components used
here are described in Section 2.1. Circuits in this form are the lowest level of
formal representation we generate. However they are easily converted to HDL
and then simulated or input to other tools. We have written a ‘pretty-printer’
that generates Verilog HDL and have used several simulators and the Quartus
II FPGA synthesis tool to run examples (including Mult32Iter) on FPGAs.

The device specification uses a HOL predicate DEV that specifies how a HOL
function f is computed using a four-phase handshake. The general form is:

DEV f (load at clk, inp at clk, done at clk, out at clk)

where a term of the form σ at clk denotes the signal consisting of the sequence
of values of σ at successive rising edges of clk. This is a standard operation of
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temporal abstraction (sometimes called clock projection and denoted by σ@clk).
Temporal abstraction (projection) converts a signal σ representing the behavior
of a wire (or bundle of wires) at the clocked circuit level to a signal σ at clk

representing the behavior at the ‘cycle level’ – i.e. to an abstracted signal in
which successive values represent the values during successive stable states of
the circuit. The predicate DEV relates the values of signals at the abstracted
level. A term DEV f (load,inp,done,out) specifies a handshaking device com-
puting f where the signals load, inp, done and out are the handshake request
line, the data input bus, the handshake acknowledge line and data output bus,
respectively.

DEVf
done

out

load

inp

The behavior of such a handshaking device is formalised in the HOL definition
of DEV, which says that if a value v is input on inp when a request is made
on load then eventually f(v) will be output on out, and when this occurs T

is signalled on done. A formal specification of the handshake protocol is given
in the Appendix. At the start of a transaction (say at time t) the device must
be outputting T on done (to indicate it is ready) and the environment must be
asserting F on load, i.e. in a state such that a positive edge on load can be
generated. A transaction is initiated by asserting (at time t+1) the value T on
load, i.e. load has a positive edge at time t+1. This causes the device to read
the value, v say, being input on inp (at time t+1) and to set done to F. The
device then becomes insensitive to inputs until T is next asserted on done, at
which time (say time t′ > t+1) the value f(v) computed will be output on out.
In the implementation generated by our compiler, load, inp, done and out are
only sampled on rising edges of a clock clk, hence the behavior is specified by:

DEV f (load at clk, inp at clk, done at clk, out at clk).
In Mult32Iter cir, the lines inp and out carry triples of 32-bit words, which

are represented by inp1<>inp2<>inp3 and out1<>out2<>out3 where inp1, inp2,
inp3, out1, out2, out3 are 32-bit busses and <> denotes word concatenation.

If we simulate our implementation of Mult32Iter with inputs (5, 7, 0) using
the Icarus Verilog simulator (http://www.icarus.com) and view the result with
the GTKWave waveform viewer (http://home.nc.rr.com/gtkwave), the result is:

Main.clk

Main.done

Main.inp1[31:0]

Main.inp2[31:0]

Main.inp3[31:0]

Main.load

Main.out1[31:0]

Main.out2[31:0]

Main.out3[31:0]

0 s 100 s 145 s

0 5

0 7

0 0

0

0 7

0 7 14 21 28 35

load is asserted at time 15 and done is T then, but done immediately drops to
F in response to load being asserted. At the same time as load is asserted the
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values 5, 7 and 0 are put on lines inp1, inp2 and inp3, respectively. At time
135 done rises to T again, and by then the values on out1, out2 and out3 are 0,
7 and 35, respectively, thus Mult32Iter(5,7,0) = (0,7,35), which is correct.

2.1 Primitive components

The compiler generates circuits using components from a predefined library,
which can be changed to correspond to the targeted technology (the default
target is Altera FPGAs synthesised using Quartus II).

The components used in Mult32Iter cir are NOT, AND, OR (logic gates), EQ32
(32-bit equality test), MUX (multiplexer), DtypeT (Boolean D-type register that
powers up into an initial state storing the value T), Dtype (D-type register with
unspecified initial state), CONSTANT (read-only register with a predefined value:
0w or 1w are used in Mult32Iter cir), ADD32 (32-bit adder) and 32-bit SUB32

(32-bit subtractor). Each of these components is defined in a standard style
(ibid) in higher order logic. For example, NOT is defined by:

NOT(inp,out) = ∀t. out(t) = ¬inp(t)

and the corresponding Verilog module definition that the compiler generates is
// Verilog module implementing HOL unary operator
// $~ :bool -> bool
//
// Automatically generated definition of NOT
module NOT (inp,out);
parameter inpsize = 0;
parameter outsize = 0;
input [inpsize:0] inp;
output [outsize:0] out;

assign out = ! inp;

endmodule

An instance of a NOT-gate occurring in Mult32Iter cir is NOT(v51,v15), which
is ‘pretty-printed’ as a module instance with unique name NOT 12:

/* NOT ((v51 :num -> bool),(v15 :num -> bool)) */
NOT NOT_12 (v51,v15);

defparam NOT_12.inpsize = 0;
defparam NOT_12.outsize = 0;

Notice that comments are automatically generated in the Verilog showing the
corresponding HOL source. This is so that manual inspection can be used to
check that the Verilog is correct (a formal check is impossible, as there is no
formal semantics of Verilog).

NOT is typical of all the combinational components. The two sequential com-
ponents, Dtype and DtypeT, are registers that are triggered on the rising edge
(posedge) of a clock and their definitions use the predicate Rise defined by:

Rise s t = ¬s(t) ∧ s(t+1)

and then Dtype and DtypeT are defined by:

Dtype (clk, d, q) = ∀t. q(t+1) = if Rise clk t then d t else q t

DtypeT(clk, d, q) = (q 0 = T) ∧ Dtype(clk, d, q)

which are coded in Verilog as:
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// Positive edge triggered Dtype register
// Dtype(clk,d,q) = !t. q(t+1) = if Rise clk t then d t else q t
module Dtype (clk,d,q);
parameter size = 31;
input clk;
input [size:0] d;
output [size:0] q;
reg [size:0] q;

initial q = 0;

always @(posedge clk) q <= d;

endmodule

// Boolean positive edge triggered flip-flop starting in state 1
// DtypeT(clk,d,q) = (q 0 = T) /\ Dtype(clk,d,q)
module DtypeT (clk,d,q);
input clk,d;
output q;
reg q;

initial q = 1;

always @(posedge clk) q <= d;

endmodule

The reason for initial q = 0 in the definition of the Dtype module is explained
in Section 7. Since our proofs are valid for any initial value of q, the Verilog
module Dtype is a valid implementation of the model in higher order logic.

Terms Dtype(clk,v50,v14) and DtypeT(clk,v4,v53) in Mult32Iter cir

generate named instances of these modules:

/* Dtype ((clk :num -> bool),(v50 :num -> word32),(v14 :num -> word32)) */
Dtype Dtype_8 (clk,v50,v14);

defparam Dtype_8.size = 31;

/* DtypeT ((clk :num -> bool),(v4 :num -> bool),(v53 :num -> bool)) */
DtypeT DtypeT_8 (clk,v4,v53);

The automatically generated comments show the HOL source, to aid checking
that the Verilog is correct.

2.2 Compiled components

After compiling Mult32Iter, its implementation is added to the library of com-
ponents, so one can use it in subsequent compilations. For example, a multiplier
using Mult32Iter could be defined by:

(*****************************************************************************)
(* Create an implementation of a multiplier from Mult32Iter *)
(*****************************************************************************)
val (Mult32,_,Mult32_cir) =
cirDefine
‘Mult32(m,n) = SND(SND(Mult32Iter(m,n,0w)))‘;

where SND(SND(m,n,acc)) evaluates to acc. The compiler finds hardware im-
plementing Mult32Iter in the component library and uses that to generate an
implementation of Mult32 (abbreviated to Mult32Circuit below):

|- InfRise clk
==> Mult32Circuit

==> DEV Mult32 (load at clk, (inp1<>inp2) at clk, done at clk, out at clk)
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Mult32 is then added to the component library and can be used in subsequent
compilations, for example:

(*****************************************************************************)
(* Implement iterative function as a step to implementing factorial *)
(*****************************************************************************)
val (Fact32Iter,Fact32Iter_ind,Fact32Iter_cir) =
cirDefine
‘(Fact32Iter(n,acc) =

if n = 0w then (n,acc) else Fact32Iter(n-1w, Mult32(n,acc)))
measuring (w2n o FST)‘;

(*****************************************************************************)
(* Implement a function Fact32 to compute SND(Fact32Iter (n,1)) *)
(*****************************************************************************)
val (Fact32,_,Fact32_cir) =
cirDefine
‘Fact32 n = SND(Fact32Iter (n,1w))‘;

This generates a circuit Fact32Circuit to compute the factorial function:
|- InfRise clk

==> Fact32Circuit

==> DEV Fact32 (load at clk, inp at clk, done at clk, out at clk)

The example waveform below shows that if 4 is input then 24 (i.e. 4!) is being
output on Main.out when Main.done next goes high.

Main.clk = 1

Main.done = 1

Main.inp[31:0]= 4

Main.load = 0

Main.out[31:0]= 24

0 s 100 s 200 s 300 s 395 s

0 4

0 1 4 12 24

The 32-bit registers will overflow if one attempts to compute the factorial of
n where n > 12. One can prove in HOL that:

` ∀n. (FACT n < 232) ==> (FACT n = w2n(Fact32(n2w n)))

FACT is the factorial function on natural numbers and the value of n2w n is the
32-bit word representing n mod 32. We have downloaded the Verilog version of
Fact32Circuit onto an FPGA using Quartus II and verified that the factorial
function is computed for n ≤ 12, and that the expected wrap-around values are
computed for n > 12.

3 How the compiler works

The compiler implements functions f where f : σ1 × · · · × σm → τ1 × · · · × τn

and σ1, . . . , σm, τ1, . . . , τn are the types of values that can be carried on busses
(e.g. n-bit words). The starting point of compilation is the definition of such a
function f by an equation of the form: f(x1, . . . , xn) = e, where any recursive
calls of f in e must be tail-recursive. Applying cirDefine to such a definition (if
necessary with a measure function to aid proof of termination) will first define
f in higher order logic (using TFL [16]) and then prove a theorem:

|- InfRise clk

==> circuitf
==> DEV f (load at clk, inputs at clk, done at clk, outputs at clk)
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where inputs will be inp1<>· · ·<>inpm, outputs will be out1<>· · ·<>outn (with
the type of inpi matching σi and the type of outj matching τj) and circuitf

will be a HOL term representing a circuit with inputs clk, load, inp1, . . ., inpm
and outputs done, out1, . . ., outn.

The first step (Step 1) in compiling f(x1, . . . , xn) = e encodes e as an ap-
plicative expression, ec say, built from the operators Seq (compute in sequence),
Par (compute in parallel), Ite (if-then-else) and Rec (recursion), defined by:

Seq f1 f2 = λx. f2(f1 x)
Par f1 f2 = λx. (f1 x, f2 x)
Ite f1 f2 f3 = λx. if f1 x then f2 x else f3 x

Rec f1 f2 f3 = λx. if f1 x then f2 x else Rec f1 f2 f3 (f3 x)

The encoding into an applicative expression built out of Seq, Par, Ite and
Rec is performed by a proof script and results in a theorem ` (λ(x1, . . . , xn). e) = ec,
and hence ` f = ec. The algorithm used is straightforward and is not described
here. As an example, the proof script deduces from:

` FactIter(n, acc) = (if n = 0 then (n, acc) else FactIter(n−1, n×acc))

the theorem:

` FactIter =
Rec (Seq (Par (λ(n, acc). n) (λ(n, acc). 0)) (=))

(Par (λ(n, acc). n) (λ(n, acc). acc))
(Par (Seq (Par (λ(n, acc). n) (λ(n, acc). 1)) (−))

(Seq (Par (λ(n, acc). n) (λ(n, acc). acc)) (×)))

The second step (Step 2) is to replace the combinators Seq, Par, Ite and
Rec with corresponding circuit constructors SEQ, PAR, ITE and REC that compose
handshaking devices (see the Appendix for their definitions). The key property
of these constructors are the following theorems that enable us to composi-
tionally deduce theorems of the form ` ImpC =⇒ DEV f , where ImpC is a
term constructed using the circuit constructors, and hence is a handshaking de-
vice (the long implication symbol =⇒ denotes implication lifted to functions –
i.e. f =⇒ g = ∀x. f(x) ⇒ g(x)):

` DEV f =⇒ DEV f

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)
⇒ (SEQ P1 P2 =⇒ DEV (Seq f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)
⇒ (PAR P1 P2 =⇒ DEV (Par f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)
⇒ (ITE P1 P2 P3 =⇒ DEV (Ite f1 f2 f3))

` Total(f1, f2, f3)
⇒ (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)
⇒ (REC P1 P2 P3 =⇒ DEV (Rec f1 f2 f3))

where Total(f1, f2, f3) is a predicate ensuring termination.
If ec is an expression built using Seq,Par, Ite and Rec, then by suitably

instantiating the predicate variables P1, P2 and P3, these theorems allow us to
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construct an expression eC built from circuit constructors SEQ, PAR, ITE and REC

such that ` eC =⇒ DEV ec. From Step 1 we have ` f = ec, hence ` eC =⇒ DEV f

A function f which is combinational (i.e. can be implemented directly with
logic gates without using registers) can be packaged as a handshaking device
using a constructor ATM, which creates a simple handshake interface and satisfies
the refinement theorem:

` ATM f =⇒ DEV f

The circuit constructor ATM is defined with the other constructors in the Ap-
pendix. To avoid a proliferation of internal handshakes, when the proof script
that constructs eC from ec is implementing Seq f1 f2, it checks to see whether f1

or f2 are compositions of combinational functions and if so introduces PRECEDE
or FOLLOW instead of SEQ, using the theorems:

` (P =⇒ DEV f2) ⇒ (PRECEDE f1 P =⇒ DEV (Seq f1 f2))

` (P =⇒ DEV f1) ⇒ (FOLLOW P f2 =⇒ DEV (Seq f1 f2))

PRECEDE f d processes inputs with f before sending them to d and FOLLOW d f

processes outputs of d with f . The definitions are:

PRECEDE f d (load, inp, done, out) =
∃v. COMB f (inp, v) ∧ d(load, v, done, out)

FOLLOW d f (load, inp, done, out) =
∃v. d(load, inp, done, v) ∧ COMB f (v, out)

COMB f (v1, v2) drives v2 with f(v1), i.e. COMB f (v1, v2) = ∀t. v2 t = f(v1 t). The
construction SEQ d1 d2 introduces a handshake between the executions of d1 and
d2, but PRECEDE f d and FOLLOW d f just ‘wire’ f before or after d, respectively,
without introducing a handshake.

The result of Step 2 is a theorem ` eC =⇒ DEV f where eC is an expression
built out of the circuit constructors ATM, SEQ, PAR, ITE, REC, PRECEDE and FOLLOW.

The third step (Step 3) is to rewrite with the definitions of these constructors
(see their definitions in the Appendix) to get a circuit built out of standard kinds
of gates (AND, OR, NOT and MUX), a generic combinational component COMB g

(where g will be a function represented as a HOL λ-expression) and Dtype
registers.

The next phase of compilation converts terms of the form COMB g (inp, out)
into circuits built only out of components that it is assumed can be directly re-
alised in hardware. Such components currently include Boolean functions (e.g. ∧,
∨ and ¬), multiplexers and simple operations on n-bit words (e.g. versions of +,
− and <, various shifts etc.). A special purpose proof rule uses a straightforward
recursive algorithm to synthesise combinational circuits. For example:

` COMB (λ(m,n). (m < n, m+1)) (inp1<>inp2, out1<>out2) =
∃v0. COMB (<) (inp1<>inp2, out1) ∧ CONSTANT 1 v0 ∧

COMB (+) (inp1<>v0, out2)

where <> is bus concatenation, CONSTANT 1 v0 drives v0 high continuously, and
COMB < and COMB + are assumed given components (if they were not given, then
they could be implemented explicitly, but one has to stop somewhere).
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The circuit resulting at the end of Step 3 uses unclocked abstract registers
DEL, DELT and DFF that were chosen for convenience in defining ATM, SEQ, PAR,
ITE and REC (see the Appendix). The register DFF is easily defined in terms of
DEL, DELT and some combinational logic (details omitted).

The fourth step (Step 4) introduces a clock (with default name clk) and
performs an automatic temporal abstraction as described in Melham’s book [10]
using the theorems:

` InfRise clk ⇒ ∀d q. Dtype(clk , d, q) ⇒ DEL(d at clk , q at clk)

` InfRise clk ⇒ ∀d q. DtypeT(clk , d, q) ⇒ DELT(d at clk , q at clk)
By instantiating load , inp, done and out in the theorem obtained by Step 3
to load at clk , inp at clk , done at clk and out at clk , respectively, and then
performing some deductions using the above theorems and the monotonicity of
existential quantification and conjunction with respect to implication, we obtain
a theorem:

|- InfRise clk ==>

circuitf ==>

DEV f (load at clk, inputs at clk, done at clk, outputs at clk)

4 Third party tools: linRec

The ‘synthesisable subset’ of HOL is the subset that can be automatically com-
piled to circuits. Currently this only includes tail-recursive function definitions.
We anticipate compiling higher level specifications by using proof tools that
translate into the synthsisable subset. Such tools are envisioned as ‘third party’
add-ons developed for particular applications. As a preliminary experiment we
are implementing a tool linRec to translate linear recursions to tail-recursions.
This would enable, for example, the automatic generation of Mult32Iter and
Fact32Iter from the more natural definitions:

Mult32(m,n) = if m = 0w then 0w else m+Mult32(m-1w,n)

Fact32 n = if n = 0w then 1w else n*Fact32(n-1)

A prototype implementation of linRec exists. It uses the following definition
of linear and tail recursive recursion schemes:

linRec(x) = if a(x) then b(x) else c (linRec(d x)) (e x)

tailRec(x,u) = if a(x) then c (b x) u else tailRec(d x, c (e x) u)

A linear recursion is matched against the definition of linRec to find values of
a, b, c, d, e and then converted to a tail recursion by instantiating the theorem:

∀ R a b c d e.
WF R
∧ (∀ x. ¬(a x) ==> R (d x) x)
∧ (∀ p q r. c p (c q r) = c (c p q) r)
==>
∀ x u. c (linRec a b c d e x) u = tailRec a b c d e (x,u)

where WF R means that R is well-founded. Heuristics are used to choose an ap-
propriate witness for R.
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5 Case studies

As part of a project to verify an ARM processor [5], a high-level model of the
multiplication algorithm used by some ARM implementations was created in
higher order logic. This is a Booth multiplier and we are using Fox’s existing
specification as an example for testing our compiler.

A more substantial example, being done at the University of Utah, is imple-
menting the Advanced Encryption Standard (AES) [13] algorithm for private-key
encryption. This specifies a multi-round algorithm with primitive computations
based on finite field operations. The AES formalization includes a proof of func-
tional correctness for the algorithm: specifically, encryption and decryption are
inverse functions. Deriving the hardware from the proven specification using log-
ical inference assures us that the hardware encrypter is the inverse of the hard-
ware decrypter. An encryption round performs the following transformations on
a 4-by-4 matrix of input bytes:

1. application of sbox, an invertible function from bytes to bytes, to each byte;
2. a cyclical shift of each row;
3. multiplication of each column by a fixed degree 3 polynomial, with coeffi-

cients in the 256 element finite field, GF(28);
4. adding a key to the matrix with exclusive OR.

We are exploring various options for generating components either as separate
handshaking designs or expanding them into combinational logic. We have also
explored converting our high-level recursive specification of multiplication into
a table lookup. The resulting verified tables can then be stored into a RAM
or ROM device. For synthesizing the tables directly into hardware, we have
automated the definition of a function on bytes as a balanced if expression,
branching on each successive bit of its input.

0xB ** x = if WORD_BIT 7 x then
if WORD_BIT 6 x then
...

if WORD_BIT 0 then 0xA3 else 0xA8
...

else
if WORD_BIT 6 x then
...

Our experience so far is positive: compiling implementations by deduction
provides a secure and flexible framework for creating and optimising designs.

6 Related work

Previous approaches to combine theorem provers and formal synthesis estab-
lished an analogy between the goal-directed proof technique and an interactive
design process. In LAMBDA, the user starts from the behavioural specification
and builds the circuit incrementally by adding primitive hardware components
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which automatically simplify the goal [4]. Hanna et al. [7] introduce several
techniques (functions) that simplify the current goal into simpler subgoals. Tech-
niques are adaptations to hardware design of tactics in LCF.

Alternative approaches synthesise circuits by applying semantic-preserving
transformations to their specifications. For instance, the Digital Design Deriva-
tion (DDD) transforms finite-state machines specified in terms of tail-recursive
lambda abstractions into hierarchical Boolean systems [8]. Lava and Hydra are
both hardware description languages embedded in Haskell whose programs con-
sist of definitions of gates and their connections (netlists) [1, 12]. While Lava
interfaces with external theorem provers to verify its circuits, Hydra designers
can synthesise them via formal equational reasoning (using definitions and lem-
mas from functional programming). The functional languages µFP and Ruby
adopt similar principles in hardware design [9, 15]. The circuits are defined in
terms of primitive functions over Booleans, numbers and lists, and higher-order
functions, the combining forms, which compose hardware blocks in different
structures. Their mathematical properties provide a calculational style in design
exploration.

These approaches deal with an interactive synthesis at the gate or state-
machine level of abstraction only. Moreover, the synthesis and the proof of cor-
rectness require a substantial user guidance. Gropius and SAFL are two related
works that address these issues.

Gropius is a hardware description language defined as a subset of HOL [2, 3].
Its algorithmic level provides control structures like if-then-else, sequential com-
position and while loop. The atomic commands are DFGs (data flow graphs)
represented by lambda abstractions. The compiler initially combines every while
loop into a single one at the outermost level of the program:

PROGRAM out default (LOCVAR vars (WHILE c (PARTIALIZE b)))

The body b of the WHILE loop is an acyclic DFG. The list out default provides ini-
tial values for the output variables. The term LOCVAR declares the local variables
vars and PARTIALIZE converts a non-recursive (terminating) DFG into a poten-
tially non-terminating command. The compiler then synthesises a handshaking
interface which encapsulates this program. Each of these hardware blocks are
now regarded as primitive blocks or processes at the system level. Processes
are connected via communication units (k-processes) which implement delay,
synchronisation, duplication, splitting and joining of a process output data (ac-
tually there are 10 different k-processes [2]). Although the synthesis produces
the proof of correctness of each process and k-process, the correctness of the
top-level system is not generated. The reason for that is mainly because the
top-level interface of a network of processes and k-processes does not match the
handshaking interface pattern.

Our compilation method is partly inspired by SAFL (Statically Allocated
Functional Language) [11], especially the ideas in Richard Sharp’s PhD thesis
[14]. SAFL is a first-order functional language whose programs consist of a se-
quence of tail-recursive function definitions. Its high-level of abstraction allows
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the exploitation of powerful program analyses and optimisations not available in
traditional synthesis systems. However, the synthesis is not based on the correct-
by-construction principles and the compiler has not been verified.

The novelty of our approach is the compilation of functional programs by
composing especially designed and pre-verified circuit constructors. As each of
these circuit constructors has the key property of implementing a device that
computes precisely their corresponding combinators, the verification and the
compilation of functional programs can be done automatically.

7 Current State and Future work

The compiler described here has been through several versions and now works
robustly on all the examples we have tried. There were, however, some initial dif-
ficulties when we first experimented with Verilog simulation. Our formal model
represents bits as Booleans (T, F), but the Verilog simulation model is multival-
ued (1, 0, x, z etc.), so our formal model does not predict the Verilog simulation
behavior in which registers are initialised to x. As a result, Verilog simulation
was generating undefined x-values instead of the outputs predicted by our proofs.
The behaviour of most real hardware does not correspond to Verilog simulation
because in reality registers initialise to a definite value, which is 0 for the Altera
FPGAs we are using. By making our Verilog model of Dtype initialise its state
to 0 we were able to successfully simulate all our examples. Our investigation
of this issue was complicated by a bug in the Verilog simulation test harness:
load was being asserted before done became T, violating the precondition of
the handshake protocol, so even after we understood the initialisation problem,
simulation was giving inexplicable results. However, once we fixed the testbench,
everything worked. All our examples now execute correctly both under simula-
tion and on an Altera Excalibur FPGA board.

In the immediate future we plan to continue and complete the case studies
described in Section 5.

At present all data-refinement (e.g. from numbers or enumerated types to
words) must be done manually, by proof in higher order logic. The HOL4 system
has some ‘boolification’ facilities that automatically translate higher level data-
types into bit-strings, and we hope to develop ‘third-party’ tools based on these
that can be used for automatic data-refinement with the compiler.

We want to investigate using the compiler to generate test-bench monitors
that can run in parallel simulation with designs that are not correct by construc-
tion. Thus our hardware can act as a “golden” reference against which to test
other implementations.

The work described here is part of a bigger project to create hardware/software
combinations by proof. We hope to investigate the option of creating software for
ARM processors and linking it to hardware created by our compiler (possibly
packaged as an ARM co-processor). Our emphasis is likely to be on crypto-
graphic hardware and software, because there is a clear need for high assurance
of correct implementation in this domain.
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APPENDIX: formal specifications in higher order logic

The specification of the four-phase handshake protocol is represented by the
definition of the predicate DEV, which uses auxiliary predicates Posedge and
HoldF. A positive edge of a signal is defined as the transition of its value from
low to high or, in our case, from F to T. The term HoldF (t1 , t2 ) s says that a
signal s holds a low value F during a half-open interval starting at t1 to just
before t2. The formal definitions are:

` Posedge s t = if t=0 then F else (¬ s(t−1) ∧ s t )
` HoldF (t1, t2) s = ∀t. t1 ≤ t < t2 ⇒ ¬(s t)

The behaviour of the handshaking device computing a function f is described
by the term DEV f (load , inp, done, out) where:

` DEV f (load , inp, done, out) =
(∀t. done t ∧ Posedge load (t+1)

⇒

∃t′. t′ > t+1 ∧ HoldF (t+1, t′) done ∧

done t′ ∧ (out t′ = f(inp (t+1)))) ∧

(∀t. done t ∧ ¬(Posedge load (t+1)) ⇒ done (t+1)) ∧

(∀t. ¬(done t) ⇒ ∃t′. t′ > t ∧ done t′)

The first conjunct in the right-hand side specifies that if the device is available
and a positive edge occurs on load , there exists a time t ′ in future when done

signals its termination and the output is produced. The value of the output at
time t ′ is the result of applying f to the value of the input at time t+1. The signal
done holds the value F during the computation. The second conjunct specifies
the situation where no call is made on load and the device simply remains idle.
Finally, the last conjunct states that if the device is busy, it will eventually finish
its computation and become idle.

The circuit constructors

The following primitive components are used by the circuit constructors.

` AND (in1, in2, out) = ∀t. out t = (in1 t ∧ in2 t)
` OR (in1, in2, out) = ∀t. out t = (in1 t ∨ in2 t)
` NOT (inp, out) = ∀t. out t = ¬(inp t)
` MUX(sw , in1 , in2 , out) = ∀t. out t = if sw t then in1 t else in2 t

` COMB f (inp, out) = ∀t. out t = f(inp t)
` DEL (inp, out) = ∀t. out(t+1) = inp t

` DELT (inp, out) = (out 0 = T) ∧ ∀t. out(t+1) = inp t

` DFF(d , sel , q) = ∀t. q(t+1) = if Posedge sel (t+1) then d(t+1) else q t

` POSEDGE(inp, out) = ∃c0 c1. DELT(inp, c0) ∧ NOT(c0, c1) ∧ AND(c1, inp, out)
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Atomic handshaking devices.

` ATM f (load , inp, done, out) =
∃c0 c1. POSEDGE(load , c0) ∧ NOT(c0, done) ∧

COMB f (inp, c1) ∧ DEL(c1, out)

Sequential composition of handshaking devices.

` SEQ f g (load , inp, done, out) =
∃c0 c1 c2 c3 data.

NOT(c2, c3) ∧ OR(c3, load , c0) ∧ f(c0, inp, c1, data) ∧

g(c1, data, c2, out) ∧ AND(c1, c2, done)

Parallel composition of handshaking devices.

` PAR f g (load , inp, done, out) =
∃c0 c1 start done1 done2 data1 data2 out1 out2.

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, start) ∧

f(start , inp, done1, data1) ∧ g(start , inp, done2, data2) ∧

DFF(data1, done1, out1) ∧ DFF(data2, done2, out2) ∧

AND(done1, done2, done) ∧ (out = λ t. (out1 t, out2 t))

Conditional composition of handshaking devices.

` ITE e f g (load , inp, done, out) =
∃c0 c1 c2 start start ′ done e data e q not e data f data g sel
done f done g start f start g .

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, start) ∧

e(start , inp, done e, data e) ∧ POSEDGE(done e, start ′) ∧

DFF(data e, done e, sel) ∧ DFF(inp, start , q) ∧

AND(start ′, data e, start f ) ∧ NOT(data e,not e) ∧

AND(start ′,not e, start g) ∧ f(start f , q, done f , data f ) ∧

g(start g , q, done g , data g) ∧ MUX(sel , data f , data g , out) ∧

AND(done e, done f , c2) ∧ AND(c2, done g , done)

Tail recursion constructor.

` REC e f g (load , inp, done, out) =
∃done g data g start e q done e data e start f start g inp e done f
c0 c1 c2 c3 c4 start sel start ′ not e.

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, start) ∧

OR(start , sel , start e) ∧ POSEDGE(done g , sel) ∧

MUX(sel , data g , inp, inp e) ∧ DFF(inp e, start e, q) ∧

e(start e, inp e, done e, data e) ∧ POSEDGE(done e, start ′) ∧

AND(start ′, data e, start f ) ∧ NOT(data e,not e) ∧

AND(not e, start ′, start g) ∧ f(start f , q, done f , out) ∧

g(start g , q, done g , data g) ∧ DEL(done g , c3) ∧

AND(done g , c3, c4) ∧ AND(done f , done e, c2) ∧ AND(c2, c4, done)

Circuit diagrams of the circuit constructors are shown on the following page.
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Abstract. We present early work on a PVS implementation of a model
of simple control as signal flow graphs to enable formal verification of
input/output behaviour of the control system. As has been shown by
Rutten, Signal flow graphs can be described using Escardó’s coinductive

stream calculus, which includes a definition of differentiation for streams
over the real numbers and the use of differential equations. The basics
of coinductive stream calculus has been implemented in PVS.

1 Introduction

One of the graphical models used for control systems is signal flow graphs. Sig-
nal flow graphs were originally introduced by Mason [1] for modelling linear
networks, and are now widely used in engineering to model data processing and
automatic control.

To control an object means to influence its behaviour so as to achieve a
desired goal. Control systems may be natural mechanisms, such as cellular reg-
ulation of genes and proteins by the gene control circuitry in DNA. They may
be man-made - an early mechanical example was Watt’s steam governor - but
today most man-made control systems are digital, for example fighter aircraft or
CD drives. Usually, in engineering we want to solve the problem of constructing
a system with certain properties. Traditionally, control is treated as a math-
ematical phenomenon, modelled by continuous or discrete dynamical systems.
Numerical computation is used to test and simulate these models, for example
MATLAB is an industry standard in avionics.

The basic building blocks of signal flow graphs are branches, which allow for
multiplication or delay, and nodes, which are either adding- or copying nodes.
From this however, we can determine transfer functions for small graphs. Signal
flow graphs can be represented using coinductive stream calculus, which gives
a means of describing the effect of the various graph building block on a given
input stream. Thus given a signal flow graph and an input stream we can use
coinductive stream calculus to determine the output stream.

Rather than using eg. MATLAB to simulate the behaviour of our signal
flow graphs, we want to use coinductive stream calculus to calculate the out-
put streams. This allows us to have a PVS model of the signal flow graphs and

? This work is supported in part by The Nuffield Foundation.
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their behaviour, thus we can reason formally about the input/output relation-
ship for each signal flow graph by considering the various components and their
compositions. We seek to use signal flow graphs and their representation using
coinductive stream calculus to understand and reason about the input/output
behaviour of control systems.

1.1 Structure

Section 2 gives an explanation of the main ideas and operations of coinductive
stream calculus. In Section 3 we describe a basic implementation of stream cal-
culus in PVS. Finally, in Section 4 we illustrate how the stream calculus can
be used to prove equivalence between signal flow graphs and we consider some
possible future work based on our implementation.

2 Signal Flow Graphs and Stream Calculus

Block diagrams are often used to represent systems with feedback graphically, for
example in classical control a block diagram is a directed graph whose edges are
labelled by rational functions over the complexes. They also allow more general
representation of components described only by their input/output behaviour,
corresponding to a more general notion of state. Signal flow graphs may be
viewed as a particular type of block diagram, with the following restrictions:
graph edges represent only scalar multiplication or unit delay and graph nodes
either sum all their input or copy their output to several branches. However,
by collapsing (parts of) signal flow graphs we may arrive at graphs with more
complicated edge functions.

Figure 1 shows a simple signal flow graph. The input stream (coming from
the left) is copied by the copier, C, and then the two resulting streams are added
by the adder, +. The o is used to indicate composition of circuits. The result is
that the output stream for this circuit is the input stream multiplied by 2.

There is also a basic circuit called an a-multiplier, which multiplies each
element in the input stream by a, and a register circuit, which delays the stream
by 1.

Fig. 1. Signal Flow Graph Multiplying Input Stream by 2
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Pavlovic and Escardó [2] shows the connection between coinductive stream
calculus and elementary calculus. Rutten [3] then describes coinductive stream
calculus as a means of using streams of data to describe the behaviour of signal
flow graphs, and in particular calculate the output stream based on the input
stream. The coinductive stream calculus has notions of addition, multiplication,
derivation and an inverse, which are all related to constructs in the signal flow
graphs. Thus by modelling each part of the graphs by their input and output
stream one may use compositionality to arrive at the behaviours for the complete
graphs. One complication here is obviously the presence of loops in the circuits,
but certain types of loops are known to give well-defined output streams. Within
the stream calculus we may describe and solve linear and differential equations,
which can be an easier and more direct route to finding the first elements of a
stream composed from other streams, rather than calculating it directly.

2.1 Stream Calculus

Let us briefly introduce the notion of stream calculus as explained by Rutten
[3]. We restrict the streams to the set IR of real numbers. The reason for this
is simply that for the signal flow graphs we only have streams over the real
numbers, as opposed to some polymorphic version of streams. A stream is then
a function from IN to IR, and the set of streams over the reals are described by
IRω:

IRω = {σ|σ : IN → IR} (1)

Rather than using the usual terminology of head and tail for a stream, we
call σ(0) the initial value of the stream σ is, and define the derivative σ′ of the
stream σ as

σ′(n) = σ(n + 1) (2)

Having this notion of a derivative allows the development of a calculus of streams

which is fairly close to that of classical functional analysis.
We can now define addition and multiplication of streams as follows. The

sum, σ + τ of streams σ and τ is element-wise, that is

∀n ∈ IN : (σ + τ)(n) = σ(n) + τ(n) (3)

The convolution product, σ × τ of streams σ and τ is given by

∀n ∈ IN : (σ × τ)(n) =

n∑

k=0

σ(k) · τ(n − k) (4)

A particular kind of stream is [r] with r ∈ IR. It is defined as follows:

[r] = (r, 0, 0, 0, . . .) (5)

This essentially allows us to add and multiply real numbers and streams:

[r] + σ = (r + σ(0), σ(1), σ(2), . . .) (6)

[r] × σ = (r · σ(0), r · σ(1), r · σ(2), . . .) (7)
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Often we will simply use r to denote the stream [r], it will be clear from the
context if r is a real number or the stream related to the number.

Finally, we can define a constant stream of particular interest, X:

X = (0, 1, 0, 0, . . .) (8)

The effect of multiplying a stream by X is a delay of 1, that is:

X × σ = (0, σ(0), σ(1), σ(2), . . .) (9)

With the above definitions of differentiation, addition and multiplication, we
get the following facts about differentiation of sums and products:

(σ + τ)′ = σ′ + τ ′ (10)

(σ × τ)′ = ([σ(0)] × τ ′) + (σ′ × τ) (11)

We see that the sum behaves exactly as in classical calculus, however multipli-
cation does not.

Eventually, we would like to be able to solve linear equations with streams,
for example

τ = 1 + (X × τ) (12)

In order to do this in a manner similar to that which we normally use for func-
tions, we need some definition of the multiplicative inverse of a stream. The
property we are after is the following:

1

τ
× τ = [1] (13)

This would allow us to solve Equation 12:

τ =
1

1 − X
(14)

However, since τ is a stream, it is not immediately clear what 1
τ

means. Rutten
[3] defines the inverse using a stream differential equation.

So let us first discuss stream differential equations. Since the derivative of
a stream is simply its tail, differential equations for stream are quite intuitive.
Here is an example of a higher order stream differential equation:

derivative initial values
τ ′′ = τ τ(0) = 0, τ ′(0) = 1

We can work out the value of τ from the differential equation:

τ = τ(0) : τ ′ (15)

= 0 : τ ′(0) : τ ′′ (16)

= 0 : 1 : τ (17)

Thus we see that τ = (0, 1, 0, 1, . . .).
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Of course, we may also have first order differential equations, in which case
only the first derivative of the stream and one initial value is given. We can also
have systems of differential equations, in this case two or more streams are given
in terms of each other.

Now that we have defined stream differential equations, we can return to the
definition of the inverse. The inverse 1

σ
of a stream σ is defined for all streams

with σ(0) 6= 0 by the following stream differential equation:

derivative initial value
( 1

σ
)′ = − 1

σ(0) × σ′ × 1
σ

( 1
σ
)(0) = 1

σ(0)

With this definition, we can prove the following lemmas, which are all properties
we would expect the inverse to have:

σ ×
1

σ
= 1 (18)

1

σ
×

1

τ
=

1

σ × τ
(19)

1
1
σ

= σ (20)

To summarise, we have seen what a stream is, and how we can perform basic
operations - addition, multiplication, differentiation and multiplicative inverse -
on streams.

3 Stream Calculus in PVS

In this section we will describe our basic implementation of stream calculus in
PVS. This work is ongoing, so several interesting properties of stream calculus
has not yet been implemented, and some which are included are in a somewhat
crude form. We follow the structure of Section 2.

3.1 Basic Notion of Streams

PVS has a basic implementation of infinite sequences, which we use for the
definition of our streams:

stream : TYPE = sequence[real]

In fact, we define our streams over a type, A, which is unspecified. However,
for the exposition in this paper, the properties of such general streams are not
needed, so we shall restrict ourselves to discussing streams over the real numbers.
Next, we define the derivative of a stream, remember this corresponds to the tail
of the stream:

derivative(sigma) : stream = lambda n: sigma(n+1)
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We want to have a simple notation for the k’th derivative of a stream:

kth_derivative(sigma,k) : stream = lambda n: sigma(n+k)

We prove various fairly obvious properties about the (k’th) derivative, in partic-
ular the following correspondence between a stream and its derivatives:

Lemma1_1 : LEMMA

sigma(n) = kth_derivative(sigma,n)(0)

That is, if we first take the n’th derivative and then look at the first element of
the resulting stream, we get the n’th element of the original stream.

3.2 Calculating with Streams

We now define the sum and product as in Section 2:

sum(sigma,tau) : stream = lambda n : sigma(n) + tau(n)

prod(sigma,tau) : stream =

lambda n :

sigma(0,n,lambda k : IF k <= n THEN sigma(k) * tau(n-k)

ELSE 0

ENDIF)

For the product, we use a somewhat artificial if-statement. Since τ is defined
only over the natural numbers, k should never exceed n. Obviously with the
limits on the finite sum this is not going to occur, however the PVS typechecker
still insists that we ensure k <= n. There are several ways of doing this, but so
far we have found this one, while not pretty, to be the least intrusive when it
comes to actually using the definition.

We then define the [r] function, this is the stream that has the real number
r as the first element and all other elements are 0:

r : VAR real

stream(r) : stream = lambda n : IF n = 0 THEN r ELSE 0 ENDIF

We also prove that [r] behaves as expected with respect to addition and multi-
plication:

sum_r_sigma : LEMMA

sum(stream(r),sigma) =

lambda n : IF n = 0 THEN r + sigma(0) ELSE sigma(n) ENDIF

prod_r_sigma : LEMMA

prod(stream(r),sigma) = lambda n : r*sigma(n)

Finally, we can define the negation of a stream, we simply multiply the stream
by the stream generated by −1:

neg(sigma) : stream = prod(stream(-1),sigma)
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This is a good point at which to convince ourselves that our specification behaves
as we expected, and we do this by proving various lemma, for example that both
addition and multiplication are commutative and that the distributive law holds
for our streams:

distributive : LEMMA

prod(sigma,sum(tau,rho)) =

sum(prod(sigma,tau),prod(sigma,rho))

3.3 Polynomials

In order to simplify some notation, we define notions of

times which means to multiply a stream by n: times(sigma,n). This compares
to writing nσ.

expt which means multiplying a stream with itself n times: expt(sigma,n). This
compares to writing σn.

Defining the stream X exactly as before:

X : stream = lambda n : IF n = 1 THEN 1 ELSE 0 ENDIF

We then prove three key lemmas about X, that the following equations hold:

rX = λn.if n = 1 then r else 0 endif (21)

X × σ = λn.if n = 0 then 0 else σ(n − 1) endif (22)

Xk = λn.if n = k then 1 else 0 endif (23)

Now we run Exercise 2.4.c from [3]: Write (1, 1, 1, 1, 1, 0, 0, 0, . . .) using sum,
product and X. Using the last equation above, we see that this can be done as
follows:

X0 + X + X2 + X3 + X4 = (1, 1, 1, 1, 1, 0, 0, 0, . . .) (24)

3.4 Differential Equations

We can now define and try to solve stream differential equations in PVS. First
we declare the type for first order stream differential equations:

basicFO_SCde : TYPE = [# initial : real, diff : stream #]

It simply holds the values for the initial value and the derivative. We also give
a generic solution to the FO differential equations:

solve(bfode) : stream =

lambda n : if n = 0 then bfode‘initial

else bfode‘diff(n-1)

endif



A PVS Implementation of Stream Calculus for Signal Flow Graphs 83

With these two definitions, we can solve for example the following differential
equation:

derivative initial value
τ ′ = τ τ(0) = r

In PVS, we get the following lemma:

example1_3a : LEMMA

solve((# initial := r, diff := lambda n : r #)) =

(lambda n : r)

We have seen how we can use stream differential equations to define streams.
However, they can also be used to define functions on streams. This is an imple-
mentation of Example 1.5 from [3]. The differential equation is:

derivative initial value
even(τ)′ = even(τ ′′) even(τ)(0) = τ(0)

Note that although the second derivative of τ occurs in the differential equation,
it is actually still a first order differential equation, since it is defining even rather
than τ . Indeed, the meaning of this is that for all possible streams τ , even should
behave as given by the differential equation. Solving this differential equation,
we see that

even(τ) = (τ(0), τ(2), τ(4), . . .) (25)

as we might have expected from the name of the function. In PVS, we have the
following:

example1_5 : LEMMA

even1 = (lambda tau :

solve((# initial := tau(0),

diff := even1(kth_derivative(tau,2)) #)))

IMPLIES

even1 = (lambda tau : (lambda n : tau(2*n)))

even : [stream -> stream] = lambda tau : (lambda n : tau(2*n))

So we first prove that there is a function even1 which solves the differential
equation, and that it is on the form we calculated in (25). Next, we define the
function even to be equal to that found solution.

At this point, this is the extent of the implementation of the theory of stream
calculus in PVS. However, we have implemented several examples as well.

4 Signal Flow Graphs Represented using Streams

Let us now consider how streams can be used to describe signal flow graphs.
Remember that we have the a-multiplier, Fig. 2. This works on the input stream
σ to give the output stream aσ.
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Fig. 2. a-multiplier: Multiplies the input stream with the real number a

We now consider the two circuits in Fig. 3 and want to use streams to describe
each one and reason that they are equivalent (Example 3.1 in [3]). Starting from
the left circuit (an a-multiplier followed by a b-multiplier):

[b] × ([a] × σ) = ([b] × [a]) × σ (26)

= [ba] × σ (27)

= [ab] × σ (28)

The first two equalities comes from properties of multiplication of streams, these
are both proven in in PVS. The last equality is simply commutativity of multi-
plication over the real numbers. Since [ab]×σ corresponds exactly to the effect of
a ab-multiplier on σ we see that the two circuits in Fig. 3 are indeed equivalent.

Fig. 3. a-multiplier followed by b-multiplier is equivalent to ab-multiplier

We intend to expand our implementation with a representation of signal flow
graphs in PVS, linking this with the stream calculus and looking at extensions
to the signal flow graphs. We also intend to provide some proof strategies for
various typical properties one might want to prove, such as equivalence between
circuits.
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Abstract. Chess endgame databases store the number of moves re-
quired to force checkmate for all winning positions: with such a database
it is possible to play perfect chess. This paper describes a method to
construct endgame databases that are formally verified to logically fol-
low from the laws of chess. The method employs a theorem prover to
model the laws of chess and ensure that the construction is correct, and
also a BDD engine to compactly represent and calculate with large sets
of chess positions. An implementation using the HOL4 theorem prover
and the BuDDY BDD engine is able to solve all four piece pawnless
endgames.

1 Introduction

The game of chess with the modern rules came into existence in Italy towards
the end of the 15th century [7]. The half millennium since then has witnessed
many attempts to analyze the game, and in the last half century computers
have naturally been used to extend the range of human analysis. One such ap-
proach uses computers to enumerate all possible positions of a certain type in an
endgame database, working backwards from checkmate positions to determine
the number of moves required to achieve checkmate from any starting position.

A survey paper by Heinz [6] cites Ströhlein’s Ph.D. thesis from 1970 as the
earliest publication on the algorithmic construction of endgame databases, and
today endgame databases exist for all positions with five or fewer pieces on the
board. Nalimov has started construction of the six piece endgames, but it is
estimated that the finished database will require at least 1 terabyte of storage.

As an aside, it is still unclear whether or not access to endgame databases
improves the strength of chess playing programs. However, they have found
other uses by problemists in aiding the creation of endgame studies, and also
by experts intepreting the computer analysis and writing instructional books for
human players [10].

The attitude towards correctness of endgame databases is summed up by the
following quotation in a paper comparing index schemes [9]:

The question of data integrity always arises with results which are not self-
evidently correct. Nalimov runs a separate self-consistency phase on each

? Supported by a Junior Research Fellowship at Magdalen College, Oxford.
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[endgame database] after it is generated. Both his [endgame databases] and
those of Wirth yield exactly the same number of mutual zugzwangs [. . . ] for
all 2-to-5 man endgames and no errors have yet been discovered.

Applying computer theorem provers to chess endgame databases has two poten-
tial benefits:

– verifying the correctness of an endgame databases by proving that it faith-
fully corresponds to the rules of chess; and

– reducing the storage requirements by employing a more efficient representa-
tion than explicitly enumerating all possible positions.

For analyzing chess endgames this paper advocates the use of a higher order
logic theorem prover integrated with a BDD engine. Higher order logic is very
expressive, and it is possible to encode the rules of chess in a natural way, as
an instance of a general class of two player games. On the other hand, BDDs
can compactly represent sets of positions that have been encoded as boolean
vectors, and the BDD engine can perform efficient calculation on these sets. The
theorem prover ensures that the results of the BDD engine are faithfully lifted
to the natural model of chess, and that all the reasoning is valid.

This methodology has been used to solve all four piece pawnless chess end-
games, the product of which is a set of ‘high assurance’ endgame databases
that provably correspond to a natural definition of chess. For example, given
a chess position p in which it is Black to move, the theorem prover can fully
automatically derive a theorem of the form

`HOL+BDD win2 by chess 15 p ∧ ¬(win2 by chess 14 p) ,

which means that after any Black move from p, White can force checkmate within
15 moves but not within 14 moves. The `HOL+BDD symbol indicates that this
theorem has been derived only from the inference rules of higher order logic and
some BDD calculations. The only constants in this theorem are win2 by, which
has a natural definition in the theory of two player games (see Section 2.1), and
chess, which is a natural model of chess in higher order logic (see Section 2.2).

The primary contribution of this paper is a demonstration of the novel ap-
proach of verifying the correctness of an endgame database by proving its corre-
spondence to a natural definition of chess, as opposed to testing its correspon-
dence to another endgame database.

A secondary contribution of this paper is an investigation into the efficiency
of BDDs to represent and calculate with sets of chess positions. Preliminary
results in this area have already been obtained by Edelkamp, who calculated the
number of BDD nodes to be 5% of the number of winning positions [3].

The structure of the paper is as follows: Section 2 presents a natural model
of chess in higher order logic, which makes use of a general theory of two player
games; Section 3 describes how an endgame database can be constructed in the
theorem prover by rigorous proof; Section 4 presents the results; and Sections 5
and 6 conclude and look at related work.
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2 Formalizing Chess in Higher Order Logic

The rules of chess are formalized in higher order logic in two phases. The first
is a formalization of the theory of two player games, which is general enough
to cover a large class of two player zero sum games with perfect information,
including human games such as chess, checkers and go, and logic games such as
Ehrenfeucht-Fräıssé pebble games.

The second phase defines the legal positions, move relations and winning
positions of chess. Putting these into the two player game framework yields the
crucial sets containing all positions in which White has a forced checkmate within
n moves.

2.1 Two Player Games

The two players of the game are conventionally called Player I and Player II.
In the general theory of two player games layed out in this section the positions
have higher order logic type α, a type variable. This means that when the theory
is applied to a specific game the type of positions can be instantiated to any
concrete representation type.

A two player game G is modelled in higher order logic with a four tuple

(L,M,M, W ) ,

where L is a predicate on positions that holds if the position is legal. M is a
relation between pairs of legal positions that holds if Player I can make a legal
move from the first position to the second. Similarly, M is the move relation for
Player II. Finally W is a predicate on legal positions that holds if the position is
won for Player I (e.g., checkmate in chess). A game G is said to be well-formed
(written two player G) if the move relations and winning predicate are always
false when given an illegal input position.

Intuitively, Player I wins a position if and only if it can be forcibly driven into
a position satisfying W (within a finite number of moves). Given a well-formed
game G, the following definitions make this intuition precise by carving out the
set of legal positions that are eventually won for Player I. One way that Player I

can fail to win is by reaching a non-winning position in which no moves are
possible (e.g., stalemate in chess). This motivates the following two definitions:

terminal1 G ≡ {p | LG(p) ∧ ∀p′. ¬MG(p, p′)} ;
terminal2 G ≡ {p | LG(p) ∧ ∀p′. ¬MG(p, p′)} .

A position with Player II to move is won for Player I within zero moves if
the predicate W is true of it:

win2 by G 0 ≡ {p | WG(p)} .

A position with Player I to move is won for Player I within n moves if Player I

can make a move to reach a position that is won for Player I within n moves:

win1 by G n ≡ {p | ∃p′. MG(p, p′) ∧ p′ ∈ win2 by G n} .
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Finally, a position with Player II to move is won for Player I within n+1 moves
if it is won within n moves, or (i) it is not a terminal position and (ii) every move
that player Player I makes will reach a position that is won for Player I within
n moves:

win2 by G (n + 1) ≡

win2 by G n ∪

{p | LG(p) ∧ ∀p′. MG(p, p′) ⇒ p′ ∈ win1 by G n} − terminal2 G .

Also of interest is the set of all positions that are eventually winning for
Player I, which is defined separately for the cases of Player I to move and
Player II to move:

win1 G ≡ {p | ∃n. p ∈ win1 by G n} ;
win2 G ≡ {p | ∃n. p ∈ win2 by G n} .

The preceding definitions provide all the theory of two player games that
is necessary to interpret theorems resulting from a query of a verified endgame
database.

2.2 Chess

The authoritative version of the laws of chess is the FIDE1 handbook [4]. Section
E.I of the handbook is entitled Laws of Chess, and in a series of articles describes
the object of the game, the movement of the pieces and how the players should
conduct themselves. For example, Article 1 is entitled The nature and objectives
of the game of chess

Article 1.1. The game of chess is played between two opponents who move
their pieces alternately on a square board called a ‘chessboard’. [. . . ]

which confirms that chess is an instance of the general class of two player games
formalized in the previous section.

The first design choice that occurs in the formalization of chess is to decide
which higher order logic type will be used to represent chess positions. The results
in this paper cover only pawnless endgames in which castling is forbidden, so
the only information that needs to be tracked by the position type is the side
to move and the location of the pieces on the board. The key types used to
represent chess positions are:

side ≡ White | Black ;
piece ≡ King | Queen | Rook | Bishop | Knight ;

square ≡ N× N ;
position ≡ side× (square→ (side× piece) option) .

Sides and pieces simply enumerate the possibilities. In the context of the two
player game of chess, this paper will follow the convention of referring to Player I

1 FIDE (Fédération Internationale des Échecs) is the World Chess Federation.
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as White and Player II as Black. Squares are pairs of natural numbers, and a
position is a pair of the side to move and a partial function from squares to
pieces. For convenience and readability, a few basic functions are defined for
examining positions:

opponent s ≡ case s of White → Black | Black → White ;
to move (s, ) ≡ s ;

on square ( , f) sq ≡ f sq ;
empty p sq ≡ (on square p sq = NONE) ;

occupies p s sq ≡ ∃v. on square p sq = SOME (s, v) .

Once the type representing the game state is fixed, what remains to apply
the general theory of two player games is a higher order logic encoding of the
legal positions, move relations and winning positions of chess. Such an encoding
is a routine formalization, and the remainder of this section demonstrates how
naturally the laws of chess can be represented in higher order logic.

Article 2 of the laws of chess in the FIDE handbook describes the geometry
of the chessboard:

Article 2.1. The chessboard is composed of an 8× 8 grid of 64 equal squares
alternately light (the ‘white’ squares) and dark (the ‘black’ squares). The chess-
board is placed between the players in such a way that the near corner square
to the right of the player is white.
Article 2.4. The eight vertical columns of squares are called ‘files’. The eight
horizontal rows of squares are called ‘ranks’. A straight line of squares of the
same colour, touching corner to corner, is called a ‘diagonal’.

This is encoded into higher order logic with the following definitions:

files ≡ 8 ;
ranks ≡ 8 ;

file (f, r) ≡ f ;
rank (f, r) ≡ r ;

board ≡ {sq | file sq < files ∧ rank sq < ranks} ;
same file sq sq′ ≡ (file sq = file sq′) ;

same rank sq sq′ ≡ (rank sq = rank sq′) ;
same diag1 sq sq′ ≡ (file sq + rank sq = file sq′ + rank sq′) ;
same diag2 sq sq′ ≡ (file sq + rank sq′ = file sq′ + rank sq) ;

diff m n ≡ if m ≤ n then n − m else m − n ;
file diff sq sq′ ≡ diff (file sq) (file sq′) ;

rank diff sq sq′ ≡ diff (rank sq) (rank sq′) .

Notice that the presentational aspect of white and black squares is not included
in the higher order logic encoding, only the logically important aspect of the
board being an 8× 8 grid of squares.

Article 3 is entitled The moves of the pieces:

Article 3.2. The bishop may move to any square along a diagonal on which
it stands.
Article 3.3. The rook may move to any square along the file or the rank on
which it stands.
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Article 3.4. The queen may move to any square along the file, the rank or a
diagonal on which it stands.
Article 3.5. When making these moves the bishop, rook or queen may not
move over any intervening pieces.
Article 3.6. The knight may move to one of the squares nearest to that on
which it stands but not on the same rank, file or diagonal.
Article 3.8. There are two different ways of moving the king, by:

1. moving to any adjoining square not attacked by one or more of the op-
ponent’s pieces. The opponent‘s pieces are considered to attack a square,
even if such pieces cannot themselves move.

2. or ‘castling’. [. . . ]

The moves are encoded into higher order logic in three steps. In the first step
the basic moves of the pieces are defined:

bishop attacks sq1 sq2 ≡ (same diag1 sq1 sq2 ∨ same diag2 sq1 sq2) ∧ sq1 6= sq2 ;
rook attacks sq1 sq2 ≡ (same file sq1 sq2 ∨ same rank sq1 sq2) ∧ sq1 6= sq2 ;

queen attacks sq1 sq2 ≡ rook attacks sq1 sq2 ∨ bishop attacks sq1 sq2 ;
knight attacks sq1 sq2 ≡ ((file diff sq1 sq2 = 1) ∧ (rank diff sq1 sq2 = 2)) ∨

((file diff sq1 sq2 = 2) ∧ (rank diff sq1 sq2 = 1)) ;
king attacks sq1 sq2 ≡ file diff sq1 sq2 ≤ 1 ∧ rank diff sq1 sq2 ≤ 1 ∧ sq1 6= sq2 .

To improve clarity, the definition of the basic moves is closer to an explanation
typically found in a beginner’s chess book rather than the letter of the articles.
For example, the queen is explicitly defined to move like a rook or a bishop, and
the definition of the knight move follows the traditional L-shape explanation
rather than the article’s more geometric explanation of “[nearest square] not on
the same rank, file or diaganal”.2

The second step formalizes the no-jumping requirement of Article 3.5 by
defining the concept of a clear line from a square: all the squares that can be
reached horizontally, vertically or diagonally without jumping over any interven-
ing pieces:

between n1 n n2 ≡ (n1 < n ∧ n < n2) ∨ (n2 < n ∧ n < n1) ;
square between sq1 sq sq2 ≡
if same file sq1 sq2 then same file sq sq1 ∧ between (rank sq1) (rank sq) (rank sq2)
else if same rank sq1 sq2 then same rank sq sq1 ∧ between (file sq1) (file sq) (file sq2)
else if same diag1 sq1 sq2 then same diag1 sq sq1 ∧ between (file sq1) (file sq) (file sq2)
else if same diag2 sq1 sq2 then same diag2 sq sq1 ∧ between (file sq1) (file sq) (file sq2)
else ⊥ ;

clear line p sq1 ≡ {sq2 | ∀sq. square between sq1 sq sq2 ⇒ empty p sq}

The definition of square between formalizes the notion of a square lying strictly
between two others in a straight line: the verbosity is a normal consequence of
using algebraic formulas to capture an essentially geometric concept.

2 A more succinct definition that illustrates the L-shape even better is

knight attacks sq1 sq2 ≡ ({file diff sq1 sq2, rank diff sq1 sq2} = {1, 2}) ,

but this has the drawback of requiring a moment’s thought to see that it is correct.
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In the third and final step, the basic moves of the pieces and clear lines are
brought together to define the set of squares attacked from a square.

attacks p sq ≡
board ∩ clear line p sq ∩
(case on square p sq of

NONE → ∅
| SOME ( , King) → {sq′ | king attacks sq sq′}
| SOME ( , Queen) → {sq′ | queen attacks sq sq′}
| SOME ( , Rook) → {sq′ | rook attacks sq sq′}
| SOME ( , Bishop) → {sq′ | bishop attacks sq sq′}
| SOME ( , Knight) → {sq′ | knight attacks sq sq′}) .

Having defined the moves of the pieces, it is straightforward to formalize the
set of legal positions. According to the laws of chess, a position is legal if the
side that has just moved is not in check:

Article 3.9. The king is said to be ‘in check’ if it is attacked by one or more
of the opponent’s pieces, even if such pieces are constrained from moving to
that square because they would then leave or place their own king in check.
No piece can be moved that will expose its own king to check or leave its own
king in check.

In addition to this, the type of chess positions makes it necessary to require
that all of the pieces are on the board. Without this extra requirement, the
formalization would capture the game of chess being played on an infinite board!

in check s p ≡
∃sq1, sq2.

(on square p sq1 = SOME (s, King)) ∧
occupies p (opponent s) sq2 ∧ sq1 ∈ attacks p sq2 ;

all on board p ≡ ∀sq. ¬empty p sq ⇒ sq ∈ board ;
chess legal p ≡ all on board p ∧ ¬in check (opponent (to move p)) p .

Using everything that has been defined so far, it is easy to formalize the move
relations chess move1 (for the White pieces) and chess move2 (for the Black
pieces). In a nutshell, a move is either a simple move of a piece to an empty
square, or a capturing move of a piece to a square occupied by an opponent’s
piece. For the full details of how this is formalized, please refer to Appendix A.

Finally, all that remains is to define the set of positions that are winning for
the player of the White pieces. This is covered back in Article 1, The nature and
objectives of the game of chess:

Article 1.2. The objective of each player is to place the opponent’s king
‘under attack’ in such a way that the opponent has no legal move. The player
who achieves this goal is said to have ‘checkmated’ the opponent‘s king and
to have won the game. [. . . ]

This wordy article can be concisely formalized in higher order logic:

game over p ≡ chess legal p ∧ ∀p′. ¬chess move p p′ ;
checkmated p ≡ game over p ∧ in check (to move p) p ;

chess win p ≡ (to move p = Black) ∧ checkmated p .
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Finally, the legal positions, move relations and winning positions are put
together to define the two player game of chess:

chess ≡ (chess legal, chess move1, chess move2, chess win) .

The remainder of this paper presents a method for automatically constructing
endgame databases that are formally verified with respect to this theory of the
laws of chess. However, it is also possible to prove theorems interactively in the
theorem prover, such as the result that a player with only a King can never win.
Given a ternary relation has pieces s l p (defined in Appendix A) that holds
whenever the side s has precisely the list of pieces l on the board in the position
p, it is straightforward to prove the desired theorem

`HOL ∀p. all on board p ∧ has pieces White [King] p⇒ ¬chess win p

by manually directing the theorem prover to apply standard proof tactics.

3 Constructing Formally Verified Endgame Databases

Recall from Section 2.1 that win2 by chess n is a set of legal chess positions with
Black (i.e., Player II ) to move. The set contains all positions such that however
Black moves White can force a checkmate within n moves. By convention the
set win2 by chess 0 contains all positions where White has already won (i.e.,
Black is checkmated). Similarly, win1 by chess n is a set of legal positions with
White to move. This set contains all positions where there is a White move after
which the resulting position lies in the win2 by chess n set: in the chess jargon a
position in the win1 by chess n set is called a mate in n + 1.

Constructing a formally verified endgame database consists of evaluating the
win1 by chess n and win2 by chess n sets in the theorem prover. The first problem
that occurs is that these sets are extremely large: even with just four pieces on
the board, the total number of winning positions can be ten of millions. Thus it
is not feasible to aim to prove a theorem of the form

`HOL win1 by chess n = {p1, . . . , pN} ,

where the pi are an explicit enumeration of the positions in the winning set.
Instead, the winning sets are represented symbolically using Binary Decision
Diagrams [2], which provide a compact way to represent sets of boolean vectors.
A theorem of the form

`HOL+BDD φ[B1, . . . , Bk] ∈ win1 by chess n 7→ ∆ (1)

is proved, where [B1, . . . , Bk] is a vector of boolean variables that encode a
position, φ is a decoding function from an encoding to a position, and ∆ is
a BDD representing a set of boolean vectors. The theorem asserts that for any
assignment of booleans bi to the variables Bi, the position φ[b1, . . . , bk] is a forced
win for White within n moves if and only if the vector [b1, . . . , bk] is in the set
represented by the BDD ∆.
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The following two sections will discuss the encoding of positions as boolean
variables, and the proof tools required to construct theorems of the above form
in the theorem prover.

3.1 Encoding Positions as Boolean Variables

The formalization of the laws of chess presented in Section 2.2 is designed to
be as natural as possible, so that a human reader (familiar with higher order
logic) can be easily convinced that it is a faithful translation of the laws of
chess. However, it fails to satisfy two basic requirements for encoding positions
as boolean vectors:

1. The position type should be easy to encode as a vector of booleans. Al-
though there are tools in the theorem prover to support boolean encoding
of (bounded) numbers and lists, the function from squares to pieces in the
position type would require a custom encoder to be written and proved cor-
rect.

2. Given a list of White and Black pieces, it should be straightforward to define
the set of all positions that have precisely these pieces on the board, since
that is how endgame databases are structured. Unfortunately, the square
based nature of the position type makes it inconvenient to reason about the
pieces on the board.

For both these reasons, the boolean encoding of positions makes use of an inter-
mediate ‘posn’ type defined as follows:

placement ≡ (side× piece)× square ;
posn ≡ side× placement list .

Versions of the legal position predicates, move relations and winning position
predicate are defined on type posn, and their definitions are designed for ease of
boolean encoding. In addition, a function

abstract : posn→ position

is defined that lifts elements of type posn to chess positions. With respect to the
abstract function, the two versions of the legal position predicates, move relations
and winning position predicates are identical: a useful check for both versions.

The new posn type also satisfies the requirement that positions should be
easily categorized according to the pieces on the board. Define a category to be
a side to move and a list of pieces on the board:

category ≡ side× (side× piece) list .

For example

(Black, [(White,King), (White,Rook), (Black,King)])
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is the category of positions where it is Black to move, White has a King and
Rook on the board, and Black has only a King. The set of all elements of the
posn type in a category (s, l) can be defined as

category (s, l) ≡ {(s′, l′) | s′ = s ∧ map fst l′ = l} ,

where map is the standard list map function and fst is the function that picks
the first component from a product.

For each category c, all the positions p in category c are encoded to booleans
in the same way. The side to move and pieces in p are fixed, so the only ‘state’
left to encode as booleans are the squares that the pieces are on, which is a
fixed length list of pairs of bounded natural numbers. Encoding this type is
a relatively straightforward matter of plumbing together the standard boolean
encoders for fixed length lists, products and bounded natural numbers that are
already defined in the theorem prover [11]. Given a category c, this process yields
a function encode posn c for encoding posns in category c as a vector of booleans,
and an inverse function decode posn c for decoding a vector of booleans as a posn
in category c.

For positions in a category c, the decoder function φ in Equation (1) can now
be expanded to

abstract ◦ decode posn c .

3.2 Proving Endgame Database Theorems

The verified endgame database is constructed category by category by symboli-
cally evaluating the winning sets (i.e., calculating the BDDs ∆ in Equation (1)
for increasing values of n). When a fixed point is found, a stability theorem is
proved which is lifted to the position type using to move and has pieces predi-
cates. For example, the lifted stability theorem

`HOL+BDD

∀p.

all on board p ∧ (to move p = Black) ∧
has pieces p White [King,Rook] ∧ has pieces p Black [King]⇒
(p ∈ win2 chess ⇐⇒ p ∈ win2 by chess 16)

states that for positions with Black to move, White having a King and Rook and
Black having only a King, if a position is won at all for White then checkmate
can be forces within 16 moves. In addition, a concrete position is lifted from the
final BDDs to show that this bound is the best possible:

`HOL+BDD
(Black,
λsq.

if sq = (0, 0) then SOME (White, King) else if sq = (5, 6) then SOME (White, Rook)
else if sq = (3, 6) then SOME (Black, King) else NONE) ∈ win2 by chess 16 ∧

(Black,
λsq.

if sq = (0, 0) then SOME (White, King) else if sq = (5, 6) then SOME (White, Rook)
else if sq = (3, 6) then SOME (Black, King) else NONE) /∈ win2 by chess 15 .
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Calculating the sequence of BDDs representing winning sets for a category is
implemented using the category-specific boolean encoding of the move relations
and winning position predicate. The winning position predicate is converted to
a BDD, and this becomes the first BDD in the sequence. The move relation is
also converted to a BDD, and applied to the current winning set to find the set
of positions that for which the current winning set is reachable in one White
move (this new winning set consists of all the mate in one positions). The BDD
resulting from this calculation is added to the sequence of BDDs, and becomes
the current winning set. The BDD for the move relation is now applied again,
but with a universal instead of an existential quantifier, to calculate the set of
positions such that all Black moves result in a position in the current winning set.
The BDD representing this winning set is added to the sequence of BDDs, and
becomes the current winning set. This sequence of BDDs representing winning
sets is continued until it converges to a fixed point (i.e., the winning set with
Black to move is the same as the previous winning set with Black to move).

Since pieces may get captured during play, and this changes the category of
the position, it is important to construct the endgame databases for the small
categories first, so that captures always reduce to a previously solved position.
The base case is two bare Kings on the board, and then different pieces are added
to first solve all the three piece endgames, and then the four piece endgames.

There are potential pitfalls to symbolically calculating the winning sets that
do not appear in the usual method of explicitly enumerating all positions, but
the theorem prover ensures that the reasoning is sound and that no positions
are left out. For example, consider the category

(White, [(White,King), (White,Queen), (White,Rook), (Black,King)])

where from any starting position White needs at most six moves to force check-
mate. Indeed, during construction of the sequence of BDDs they are seen to
converge after six moves. However, because this category of endgame can re-
duce by a capture to the category where White has a King and Rook against
Black’s bare King, and because in this smaller category White sometimes needs
16 moves to force checkmate, it is logically necessary to extend the sequence of
BDDs to 16 moves in the original category. At that point all the side conditions
are satisfied and the stability theorem can be proved:

`HOL+BDD

[· · ·]⇒
p ∈ win1 chess ⇐⇒ p ∈ win1 by chess 16 .

The final step is to prove that the official set of winning positions found after 16
moves is equal to the set of winning positions found after six moves, and thus
conclude that the same stability theorem must also hold for six moves:

`HOL+BDD

[· · ·]⇒
p ∈ win1 chess ⇐⇒ p ∈ win1 by chess 6 .
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4 Results

The construction of verified endgame databases described in the previous section
is implemented in the HOL4 theorem prover,3 using the HolBddLib [5] interface
to the BuDDy BDD engine.4

One thing that can make a big difference to the performance of a BDD
calculation is the ordering of the boolean variables. Recall from Section 3.1 that
the ‘state’ to be encoded as boolean variables is a list of squares on the board.
This is exactly how the state breaks down into boolean variables B:

State ←− Square · · · Square
Square ←− File Rank

File ←− B B B

Rank ←− B B B

To test the effect of variable ordering on performance the construction of the
King and Rook versus King and Rook endgame database is used as a bench-
mark.5 If the variables are ordered exactly as above then the endgame database
takes 1,514 seconds to construct, and the BDD engine creates 165,847,971 nodes.
If instead the variables for the state are formed by interleaving the variables for
each square, then the endgame database takes 543 seconds to construct, and the
BDD engine produces 16,413,512 nodes. Finally, if additionally the variables for
each square are formed by interleaving the file and rank variables, the endgame
database takes 835 seconds to construct and the BDD engine produces 84,019,830
nodes. Clearly the middle option is best, and this has since been confirmed on
other benchmark tests.

Another BDD optimization that proved effective was to combine the quantifi-
cation and logical connective that occurs when the move relation is applied to the
current winning set. On a benchmark test of constructing all four piece endgames
containing only Kings, Rooks and Knights, the time required fell 19% from 3,251
seconds and 222,122,342 nodes produced to 2,640 seconds and 144,441,858 nodes
produced.

The final results for all four piece pawnless endgames are shown in Table 1.
The first column shows the pieces on the board: first the White pieces using the
standard abbreviations of K for King, Q for Queen, R for Rook, B for Bishop
and N for Knight; next an underscore; and finally the Black pieces. The other
columns are separated into positions with White to move and positions with
Black to move. Within each, the columns are as follows: max column shows
the maximum number of moves required for White to force checkmate from a
winning position, or a dash if there are no positions winning for White; the %win

column shows the percentage of legal positions that are winning for White, a
dash if there are none, or ‘ALL’ if every legal position is winning for White;

3 HOL4 is available for download at http://hol.sf.net/.
4 BuDDy is available for download at http://sourceforge.net/projects/buddy.
5 All the results were collected on a Pentium 4 3.2GHz processor with 1Gb of main

memory and running the HOL4 theorem prover using Moscow ML 2.01.
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the #win column shows the total number of positions winning for White; the
bdd column shows the compression ratio of the number of BDD nodes required
to store the winning sets divided by the total number of winning positions; the
#legal shows the the total number of legal positions; and the final bdd column
shows the BDD compression ratio for the legal positions.

Pieces White to move Black to move

max %win #win bdd #legal bdd max %win #win bdd #legal bdd

K K — — 0 0% 3612 1% — — 0 0% 3612 1%
K KB — — 0 0% 223944 0% — — 0 0% 193284 0%
K KBB — — 0 0% 13660584 0% — — 0 0% 10164056 0%
K KBN — — 0 0% 13660584 0% — — 0 0% 10875504 0%
K KN — — 0 0% 223944 0% — — 0 0% 205496 0%
K KNN — — 0 0% 13660584 0% — — 0 0% 11499304 0%
K KQ — — 0 0% 223944 0% — — 0 0% 144508 1%
K KQB — — 0 0% 13660584 0% — — 0 0% 7698432 0%
K KQN — — 0 0% 13660584 0% — — 0 0% 8245296 0%
K KQQ — — 0 0% 13660584 0% — — 0 0% 5657120 0%
K KQR — — 0 0% 13660584 0% — — 0 0% 6911296 0%
K KR — — 0 0% 223944 0% — — 0 0% 175168 0%
K KRB — — 0 0% 13660584 0% — — 0 0% 9366840 0%
K KRN — — 0 0% 13660584 0% — — 0 0% 9905048 0%
K KRR — — 0 0% 13660584 0% — — 0 0% 8325184 0%
KB K — — 0 0% 193284 0% — — 0 0% 223944 0%
KB KB 1 0% 416 0% 11832464 0% 0 0% 112 0% 11832464 0%
KB KN 1 0% 16 0% 11832464 0% 0 0% 8 0% 12535256 0%
KB KQ — — 0 0% 11832464 0% — — 0 0% 8952608 0%
KB KR — — 0 0% 11832464 0% — — 0 0% 10780728 0%
KBB K 19 49% 5007216 12% 10164056 0% 19 41% 5628080 8% 13660584 0%
KBN K 33 100% 10822184 30% 10875504 0% 33 82% 11188168 19% 13660584 0%
KN K — — 0 0% 205496 0% — — 0 0% 223944 0%
KN KB 1 0% 40 0% 12535256 0% 0 0% 8 0% 11832464 0%
KN KN 1 0% 40 0% 12535256 0% 0 0% 8 0% 12535256 0%
KN KQ — — 0 0% 12535256 0% — — 0 0% 8952608 0%
KN KR 1 0% 32 0% 12535256 0% 0 0% 8 0% 10780728 0%
KNN K 1 0% 1232 0% 11499304 0% 0 0% 240 0% 13660584 0%
KQ K 10 ALL 144508 19% 144508 1% 10 90% 200896 12% 223944 0%
KQ KB 17 100% 8925252 19% 8952608 0% 17 77% 9097332 18% 11832464 0%
KQ KN 21 99% 8894128 21% 8952608 0% 21 80% 10088688 21% 12535256 0%
KQ KQ 13 42% 3737092 11% 8952608 0% 12 0% 40628 1% 8952608 0%
KQ KR 35 99% 8863768 52% 8952608 0% 35 66% 7062680 35% 10780728 0%
KQB K 8 ALL 7698432 11% 7698432 0% 10 91% 12379568 8% 13660584 0%
KQN K 9 ALL 8245296 9% 8245296 0% 10 90% 12343856 7% 13660584 0%
KQQ K 4 ALL 5657120 4% 5657120 0% 10 98% 13378232 6% 13660584 0%
KQR K 6 ALL 6911296 4% 6911296 0% 16 99% 13519192 6% 13660584 0%
KR K 16 ALL 175168 20% 175168 0% 16 90% 201700 18% 223944 0%
KR KB 29 35% 3787160 11% 10780728 0% 29 3% 381888 5% 11832464 0%
KR KN 40 48% 5210920 34% 10780728 0% 40 11% 1364800 23% 12535256 0%
KR KQ 19 29% 3090088 5% 10780728 0% 18 0% 17136 0% 8952608 0%
KR KR 19 29% 3139232 5% 10780728 0% 19 1% 72464 1% 10780728 0%
KRB K 16 ALL 9366840 12% 9366840 0% 16 91% 12458920 10% 13660584 0%
KRN K 16 ALL 9905048 11% 9905048 0% 16 91% 12406892 10% 13660584 0%
KRR K 7 ALL 8325184 3% 8325184 0% 16 100% 13621424 6% 13660584 0%

40 29% 1.179E8 6% 4.033E8 0% 40 34% 1.355E8 6% 4.033E8 0%

Table 1. Results for all four piece pawnless endgames.

Constructing the whole endgame database took 18,540 seconds (including 418
seconds spent on garbage collection), during which the HOL4 theorem prover
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executed 82,713,188 primitive inference steps in its logical kernel and the BDD
engine produced 882,827,905 nodes.

5 Conclusions

This paper has shown how a theorem prover equipped with a BDD engine can
be used to construct an endgame database that is formally verified to logically
follow from the laws of chess.

The method has been implemented for all four piece pawnless positions, and
the resulting endgame database can be used as a ‘golden reference’ for other
implementors of endgame databases to check against. In addition, the verified
endgame database has been used to produce a set of educational web pages
showing the best line of defence in each position category.6

The approach used to augment standard theorem proving techniques with
a tailor made BDD algorithm was found to be convenient for this application,
combining the expressive power and high assurance of theorem provers with
the compact representation and fast calculation of BDD engines. As seen in
Section 3.2, the use of a theorem prover avoided some potential pitfalls that
appear when symbolically processing sets of positions.

6 Related Work

The earliest example of applying BDDs to analyze a two player game is the
attempt of Baldumus et. al. [1] to solve American Checkers by means of symbolic
model checking.

Edelkamp [3] put forward the idea that BDDs are generally suitable for clas-
sifying positions in a wide range of two player games, including chess endgames.
Edelkamp’s encoding of chess positions also includes a bit for the side to move,
but otherwise it is identical to the encoding in this paper. This paper can be seen
as a continuation of Edelkamp’s work, with the addition of a theorem prover to
ensure the accuracy of the move encodings and winning sets.

Kristensen [8] investigated the use of BDDs to compress endgame databases,
showing BDDs to be comparable to the state of the art in explicit enumeration
for 3–4 man endgames, and better for some simple 5 man endgames.
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A Formalized Chess

pushes p sq ≡
board ∩ clear line p sq ∩
(case on square p sq of

NONE → ∅
| SOME ( , King) → {sq′ | king attacks sq sq′}
| SOME ( , Queen) → {sq′ | queen attacks sq sq′}
| SOME ( , Rook) → {sq′ | rook attacks sq sq′}
| SOME ( , Bishop) → {sq′ | bishop attacks sq sq′}
| SOME ( , Knight) → {sq′ | knight attacks sq sq′}) ;

sorties p sq ≡ {sq′ | sq′ ∈ pushes p sq ∧ empty p sq′} ;

captures p sq ≡ {sq′ | sq′ ∈ attacks p sq ∧ occupies p (opponent (to move p)) sq′} ;

simple move p p′ ≡
∃sq1, sq2.

occupies p (to move p) sq1 ∧ sq2 ∈ sorties p sq1 ∧
∀sq.

on square p′ sq =
if sq = sq1 then NONE

else if sq = sq2 then on square p sq1

else on square p sq ;

capture move p p′ ≡
∃sq1, sq2.

occupies p (to move p) sq1 ∧ sq2 ∈ captures p sq1 ∧
∀sq.

on square p′ sq =
if sq = sq1 then NONE

else if sq = sq2 then on square p sq1

else on square p sq ;

chess move p p′ ≡
chess legal p ∧ chess legal p′ ∧
(to move p′ = opponent (to move p)) ∧
simple move p p′ ∨ capture move p p′ ;

chess move1 p p′ = chess move p p′ ∧ (to move p = White) ;

chess move2 p p′ = chess move p p′ ∧ (to move p = Black) ;

has pieces p s l ≡
∃f ∈ Bijection {n | n < length l} {sq | occupies p s sq}.

∀n. n < length l ⇒ (on square p (f n) = SOME (s, nth n l)) .
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Abstract. In this paper we report on previous, current and ongoing
work on the analysis of collaboration-based and aspect-oriented program-
ming languages with mechanizations in Isabelle/HOL and Coq.

1 Introduction

Triggered by the ever increasing ubiquity of software the demand for more flexi-
bility in the assembly of programming components is being felt more and more.
Programs shall be run on small devices like handhelds, on dedicated operating
systems, for example JavaCard for SmartCards. Moreover, application must be
loadable on demand as resources in small devices are restricted. The concept
of object is too fine grained to encapsulate entire applications — the obvious
concept therefore is a module, or component as it was initially called. However,
it turns out that the assembly of components is still somewhat too restricted.
Components have no state, need the additional concept of deployment in dif-
ferent contexts and hence differ in instantiations which blurs the initially clean
concept by creating multiple identities. Hence, a migration of already deployed
components over the limits of execution environments is difficult.

Collaboration-based programming languages introduce a concept for modules
for classes on top of the usual object-oriented language features. The basic idea is
similar to packages, or components, but goes beyond that in that these modules
can be instantiated. Thereby, we can define whole groups of interacting objects
on the abstract, the class level. The defined groups can then be instantiated as
a whole to build groups of interacting objects.

Consequently, there was a need to devise more flexible notions one structural
level above object and class that would enhance the aforementioned mechanisms
of dynamic loading and grouping. The new paradigms for object orientation that
have been designed for this purpose are called mixins, traits or object teams. We
call them unifyingly collaborations.

Besides this concept, that seems to be ideal for the development of large
systems, there is the concept of aspect-orientation that introduces new concepts
into object-orientation. Aspect-orientation enables the definition of small pieces
of code, so-called aspects, that can then be distributed at certain points through-
out an existing application. For example, a login could for security reasons be
extended by a password check. Assuming the login is a feature that is used in
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various parts of the code, one could now weave this aspect of password check
into that code before each code segment that contains the login. Aspect-oriented
languages comprise features for defining the aspects themselves and features for
the definition of the points at which the aspects have to be woven into the code,
so called join-points. An example for an aspect-oriented language is AspectJ [1],
an extension of Java by aspect-oriented features.

A collaboration may as well be used as a wrapper, and a wrapper realizes an
adaptation of behaviour, which is in turn nothing else than applying an aspect.
The borderline between the concepts aspects and collaboration seems to be a
bit vague.

Therefore, we think that a combination of collaborations and aspect-orientation
is a promising direction for programming languages. In order to guarantee that
such combined languages catch on, it is necessary to support them with the
necessary theoretical foundation. Similar to the efforts to give formal models
for Java that can be mechanically verified, we are working on the development
of a formal, mechanically supported framework for collaboration-based, aspect-
oriented languages in Higher Order Logic.

A formalization of the collaboration-based language Object-Teams in Is-
abelle/HOL, is a first example of exploring collaborations in HOL. It aimed
at proving type-safety, and succeeded in proving confinement. It followed quite
strongly the outline of the formalization of Java [11]. It turned out to be very
complex, obscuring the most essential language features by being so close to an
actual instance of a language with a rich set of features.

Therefore, we continued our work on a more general level. When considering
a formal analysis of aspect-orientation we decided to work independently of a
specific language, being just inspired by features as they are common in aspect-
oriented languages, most prominently AspectJ – but not being restricted in our
progress by specific language design decisions. We mechanized this model in Coq
[3]. The reasons for this switch are that, first we could base the formalization of
aspects on a fairly well-established model of bytecode [2]; second we are planning
to do the type safety analysis by translating into League’s [10] intermediate
language that is also mechanized in Coq.

We give an outline of this ongoing research in the paper: After a brief in-
troduction into the ideas of collaborations and aspects in the remainder of this
section, we summarize in Section 2 the formalization that has been done in Is-
abelle/HOL. We then present the work on aspects in Section 3. Finally in Section
4 we give an account of related work and our future plans.

1.1 Aspects and Collaborations

In this section we give a brief account on the principle concepts of aspect-oriented
and collaboration-based programming languages.
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Aspect-Orientation

The main idea of aspect-orientation is to adjust programs after their creation by
weaving in at certain points (point cuts) some more program code (advice). The
procedure of weaving is illustrated in Figure 1. The main concepts of aspect-

PSfrag replacements

Program

Point Cuts

+

Advice

Weaving

Fig. 1. Weaving advice at point-cuts

orientation, i.e. advices, weaving and join-points and the related point-cuts, are
summarized as follows.

– advice is the code that has to be woven into the original program
– point cuts are the points in the program where aspects are woven in
– join-points are sets of point cuts usually described by some predicates using

special keys like call to refer to all points of method invocation, and usual
logical connectives.

– aspect-oriented language: the basic language is usually an object-oriented
language, to express programs and advices

– join-point definition language: the language to express logical operators,
quantification over program points.

Aspect-oriented program development usually starts by identifying so-called
cross-cutting concerns. Starting from a usual object-oriented implementation
in a standard way, the cross cutting concerns are then woven into it as advices.

Aspects: Observations When considering the process of weaving we have two
ways to proceed:
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– compile-time weaving: weave the advice in at the source code level, then
compile,

– or run-time-weaving: translate program and advice (and join-points) sepa-
rately and weave in at the execution level.

We see immediately that run-time weaving is more desirable but clearly also
trickier. Compile-time weaving is fairly simple. For example, declarative pro-
gramming languages, for example Prolog, may be considered as aspect-oriented
language. Although there the distinction of compile-time does not apply, we can
easily consider Prolog as a join point definition language for any imperative oo-
language. To produce a compile-time weaver, just preprocess the source code
using the Prolog predicates, then use the old compiler.

However, at times where global computing is on demand, run-time weaving
is needed because we want to be able to adjust executable, deployed, program
components by weaving in advice.

Collaboration-Based Programming

The main idea of collaborations is to consider collaborations of objects on the
class level. Thereby, different from components, we can consider instantiation —
like for usual classes — also for classes of classes, or collaborations. Conceptually,
this feature enables the use of the collaboration idea at the source-code level,
because classes correspond roughly to types. Therefore, using the collaboration
concept we can statically check relationships between objects and can thereby
express that

– Objects can be members of different collaborations
– Objects play roles in collaborations

If we furthermore adopt the ideas of inheritance for collaborations as well, we
can even adapt existing object collaborations statically. To give a simpler
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intuition that is independent of the concepts of object-oriented languages. The
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typical introductory collaboration example is that of hotel, husband, wife, and
daughter. If objects of these classes would want to collect at reception the keys
for their family rooms in the hotel, a simple identification of the kind “I’m a
daughter” does not suffice. Even being member of a super-class family-member
does not suffice. Generally, a member object of a group needs to know to which
instance of the group it belongs. As collaborations are considered on the class-
level, i.e. the type-level, this membership creates a type dependency, i.e. the type
of the group depends on instances of its constituting member classes.

2 ObjectTeams in Isabelle/HOL

The programming model of Object Teams [7] is an example of a collaboration-
based language. The developers of Object Teams are currently working on ex-
tending the language to integrate aspect-orientation. For a theoretical idea on
how this may be achieved see Section 4. The current version of Object Teams is
called ObjectTeams/Java, because it uses Java as a host language, i.e. is tran-
lated into Java. But, in principle, any other class based-language could be used
as host language. This language is well supported and is already used in practi-
cal applications in projects with industrial collaboration [6]. The module concept
is called team, which is a container for so-called roles. The containment is on
the level of classes and instances. Besides the classical inheritance that exists
between classes the introduction of the concept of teams enforces a second im-
plicit inheritance, as roles contained in teams inherit from each other, when a
team inherits from another team. Teams thereby realize the concept of virtual
classes with overriding. Virtual classes enable the refinement of sets of mutually-
recursive types. Resulting issues of static type checking are handled by instance
based types, a special kind of dependent types. By the combination of implicit
inheritance and instance based types, teams realize the concept of family poly-
morphism [4]. On top of the aforementioned concepts, ObjectTeams/Java allows
for different levels of role confinement providing for an ownership-like alias con-
trol [16]. Except for some flavors of role confinement these concepts have been
formalized and the results of their analysis will be presented next.

2.1 Isabelle/HOL model of ObjectTeams/Java

The master’s thesis [14] provides a formalization of the main concepts of the
language ObjectTeams/Java. This extensive experiment is strongly based on
the works of Nipkow, von Oheimb et al [13, 11]. However, as we introduce com-
pletely new concepts, we had to redefine and reprove basically everything. We
define abstract syntax and type system. The inheritance relation with its par-
ticular extension of implicit inheritance is defined. Well-structuredness of classes
and the inheritance relation is proved. The type model is divided into static
and dynamic instance based types. As role classes are contained in team classes,
their instances have the same containment. Hence a roles type does depend on
its instance context. That is what we call instance-based typing. In our model
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we do not use dependent types explicitly, rather model them by extending the
types in the static part by a fixed constant TTHis that is then replaced in the
dynamic typing by the actual instance context. Thereby we can separate the
analysis into static and dynamic part. In order to define well-formedness pred-
icates for the type-safety we define typing rules using inductive definitions. An
operational semantics is modelled using inductive definitions as well. Finally, we
have partly proved the type soundness theorem. However, we did not succeed as
the formal analysis already produced a fundamental problem of the language:
as ObjectTeams allow the instantiation of abstract role classes, type checking
a sub team class requires more information than type checking a conventional
subclass. Besides a super team classs signature, a list of so-called relevant role
classes is necessary for the judgment of well-formedness of the sub team class.
Relevant role classes are those role classes that a sub team must implement
in order to be concrete. This feature has been discovered during the formaliza-
tion work and is now integrated into the language. However, it prevented us from
completing the mechanical proof of type soundness. Assuming for the time being
the type soundness as axiom we could, however, prove the following confinement
statement.

[| G |- (x,(h,l)) - t >-> (v,x,(h,l));

wf_prog G; conf (h,l) (G,L); (G,L) |= t :: T |]

==> (x’= None −→ role_referenced_in_context G (h,l) v)

The theorem expresses that role objects are only referenced within the context of
their enclosing team instance. The proviso has to be read as: a term t evaluates
with respect to program G, producing a value v, transforming the state of heap
and local environment (h,l) into (h’,l’). Furthermore, it is assumed that
the program is wellformed, that the before-state (h,l) conforms to the static
environment (G,L), that the term t is well-typed, and that no exception occurred
x’=None.

3 Coq Aspects

In this section we present the mechanization of aspects in Coq. The main goal
of this formalization is to supply an axiomatic framework that helps to identify
conditions for aspects oriented languages to work. The major interest is to realize
run-time weaving. That is, it should be able to weave in advice at run time.

3.1 Basis: OO-language

We use a formalization of the main concepts of object-orientation given in [2] –
an axiomatic framework for non-interference. Although originally designed for
proving and deriving a bytecode-verifier it does also provide a mechanization
of the operational semantics of the Java bytecode language. Although we want
to treat aspects and collaborations on an abstract level, we think that using
the Java bytecode as the execution layer is not such a strong restriction of
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generality because (a) our model treats basic features that are quite common
for most object-oriented languages (b) most object-oriented languages can be
translated (and are in fact translated) to the Java bytecode in order to gain
wider applicability. For the latter point even C++ offers a translation to Java
bytecode.

We give a very short outline of the relevant properties of this basic Coq model
leaving out the details that refer to security problems. The bytecode instruction
set we consider is formalized using the following inductive definition.

Inductive instr : Set :=

nop : instr

| push : value -> instr

| iadd : instrin

| load : locs -> instr

| store: locs -> instr

| goto : ppt -> instr

| ifthenelse : ppt -> instr

| new: Class -> instr

| getfield: Field -> instr

| putfield: Field -> instr

| invoke: method -> instr

| retrn: instr.

The set ppt is a decidable set of program points and locs are the register
locations. We assume a program p to be a map from program points and method
names to instructions. Based on this instruction set the operational semantics
is defined introducing operand stacks, object heaps, values as structured types
containing pointers and simple values, and register valuations. A state in the
semantics is constituted by a stack of method frames. Each of those frames
comprises the current program counter, a current variable binding, an operand
stack, and a security environment. Both the variable binding and the security
environment are treated abstractly with lookup and update functions.

Record frame: Set:= {pc: pcs; rm: env ; os: stack}.

States are composed as stacks of frames and a heap.

Record state: Set:= {fs: stack(method × frame); hp: heap }.

In the operational semantics we define the execution of a program step-by-step
over program states by a simple case analysis over the type of instructions and
assigning the corresponding effect on the state. A general n-step execution exec

is then defined inductively over this one step execution function.
Now in order to be able to reason about source code we have to build a

second instruction layer of source code instructions.

Inductive sc_instr: Set :=

assign : var -> value -> sc_instr

| add : var -> var -> sc_instr

| ifte : (var -> bool) -> ppt -> ppt -> sc_instr
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| New: Class -> sc_instr

| Getfield: Field -> sc_instr

| Putfield: Field -> sc_instr

| Invoke: method -> sc_instr

| Retrn: sc_instr.

and correspondingly develop the notion of state and execution similar to the
bytecode level. Compilation between the two levels will be considered next, but
first we model join-points.

3.2 Call Join-Points and Weaving

The most frequently used join-point constructor used in aspect-orientation is the
call construct. With the call operator we can construct a predicate that selects
program points that contain a method invocation. As arguments to the call

operator we can, for example in AspectJ, use so-called wildcards, annotated by *,
to create some kind of pattern matching over method names. In the formalization
we can easily be more general than this by just allowing any predicate over
method names, type method, as admissible input to the call sc constructor for
call join points at the source level.

Definition call_sc : (method -> Prop) -> join_point :=

(fun mp: (method -> Prop) => fun pc: ppt =>

match p_sc pc with Invoke m => True

| _ => False

end).

The type join point is just an abbreviation for ppt -> Prop, i.e predicates
over program points.

Compilation of a source program replaces instructions by creating a new
binding of program points to bytecode-level instruction. The call join-point con-
structor is translated as follows.

Definition call_bc : (method -> Prop) -> join_point :=

(fun mp: (method -> Prop) => fun pc: ppt =>

match p_bc pc with invoke m => True

| _ => False

end).

As weaving can be performed as an additional step of compilation, it can as well
be seen just on the syntactic representation of programs. In order to analyze
the requirements of a run-time weaving we start from assumptions about the
compilation process from source to bytecode level.

Assuming a compilation function mapping source code programs program sc

to bytecode-programs program bc, we can reason about the weaving process in
order to gain precise information about the inherent requirements of aspects.

Parameter comp: program_sc -> program_bc.
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We assume in a first step only non-optimizing compilers, i.e. we assume that each
source code command is one to one translated into a sequence of bytecode-level
instructions. That is, we assume that the compilation is injective. Hence, we can
assume an inverse function.

Parameter compinv: program_bc -> program_sc.

Axiom compinj: ∀ psc: program_sc, compinv(comp psc) = psc.

Weaving simulation Based on the model of a compiler function, we can now
consider the property that represents the question set out in the beginning (cf. 1)
whether run-time weaving is possible. More precisely, we try to identify the con-
ditions such that the diagram in Figure 2 commutes. The two weaving functions

(psc, jpsc, advsc)

〈comp,jpcomp,comp〉

��

weave sc
// p′

sc

comp

��

(pbc, jpbc, advbc)
texec

// p′
bc

Fig. 2. Do compile-time and run-time weaving commute?

are represented by the types

Parameter wv_sc: program_sc -> join_point -> advice_sc -> program_sc.

Parameter wv_bc: program_bc -> join_point -> advice_bc -> program_bc.

In order to narrow down the possible specification of these functions we identified
the following assumption.

Axiom step1: ∀ (pbc: program_bc)(jp: method -> Prop)(adbc: advice_bc),

∀ wpbc: program_bc,

wpbc = (wv_bc pbc (call_bc jp) adbc) →
(exists psc: program_sc,

comp psc = wpbc ∧ psc = wv_sc (compinv pbc)(call_sc jp)(compinv adbc)).

This property states that a bytecode-weave does only produce programs that can
also be created as source-code. With this property we can prove the commutation
property.

Lemma run_time_weave: ∀ mp: (method -> Prop),

∀ a_sc: advice_sc, ∀ a_bc: advice_bc,

comp a_sc = a_bc →
comp (wv_sc p_sc (call_sc mp) a_sc) =

wv_bc (comp p_sc)(call_bc mp)(a_bc).

Although we can under reasonable assumptions prove the correctness of run-time
weaving here, this is only restricted to the standard call join-points.
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3.3 Logical connectives and Control Flow

The definition of join points offers in general further possibilities beyond the
call construct. Mixed join-point expressions can be introduced using logical
connectives. The following rule is an instance of the major property shown in
the previous section but for the disjunction of join-point expressions.

Axiom rt_disj: ∀ jp1 jp2: join_point,

∀ a_sc: advice_sc, forall a_bc: advice_bc,

comp a_sc = a_bc ->

comp (wv_sc p_sc (jp_disj jp1 jp2) a_sc) =

wv_bc (comp p_sc)(jp_disj jp1 jp2) a_bc.

In order to deal with such combined weaving processes a decomposition may be
achieved using the following lemma to iterate the construction.

∀ jp1 jp2: join_point,

∀ a_sc: advice_sc, forall a_bc: advice_bc,

wv_sc p_sc (jp_disj jp1 jp2) a_sc = wv_sc (wv_sc p_sc jp1 a_sc) jp2 a_sc.

In the example shown we illustrate disjunction. The decomposition does not
work like this for conjunction of join point expressions. Here, further thought is
needed.

Another possibility for constructing join-point expressions is the selection of
join-points by selecting a control flow. Here the cflow(cl, mn) enables to select
program points from the beginning to the end of method execution of method mn

of class cl. For the analysis of weaving advice according to join-points selected in
this manner the contemplation at the execution level, i.e. according to program
behaviour, seems more appropriate.

3.4 Weaving equivalence based on Behaviour

The properties related so far are all based on the idea to show the correctness
of run-time weaving at the syntactic level. For example, using the execution
function, provided in the operational semantics [2] we can prove,

Axiom rt_conform: ∀ jp1 jp2: join_point,

∀ a_sc: advice_sc, forall ,

exec (comp (wv_sc p_sc (call_sc mp) a_sc) =

exec (wv_bc (comp p_sc)(call_bc mp)(comp a_sc)).

by just substituting with lemma run time weave. Hence, the condition we have
derived is clearly sufficient, for call, but probably a bit strong in general. Pos-
sibly, when translating onto different versions of bytecode, it might be that we
cannot rely on the conformance relations between compilers and program points.
Optimizing compilers could also destroy the injectivity assumptions.

Here, we have to show property rt conform directly over the operational
semantics not syntactical equivalences.
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4 Related Work and Outlook

4.1 Intermediate Language LITL

As mentioned before League and Monnier devise an intermediate language called
LITL that aims at type preserving compilation of class-based languages. LITL
is based on the intermediate language Links [5]. Similar to this predecessor the
intermediate language LITL enables to compile various flavours of class concepts,
including collaborations (there called traits or mixins). Moreover, in contrast to
Links, LITL is typed, as it is embedded into Coq. The typing of LITL is the
major contribution of this work. Although the authors have already achieved a
typing of LITL the second point – the translation of collaborations onto LITL,
and thus the typing of collaborations — is not yet finished.

For our project LITL is a well-suited target language, as we can experiment
with language features and — given the translation works — can see whether
typability by typed compilation onto LITL is preserved. However, as LITL does
not support aspects directly, we have to find a way to either integrate aspects into
collaborations or find out what are the fundamental differences that could clarify
the differences between the concepts. For the former possibility we consider a
way to integrate aspects and collaborations.

4.2 Aspects as Collaborations

The question that we address in this subsection is what have aspects to do with
collaborations. We present the conceptual idea how to use collaborations to
represent aspects. This method can in principle be used in our mechanization to
create a unified framework for aspects and collaborations. As we see in Figure
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3 collaborations act as wrappers. Using the possibility of method redefinition in
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a collaboration the role class adjusts method method. That is, we realize aspects
by a navigation between role classes and their base classes. Instead of using
method over-riding as in the example, we could use so-called callin and callout
constructors, as they exist for example in Object-Teams, to adjust the base class
method.

Although in principle, this mimics the behaviour of advice weaving, it leaves
open how to define such adjustments of existing behaviour in a controlled way
similar to the concepts of join-points and weaving. The development of join-point
languages for collaborations, in order to specify and quantify the locations for
the advice application is currently under research with the language develop-
ers. Nevertheless, we think about offering solutions on the level of mechanized
specification.

4.3 Discussion

We have introduced the notions of collaborations and aspects and described in
outline a mechanization of the collaboration concept in Isabelle/HOL as well as
an axiomatic approach to aspects in Coq.

The mechanization of collaborations at the example of Object Teams showed
up difficulties with respect to type safety and enabled the proof of a confinement
property, given type safety. The abstract formalization of aspects yielded prop-
erties that are a suitable frame for the analysis of concrete weaving functions
with respect to facilities for the definition of join points and the crucial question
of run-time weaving.

The translation of the formalization of ObjectTeams into Coq will enable us
to experiment with the mechanical analysis of the integration of Aspects and
Collaborations as sketched in the previous section.

We aim at providing a mechanized logical framework that enables the ex-
perimentation with language features, like exception handling, dynamic class
loading, method overriding, in order to see if typability and security features
are violated. This is precisely the kind of tool that is needed for the support of
the language development: a workbench that enables to test the implication of
the redefinition of generalization of a language concept. The challenge for this
project is whether we will – beyond analyzing the principal language properties
of a restricted sublanguage – be able to answer this need.
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Abstract. Formalization of Hensel’s lemma in Isabelle/HOL is reported.
Polynomial rings and valuations are formalized to express Hensel’s lemma.
Our thy files Algebra and Valuation1-3 are totally 3.2MB with 58,963
lines and 2,842 lemmas.

1 Introduction

We are formalizing abstract algebra in Isabelle/HOL to make a computer sup-
porting system of mathematical study focused on ”algebraic geometry”. At
present, we have formalized abstract rings, modules(Algebra1-9 in AFP “ Groups,
Rings and Modules ” are revised) and valuations.

Valuations are used to describe points of algebraic curves and algebraic curves
are relatively simple examples of algebraic geometry, therefore our formalization
of valuations will be useful when we treat algebraic geometry in general.

Hensel’s lemma is one of the important lemmas, and there are some ap-
proaches to formalize. We formalized it as a lemma derived from the topology
defined by the valuation. The topology can be discussed without introducing
valuation[1], but the power of the maximal ideal of a valuation ring is equiva-
lent to the normal valuation. Therefore Hensel’s lemma in this report is not less
general than that in [1].

We note that there is sophisticated formalization of polynomial ring by Bal-
larlin[2], and one of the authors is also formalizing valuations in MIZAR with
three Polish experts’ help. As far as we checked, there is formalization of ele-
mentary concepts of algebra, but we couldn’t find formalization covering the rich
contents of ours in other formalization languages.

2 Polynomial rings

Hensel’s lemma is a lemma concerning factorization of polynomials of one vari-
able. We deal this lemma with abstract ring coefficients. In this section we present
formalization of polynomial ring over an abstract commutative ring.

2.1 Fundamental definitions

Polynomial ring R is a ring generated by polynomials with coefficients in a
subring S of R having a variable X. To formalize a polynomial ring, we define
the following items:
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pol coeff::"[(’a, ’more) RingType scheme, nat, nat ⇒ ’a] ⇒ bool"

"pol coeff S n f == f ∈ Nset n → carrier S"

pol coeffs::"(’a, ’more) RingType scheme ⇒ (nat ⇒ ’a) set"

"pol coeffs S ==
⋃
{X. ∃n. X = Nset n → carrier S}"

coeff len::"[(’a, ’more) RingType scheme, nat ⇒ ’a] ⇒ nat"

"coeff len S f == SOME n. f ∈ (Nset n → carrier S)"

coeff max::"[(’a, ’b) RingType scheme, nat, nat ⇒ ’a] ⇒ nat"

"coeff max S n f == n max {j. j ≤ n ∧ f j 6= 0S}"

polyn expr::"[(’a, ’more) RingType scheme, ’a, nat, nat ⇒ ’a]

⇒ ’a"

"polyn expr R X n f == eSum R (λj. (f j) ·R (X^Rj)) n"

algfree cond::"[(’a, ’m) RingType scheme,

(’a, ’m1) RingType scheme, ’a] ⇒ bool"

"algfree cond R S X == ∀n f. pol coeff S n f ∧
eSum R (λj. (f j) ·R (X^Rj)) n = 0R −→ (∀j∈Nset n. f j = 0R)"

polyn ring::"[(’a, ’m) RingType scheme,

(’a, ’m1) RingType scheme, ’a] ⇒ bool"

"polyn ring R S X == algfree cond R S X ∧ ring R

∧ ¬ zeroring R ∧ Subring R S ∧ X ∈ carrier R

∧ (∀g∈carrier R. ∃f. f ∈ pol coeffs S

∧ g = eSum R (λj. (f j) ·R (X^Rj)) (coeff len S f))"

Here, Nset n → carrier S is a set of functions from the set {0, 1,. . ., n}
to the carrier of a ring S, and pol coeff S n f is a test function whether f is
a function from Nset n to the carrier S, which returns true or false. eSum R

(λj. (f j) ·R (X^Rj)) n is our formalized expression of a polynomial (f 0) +
(f 1)·X + . . . + (f n)·Xn. algfree cond R S X is a condition that there is no
algebraic relation between elements of S and monomials generated by X. This
condition guarantees that the polynomial expression is unique, that is if (f 0) +
(f 1)·X + . . . + (f n)·Xn = (g 0) + (g 1)·X + . . . + (g m)·Xm then (f 0) = (g
0),. . ., (f n) = (g n) and (g (n+1)) = . . . = (g m) = 0 if n < m. A polynomial
ring is a ring R, generated by elements having a polynomial expression. Our
formalization of a polynomial ring is equivalent to the mathematical expression
R = S[X].

2.2 The degree of a polynomial

We can prove two polynomial expressions polyn expr R S n f and polyn expr

R S m g satisfying conditions (f n) 6= 0, (g m) 6= 0 and
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polyn expr R S n f = polyn expr R S m g then n = m and (f 0) = (g 0), (f
1) = (g 1), . . ., (f n) = (g n). Hence degree is determined to each nonzero element
of R. To formalize the degree, at first we define coeff sol:

coeff sol::"[(’a, ’b) RingType scheme, (’a, ’b1) RingType scheme,

’a, ’a, nat ⇒ ’a] ⇒ bool"

"coeff sol R S X g f == f ∈ pol coeffs S ∧
g = polyn expr R X (coeff len S f) f"

By definition of the polyn ring, there is a coefficient function giving a poly-
nomial expression of an element g of R.

lemma ex polyn expr1:"[|ring R; ring S; polyn ring R S X;

g ∈ carrier R|] =⇒ ∃f. coeff sol R S X g f"

by (simp add:coeff sol def,

frule ex polyn expr[of "R" "S" "X" "g"], assumption+)

This implies the following is well defined:

deg n ::"[(’a, ’b) RingType scheme, (’a, ’b1) RingType scheme,

’a, ’a] ⇒ nat"

"deg n R S X p == coeff max S (coeff len S (SOME f. coeff sol

R S X p f)) (SOME f. coeff sol R S X p f)"

We introduced a new type ant of augmented integers {−∞} ∪ Z ∪ {∞}, and
formalized the degree in general sense as

deg ::"[(’a, ’b) RingType scheme, (’a, ’b1) RingType scheme,

’a, ’a] ⇒ ant"

"deg R S X p == if p = 0R then -∞ else (an (deg n R S X p))"

Thus we take deg 0 as -∞. We defined -∞ + -∞ = -∞, -∞ + n = -∞.
coeff sol is, as defined above, a boolean function to test that for a given

polynomial g we have a coefficient f satisfying an equation
g = polyn expr R X (coeff len S f) f , where coeff len S f is some nat-
ural number such that f ∈ Nset (coeff len S f) → carrier S.

Of course this is logically trivial, but to use SOME, we need coeff len S f.
coeff max is defined as n max {j. j ≤ n ∧ f j 6= 0S}, for a coefficient {(f
0), (f 1),. . ., (f n)}.

We have two lemmas concerning the degree of a polynomial.

lemma pol of deg0:"[|ring R; ring S; polyn ring R S X;

p ∈ carrier R; p 6= 0R |] =⇒
(deg n R S X p = 0) = (p ∈ carrier S)"

lemma pol of deg0 1:"[|ring R; ring S; polyn ring R S X;

p ∈ carrier R |] =⇒
(deg R S X p = 0) = (p ∈ carrier S - {0S})"
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2.3 A homomorphism of a polynomial ring to a homomorphism ring

A set of homomorphisms from a polynomial ring R = S[X] to a polynomial ring
A = B[Y] is defined as

polyn Hom::"[(’a, ’m) RingType scheme, (’a, ’m1) RingType scheme,

’a, (’b, ’n) RingType scheme,

(’b, ’n1) RingType scheme, ’b] ⇒ (’a ⇒ ’b) set"

("(pHom , )" [67,67,67,67,67,68]67)

"pHom R S X, A B Y == {f. f ∈ rHom R A

∧ f‘(carrier S) ⊆ carrier B ∧ f X = Y}"

and from this definition we can prove a simple lemma:

lemma pHom mem:"[|ring R; ring S; polyn ring R S X; ring A;

ring B; polyn ring A B Y; f ∈ pHom R S X, A B Y;

pol coeff S n c|]

=⇒ f (polyn expr R X n c) = polyn expr A Y n (cmp f c)"

In ordinary mathematical expression, we can write this lemma as

lemma pHom mem:
Let R be a polynomial ring S[X] and let A be a polynomial ring B[Y].
If f is a ring homomorphism of S to B, then f is uniquely extended to a
homomorphism F of S[X] to B[Y] such that
F (a0 + a1X+. . .+an Xn ) = (f a0) + (f a1) Y + . . . + (f an) Yn.

In our formalization we have a complicated expression for the extended ho-
momorphism F above:

ext rH::"[(’a, ’m) RingType scheme, (’a, ’m1) RingType scheme,

’a, (’b, ’n) RingType scheme, (’b, ’n1) RingType scheme,

’b, ’a ⇒ ’b] ⇒ (’a ⇒ ’b)"

"ext rH R S X A B Y f == λx∈carrier R. (if x = 0R then 0A
else polyn expr A Y (deg n R S X x)

(cmp f (SOME h. d cf sol R S X x h)))"

d cf sol R S X x h is a condition

d cf sol::"[(’a, ’b) RingType scheme, (’a, ’b1) RingType scheme,

’a, ’a, nat ⇒ ’a] ⇒ bool"

"d cf sol R S X p f == pol coeff S (deg n R S X p) f ∧
p = polyn expr R X (deg n R S X p) f ∧ f (deg n R S X p) 6= 0S"

and ext rH R S X A B Y f is the extended homomorphism of the polyno-
mial ring polyn ring R S X to the polyn ring A B Y of a ring homomorphism
S to B.

We see the degrees satisfy the inequality:
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lemma pHom dec deg:"[|ring R; ring S; polyn ring R S X; ring A;

ring B; polyn ring A B Y; g ∈ pHom R S X, A B Y; p ∈ carrier

R; g p 6= 0A|] =⇒ deg n A B Y (g p) ≤ deg n R S X p"

This lemma means if g is a homomorphism satisfying g (carrier S) ⊆ carrier
B and g(X) = Y, then the degrees satisfy above inequality. Here, we note why
we use variables X and Y. This is because restriction of types. When we treat
residue class ring R/P, the element of R/P has type ’a set if element of R is of
type ’a, and in our definition X has type ’a, so we cannot take X as a variable
over O/P.

2.4 Relatively prime polynomials

Hensel’s lemma is a lemma giving a factorization by using relatively prime poly-
nomials over a residue class field. We formalize the concept of relatively prime
polynomials as

rel prime pols::"[(’a, ’m) RingType scheme,

(’b, ’m1) RingType scheme, ’a, ’a, ’a ] ⇒ bool"

"rel prime pols R S X p q == (1R) ∈ ((Rxa R p) +R (Rxa R q))"

Here p and q are polynomials(i.e. elements of R) in a polynomial ring R =
S[X], and Rxa R p (later Rxa R p is denoted by R ♦ p) is an ideal of R generated
by p. Therefore, two polynomials p, q are relatively prime if and only if there are
two polynomials u, v such that u p + v q = 1R, where 1R is the multiplicative
unit of R.

The division is formalized as

lemma divisionTr4:"[|ring R; field S; polyn ring R S X;

g ∈ carrier R; g 6= 0R; 0 < deg n R S X g; f ∈ carrier R|] =⇒
∃q∈carrier R. (f = q ·R g) ∨ (∃r∈carrier R. r 6= 0R ∧
(f = (q ·R g) +R r) ∧ (deg n R S X r) < (deg n R S X g))"

We can read this lemma as
Let R be a polynomial ring S[X],and let f, g be polynomials in R such that

g is a nonzero polynomial with 0 < deg g.Then, there is a polynomial q ∈ R
such that f = qg or there is a nonzero polynomial r such that f = qg + r with
deg r < deg g.
We have a lemma

lemma rel prime equation:"[|ring R; field S; polyn ring R S X;

f ∈ carrier R; g ∈ carrier R; f 6= 0R;

0 < deg n R S X f; g 6= 0R; 0 < deg n R S X g;

h ∈ carrier R; h 6= 0R; rel prime pols R S X f g|]

=⇒ ∃u ∈ carrier R. ∃v ∈ carrier R. (u = 0R
∨ (u 6= 0R ∧ deg n R S X u ≤ max ((deg n R S X h)

- (deg n R S X f)) (deg n R S X g))) ∧ (v = 0R
∨ (v 6= 0R ∧ deg n R S X v ≤ (deg n R S X f)))

∧ (u ·R f +R (v ·R g) = h)"
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In terms of the generalized deg, the above lemma is expressed simply as

lemma rel prime equation:"[| ring R; field S; polyn ring R S X;

f ∈ carrier R; g ∈ carrier R; 0 < deg R S X f;

0 < deg R S X g; rel prime pols R S X f g;

h ∈ carrier R |]

=⇒ ∃ u ∈ carrier R. ∃ v ∈ carrier R.

(deg R S X u ≤ amax ((deg R S X h) - (deg R S X f))

(deg R S X g)) ∧ (deg R S X v ≤ (deg R S X f))

∧ (u ·R f +R (v ·R g) = h)"

This means:
Let R = S[X] be a polynomial ring with field coefficients, and let f, g be relatively
prime polynomials in R with nonzero degree, and let h be a polynomial. Then
there are polynomials u, v such that u f + v g = h, satisfying conditions deg u ≤
max((deg h − deg f),deg g)x and deg v ≤ deg f .

Now, we explain Hensel’s lemma in short.
Let S be a valuation ring with the maximal ideal (t), t ∈ S. Let R be the
polynomial ring S[X] and let f be an element of R. If the natural image f̄ of
f in the ring R’ = (S/(t))[Y] is factorized as f̄ = g′h′ with relatively prime
polynomials g’, h’ ∈ R’. Then we have polynomials g, h such that ḡ = g′, h̄ = h′

and f = gh. Moreover we have deg g ≤ deg g′.
A proof of this lemma is to make approximations of g and h recursively and

show that the limits of those approximations gives factors. A recursive construc-
tion requires the following existence lemma:

lemma P mod approximation:"[|(1) ring R; integral domain S;

polyn ring R S X;

(2) t ∈ carrier S; t 6= 0S; maximal ideal S (S ♦ t);

(3) ring R’; polyn ring R’ (ringF (S /r (S ♦ t))) Y;

(4) f ∈ carrier R;

(5) ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) f

6= 0R’;

(6) g ∈ carrier R; h ∈ carrier R;

(7) deg n R S X g + deg n R S X h ≤ deg n R S X f;

(8) ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) g

6= 0R’;

(9) 0 < deg n R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y

(pj S (S ♦ t)) g);

(10) ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

h 6= 0R’;

(11) 0 < deg n R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y

(pj S (S ♦ t)) h);

(12) rel prime pols R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y
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(pj S (S ♦ t)) g)

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y

(pj S (S ♦ t)) h);

(13) P mod R S X (S ♦ (t^Sm)) (f +R
-R (g ·R h)); 0 < m |] =⇒
(14) ∃g1 h1. g1 ∈carrier R ∧ h1 ∈ carrier R ∧
(15) (deg n R S X g1 ≤ deg n R S X g) ∧
(16) P mod R S X (S ♦ t) (g +R -R g1) ∧
(17) P mod R S X (S ♦ t) (h +R -R h1) ∧
(18) P mod R S X (S ♦ (t^S(Suc m))) (f +R (-R (g1 ·R h1)))"

We describe the meaning of the above lemma:

(1) Let R be a polynomial ring S[X], with an integral domain S.

(2) Let (t) with t 6= 0 be a maximal ideal of S.

(3) Let R′ be a polynomial ring S/(t)[Y ]. Since S/(t) is a field, we

write ringF (S/(t)) to denote that there is an inverse operator for

multiplication.

(4) Let f be a polynomial in S[X].

(5) the natural image f̄ in R′ of f is nonzero.

(6) g, h be polynomials in S[X].

(7) deg g + deg h ≤ f

(8) the natural image ḡ in R′ of g is nonzero.

(9) 0 < deg g′ in R′.

(10) the natural image ḡ in R′ of g is nonzero.

(11) 0 < deg h′ in R′.

(12) 1 ∈ (g′) + (h′).

(13) f ∼= gh(mod(tm)), 0 < m.

=⇒

(14) exists g1, h1 in R such that,

(15) deg g1 ≤ deg g,

(16) g ∼= g1mod(t) in R,

(17) h ∼= h1mod(t) in R,

(18) f ∼= g1h1mod(tm+1)

To use this lemma recursively, we define a pair of polynomials:

Hensel next::"[(’a, ’b) RingType scheme, (’a, ’c) RingType scheme,

’a, ’a, (’a set, ’m) RingType scheme, ’a set,’a, nat] ⇒
(’a × ’a) ⇒ (’a × ’a)"
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("(9Hen )" [67,67,67,67,67,67,67,68]67)

"HenRSXtR′Yf m gh == SOME gh1. gh1 ∈ carrier R <*> carrier R ∧
(deg R S X (fst gh1) ≤ deg R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

(fst gh1))) ∧ P mod R S X (S ♦ (t^S m)) ((fst gh) +R -R
(fst gh1)) ∧ (deg R S X (snd gh1) + deg R’ (ringF

(S /r (S ♦ t))) Y (ext rH R S X R’ (ringF (S /r (S ♦ t)))

Y (pj S (S ♦ t)) (fst gh1)) ≤ deg R S X f) ∧
P mod R S X (S ♦ (t^S m)) ((snd gh) +R -R (snd gh1)) ∧
P mod R S X (S ♦ (t^S(Suc m)))

(f +R(-R ((fst gh1) ·R (snd gh1))))"

The following Hensel pair is a pair of polynomials and the limits of each
component is a factor of the given polynomial f which is to be factorized.

Hensel pair::"[(’a, ’b) RingType scheme, (’a, ’c) RingType scheme,

’a, ’a, (’a set, ’m) RingType scheme, ’a set, ’a, ’a, ’a,

nat] ⇒ (’a × ’a)"

("(10Hpr )" [67,67,67,67,67,67,67,67,67,68]67)

primrec

Hpr 0: "HprRSXtR′Yfgh 0 = (g, h)"

Hpr Suc: "HprRSXtR′Yfgh (Suc m) =

HenRSXtR′Yf (Suc m) (HprRSXtR′Yfgh m)"

We have a lemma which implies the Hensel pair is a Cauchy sequence of
polynomials.

lemma P mod diffxxx5 1:"[| ring R; integral domain S;

polyn ring R S X; t ∈ carrier S; maximal ideal S (S ♦ t);

ring R’; polyn ring R’ (ringF (S /r (S ♦ t))) Y;

f ∈ carrier R; g ∈ carrier R; h ∈ carrier R;

deg R S X g ≤ deg R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) g);

deg R S X h + deg R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) g)

≤ deg R S X f;

0 < deg R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) g);

0 < deg R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) h);

rel prime pols R’ (ringF (S /r (S ♦ t))) Y

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) g)

(ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t)) h);

P mod R S X (S ♦ t) (f +R -R (g ·R h))|] =⇒
(HprRSXtR′Yfgh (Suc m)) ∈ carrier R × carrier R ∧



122 Hidetune Kobayashi, Hideo Suzuki, Yoko Ono

ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

(fst (HprRSXtR′Yfgh (Suc m))) =

ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

(fst (g, h)) ∧
ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

(snd (HprRSXtR′Yfgh (Suc m))) =

ext rH R S X R’ (ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

(snd (g, h)) ∧
(deg R S X (fst (HprRSXtR′Yfgh (Suc m))) ≤
deg R’ (ringF (S /r (S ♦ t))) Y (ext rH R S X R’

(ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

(fst (HprRSXtR′Yfgh (Suc m))))) ∧

P mod R S X (S ♦ (t^S
(Suc m)

))) ((fst (HprRSXtR′Yfgh m)) +R
-R (fst (HprRSXtR′Yfgh (Suc m)))) ∧

(deg R S X (snd (HprRSXtR′Yfgh (Suc m))) +

deg R’ (ringF (S /r (S ♦ t))) Y (ext rH R S X R’

(ringF (S /r (S ♦ t))) Y (pj S (S ♦ t))

(fst (HprRSXtR′Yfgh (Suc m)))) ≤ deg R S X f) ∧

P mod R S X (S ♦ (t^S
(Suc m)

)) ((snd (HprRSXtR′Yfgh m)) +R
-R (snd (HprRSXtR′Yfgh (Suc m)))) ∧

P mod R S X (S ♦ (t^S
(Suc(Suc m))

)) (f +R -R
((fst (HprRSXtR′Yfgh (Suc m))) ·R (snd (HprRSXtR′Yfgh (Suc m)))))"

3 Valuations

3.1 Definition of a valuation

We formalize Hensel’s lemma for a polynomial ring with coefficients in a valua-
tion ring. If the valuation ring is “complete”, there is a limit polynomial which
is a factor of a given polynomial.

Valuation is a function v from the carrier of a field K to Z ∪ {∞} satisfying
the following conditions:

(1) v (0) = ∞
(2) forall x, y in the carrier K, we have an equation

v (x y) = v (x) + v(y)
(3) forall x in the carrier K, if 0 ≤ v(x) then 0 ≤ v (1 + x)
(4) there exists an element x of carrier K, such that v (x) 6= ∞ and

v (x) 6= 0
The set Z ∪ {∞} is the set of augmented integers not equal to −∞, and we

denote this set by Z∞. The ordering of Z∞ is that induced naturally by integer
ordering and for any integer z, z < ∞.

valuation::"[’b FieldType, ’b ⇒ ant] ⇒ bool"

"valuation K v == v ∈ extensional (carrier K)

∧ v ∈ carrier K → Z∞ ∧ v (0K) = ∞
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∧ (∀ x ∈ ((carrier K) - 0K). v x 6= ∞)

∧ (∀ x ∈ (carrier K).

∀ y ∈ (carrier K). v (x ·K y) = (v x) + (v y))

∧ (∀ x ∈ (carrier K). 0 ≤ (v x) −→ 0 ≤ (v (1K +K x)))

∧ (∃ x. x ∈ carrier K ∧ (v x) 6= ∞ ∧ (v x) 6= 0)"

We have a simple

lemma amin le plus:"[| field K; valuation K v; x ∈ carrier K;

y ∈ carrier K |]

=⇒ (amin (v x) (v y)) ≤ (v (x +K y))"

Here, (amin (v x) (v y)) is minimum of augmented integers.

3.2 The valuation ring of a valuation v

The valuation ring of a valuation v is formalized as

Vr::"[’r FieldType, ’r ⇒ ant] ⇒ ’r RingType"

"Vr K v == Sr K (x. x ∈ carrier K ∧ 0 ≤ (v x))"

vp::"[’r FieldType, ’r ⇒ ant] ⇒ ’r set"

"vp K v == x. x ∈ carrier (Vr K v) ∧ 0 < (v x)"

r apow::"[(’r, ’m) RingType scheme, ’r set, ant] ⇒ ’r set"

"r apow R I a == if a = ∞ then 0R
else (if a = 0 then carrier R else I♦R(na a))"

r apow R I a is the power of an ideal I with augmented integer coefficient
a. Sr K { } means a subring of K having the carrier { }, and we can show

lemma Valuation ring:"[| field K; valuation K v|]

=⇒ ring (Vr K v)"

Hence the valuation ring is a ring and

lemma Vring integral:"[| field K; valuation K v|]

=⇒ integral domain (Vr K v)"

The above lemma shows that a valuation ring is an integral domain. As for
a subset vp K v consisting of elements of the carrier K having strictly positive
value:

vp::"[’r FieldType, ’r ⇒ ant] ⇒ ’r set"

"vp K v == {x. x ∈ carrier (Vr K v) ∧ 0 < (v x)}"

We have

lemma vp ideal:"[| field K; valuation K v|]

=⇒ ideal (Vr K v) (vp K v)"



124 Hidetune Kobayashi, Hideo Suzuki, Yoko Ono

Hence vp K v is an ideal of the valuation ring.

lemma vp maximal:"[| field K; valuation K v|]

=⇒ maximal ideal (Vr K v) (vp K v)"

Hence we see that vp is a maximal ideal of the valuation ring.

lemma Vring local:"[| field K; valuation K v;

maximal ideal (Vr K v) I|] =⇒ (vp K v) = I"

This lemma shows the valuation ring Vr K v is a local ring (i.e. has only one
maximal ideal). We have the following lemma, which shows that the valuation
ring is a principal ideal:

lemma Vring principal:"[|field K; valuation K v;

ideal (Vr K v) I|] =⇒ ∃ x ∈ I. I = Rxa (Vr K v) x"

Hence the maximal ideal vp K v is generated by one element t (t 6= 0) of Vr K

v.
Because the valuation ring is a principal ideal domain, the following lemma

is natural, but non-trivial.

lemma ideal apow vp:"[| field K; valuation K v;

ideal (Vr K v) I |] =⇒ I = (vp K v)(VrKv)(n valKv(IgKvI)

We have a lemma connecting n val K x and the principal ideal (x) generated
by x, with x in the valuation ring Vr K v.

lemma ideal apow n val:"[| field K; valuation K v; x ∈ carrier

(Vr K v) |] =⇒ (Vr K v) ♦ x = (vp K v)(VrKv)(n valKvx)"

3.3 Limit with respect to a valuation v

Given a valuation v of a field K, we can formalize ”limit” as

limit ::"[’b FieldType, ’b ⇒ ant, nat ⇒ ’b, ’b] ⇒ bool"

("(4lim )" [90,90,90,91]90)

"limK v f b == ∀N. ∃M.
(∀n. M < n −→ ((f n) +K (-K b)) ∈ (vp K v)♦(VrK v) N)"

Here, K is a field on which the value v is defined and f is a function from the
set NSet of all natural numbers to the carrier of K. We can take f as a sequence
of elements of the carrier K. vp K v is the maximal ideal of the valuation ring
Vr K v and b is an element of the carrier K. For a short explanation of the
meaning of the above definition, let us denote the valuation ring as O and let us
denote vpr as P, then we see limit...f b means

∀N there is a natural number M such that ∀n > M, f(n) − b ∈ PN

The following lemma shows that limit is also described in terms of the valu-
ation.
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lemma limit diff val:"[| field K; b ∈ carrier K; ∀j.
f j ∈ carrier K; valuation K v|]

=⇒ (limKv f b) = (∀N. ∃M. ∀n. M < n

−→ (an N) ≤ (v((f n) +
K

(−K b))))"

The following lemma guarantees that the limit value is unique.

lemma vp pow inter zero:"[| field K; valuation K v|]

=⇒ (∩ {I. ∃n. I = (vp K v)♦(Vr K v) n}) = {0K}"

In short, by using above notation we can express this as

∩n Pn = {0}

By using O and P above we can express (vp K v)♦(Vr K v) n as Pn and this
means n-th power of the ideal P.

A complete field K with respect to a valuation v is a field in which any Cauchy
sequence converges to some element of K. Cauchy sequence is formalized as

Cauchy seq::"[’b FieldType, ’b ⇒ ant, nat ⇒ ’b] ⇒ bool"

("(3Cauchy )" [90,90,91]90)

"CauchyK v f == (∀n. (f n) ∈ carrier K)

∧ ( ∀N. ∃M. (∀n m. M < n ∧ M < m

−→ ((f n) +K (-K (f m))) ∈ (vp K v)♦(Vr K v) N))"

A complete field is formalized as

v complete::"[’b ⇒ ant, ’b FieldType] ⇒ bool"

("(2Complete )" [90,91]90)

"Completev K == ∀f. (CauchyK v f)

−→ (∃b. b ∈ (carrier K) ∧ limK v f b)"

that is, any Cauchy sequence converges to some element of K.
Let K be a field having a valuation v and let t be an element of the valuation

O of v and let (t) = P the maximal ideal of O. Let S be a complete system of
representatives of O/P, i.e. image of a function s : O/P → O such that p◦s =
id, where p is the natural projection p:O → O/P.

We have an expansion theorem:

Let K be a field and let v be a valuation. Let t be an element of K such that

(t) is the maximal ideal of the valuation ring of v. Then for any x ∈ K,

x = tn(a0 + a1t + . . . + antn + . . .)

A formalization of this lemma is as follows:

consts partial sum :: "[’b FieldType, ’b, ’b ⇒ ant,’b]

⇒ nat ⇒ ’b" ("(5psum )" [96,96,96,96,97]96)
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primrec psum 0 : "psumK x v t 0 = (csrp fn (Vr K v)

(vp K v) (pj (Vr K v) (vp K G v) (x ·K tK
(-(tna (v x))))))

·K (tK( tna (v x)))"

psum Suc: "psumK x v t (Suc n) = (psumK x v t n) +K ((csrp fn

(Vr K v) (vp K v) (pj (Vr K v) (vp K v) ((x +K -K
(psumK x v t n)) ·K (tK

(- (tna (v x) + int (Suc n)))))))

·K (tK(tna (v x) + int (Suc n))))"

Here csrp fn (Vr K v) (vp K v) is the map s above having one more condition
that s (P) = 0. pj (Vr K v) (vp K v) is the map p above. Let x be an element
of K, then the value v x is in Z∞. We see v (tm) = an m. If v x = an m then we
have v (x /t−m) = 0 and x /t−m ∈ O. We put a0 = s◦p ( x /t−m), then psumK x v t

0 = a0t
m. Since p(a0) = p( x /t−m), we have x /t−m - a0 ∈ P, therefore we have

an element a′1 such that
x /t−m - a0 = a′1 t

from this we have (x /t−m - a0)/t = a′1. We have a1 in S such that a1
∼= a′1,

and we see that there exists an element a′2 in O satisfying a′1 = a1 + a′2t.
Hence we have an equation

(x /t−m - a0)/t = a1 + a′2t,
and this equation is equal to the equation

x = tm(a0 + a1t + a′2t
2)

Thus we see that
psumK x v t n = tm(a0 + a1t + . . . + antn),

We have formalization of the expansion theorem:

theorem expansion thm:"[| field K; valuation K v;

t ∈ carrier K; t 6= 0K; v t = 1; x ∈ carrier K; x 6= 0K|]

=⇒ limK v (partial sum K x v t) x"

The maximal ideal P of a valuation ring O is generated by one element, and
we saw ∩nP

n = {0}, the limit of a Cauchy sequence is determined uniquely. And
if we have a sequence of polynomials {fi(X)}i=1,2,... satisfying a condition

∀N. ∃M such that ∀ n m.M < m ∧ M < n =⇒ fn − fm ∈ PNO[x]

then we see that there is a unique limit polynomial f of the sequence {fi(X)}i=1,2,....

4 Hensel’s lemma

We give a polynomial f in a ring of polynomials O[X] with O a valuation ring.
Let M be the maximal ideal of O, then Hensel’s lemma states that if f ∈ O[X] is
factorized as f̄ = g′h′ in (O/M)[X], then there are two polynomials g, h ∈ O[X]
such that f = g h.

A Cauchy sequence of polynomials and limit of a sequence of polynomials
are defined as above. One point we have to note is



Formalization of Hensel’s Lemma 127

lemma Plimit deg1:"[| field K; valuation K v; ring R;

polyn ring R (Vr K v) X; ∀ n. F n ∈ carrier R;

∀ n. deg R (Vr K v) X (F n) ≤ ad; p ∈ carrier R;

PlimitR X K vF p |] =⇒ deg R (Vr K v) X p ≤ ad"

This lemma means a sequence of polynomials has a upper bound, then a
limit is also bounded by the bound.

The limit of a Cauchy sequence is determined uniquely. We formalized Hensel’s
lemma as

theorem Hensel:"[| (1) field K; valuation K v;

(2) Completev K; (3) ring R; polyn ring R (Vr K v) X;

(4) ring S; polyn ring S (ringF ((Vr K v) /r (vp K v))) Y;

(5) f ∈ carrier R; f 6= 0R; g’ ∈ carrier S; h’ ∈ carrier S;

0 < deg S (ringF ((Vr K v) /r (vp K v))) Y g’;

0 < deg S (ringF ((Vr K v) /r (vp K v))) Y h’;

((ext rH R (Vr K v) X S (ringF ((Vr K v) /r (vp K v))) Y

(pj (Vr K v) (vp K v))) f) = g’ ·S h’;

(6)rel prime pols S (ringF ((Vr K v) /r (vp K v))) Y g’ h’|] =⇒
(7) ∃ g h. g ∈ carrier R ∧ h ∈ carrier R ∧
deg R (Vr K v) X g ≤ deg S (ringF ((Vr K v) /r (vp K v))) Y g’

∧ f = g ·R h"

To explain the meaning of this theorem, we put line numbers. We denote the
valuation ring (Vr K v) as O, the maximal ideal (vp K v) as (t) or as P and the
natural projection from O to O/P as p. Let g be an element of O, we also denote
p (g) as ḡ.

(1) K is a field with a valuation v
(2) K is a field which is complete with respect to the valuation v
(3) R is a polynomial ring O[X]
(4)S is a polynomial ring (O/P)[Y]. We note that O/P is a field since P is

the maximal ideal of O. Note that ringF (O/P) is a FieldType.
(5) f ∈ R, g′ ∈ S and h′ ∈ S and f̄ = g′ h′ where g′ h′ are non constant

polynomials. That is “a factorization is given in the polynomial ring O/P[Y]”.
(6) (g′, h′) = 1 in S, that is, these two are relatively prime nonconstant

polynomials.
(7) There are two polynomials g, h in R such that f = g h, with deg g ≤ deg

g′
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Abstract Within a framework of correct code-generation from HOL-
specifications, we present a particular instance concerned with the op-
timized compilation of a lazy language (called MiniHaskell) to a strict
language (called MiniML).
Both languages are defined as shallow embeddings into denotational se-
mantics based on Scott’s cpo’s, leading to a derivation of the correspond-
ing operational semantics in order to cross-check the basic definitions.
On this basis, translation rules from one language to the other were
formally derived in Isabelle/HOL. Particular emphasis is put on the op-
timized compilation of function applications leading to the side-calculi
inferring e.g. strictness of functions.
The derived rules were grouped and set-up as an instance of our generic,
tactic-based translator for specifications to code.

1 Introduction

The verification of compilers, or at least the verification of compiled code, is
known to be notoriously difficult. This problem is still an active research area [3,
4, 12]. In recent tools for formal methods, the problem also re-appears in the
form of code-generators for specifications — a subtle error at the very end of
a formal development of a software system may be particularly frustrating and
damaging for the research field as a whole.

In previous work, we developed a framework for tactic-based compilation [5].
The idea is to use a theorem prover itself as a tool to perform source-to-source
transformations, controlled by tactic programs, on programming languages em-
bedded into a HOL prover. Since the source-to-source transformations can be
derived from the semantics of the program languages embedded into the theo-
rem prover, our approach can guarantee the correctness of the compiled code,
provided that the process terminates successfully and yields a representation
that consists only of constructs of the target language. Constructed code can be
efficient, since our approach can be adopted to optimized compilation techniques,
too.

In this paper, we discuss a particular instance of this framework. We present
the semantics of two functional languages, a Haskell-like language and an ML-
like language for which a simple one-to-one translator to SML code is provided.
We apply the shallow embedding technique for these languages [1] into standard
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denotational semantics — this part of our work can be seen as a continuation
of the line of “Winskel is almost right”-papers [8], which formalize proofs of a
denotational semantics textbook [11, chapter 9].

As a standard translation, a lazy language can be transformed semantically
equivalent via continuation passing style [2] into an eager language. While this
compilation is known to produce fairly inefficient code, we also use derived rules
for special cases requiring strictness- or definedness analysis. While we admit
that the basic techniques are fairly standard in functional compilers, we are not
aware of any systematic verification of the underlying reasoning in a theorem
prover. Thus, we see here our main contribution.

The plan of the paper is as follows: After a brief outline of the general frame-
work for tactic based compilation and a brief introduction into the used theories
for denotational semantics, we discuss the embeddings of MiniHaskell and MiniML

into them. These definitions lead to derivations of “classical” textbook opera-
tional semantics. In the sequel, we derive transformation rules between these
two languages along the lines described by our framework. Then we describe the
side-calculus to infer strictness required for optimized compilation; an analogous
calculus for definedness is ommitted here.

2 Background

2.1 Concepts and Use of Isabelle/HOL

Isabelle [9] is a generic theorem prover of the LCF prover family; as such, we
use the possibility to build programs performing symbolic computations over
formulae in a logically safe (conservative) way on top of the logical core engine:
this is what our code-generator technically is. Throughout this paper, we will
use Isabelle/HOL, the instance for Church’s higher-order logic. Isabelle/HOL

offers support for data types, primitive and well-founded recursion, and powerful
generic proof engines based on higher-order rewriting which we predominantly
use to implement the translation phases of our code-generator.

Isabelle’s type system provides parametric polymorphism enriched by type
classes: It is possible to constrain a type variable α :: order to specify that an
operator <= must be declared on any α; this syntactic concept known from
languages such as Haskell is extended in Isabelle by semantic constraints: the
operator must additionally fulfill the properties of a partial order.

The proof engine of Isabelle is geared towards rules of the form A1 ⇒ (. . . ⇒
(An ⇒ An+1) . . .) which can be interpreted as “from assumptions A1 to An,
infer conclusion An+1”. This corresponds to the textbook notation

A1 . . . An

An+1

which we use throughout this paper.
Inside these rules, the meta-quantifier

∧
is used to capture the usual side-

constraint “x must not occur free in the assumptions” for quantifier rules; meta-
quantified variables can be considered as “fresh” free variables.
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2.2 The Framework for Code-Generation

Our generic framework [5] is designed to cope with various executability notions
and to provide technical support for them. The following diagram in figure 1
represents the particular instance of the general framework discussed in this
paper.

Figure 1. Basic Concepts

Here, the left block represents the language MiniHaskell, the center block
the language MiniML, which are both presented as conservative shallow embed-
ding into a theory of Scott Domains described in Section 2.3. A subset of both
languages are the set of abstract values. The embeddings are mirrored by the
corresponding terms of a (concrete) programming language, i.e. SML, and its
subset of (concrete) values like e.g. the integers 1,2,3,. . . . The first two worlds
are connected by the translate function, that consists of several tactics that con-
trol the translation process by source-to-source translation rules. The latter two
worlds are connected by the code-generation function convert provided by our
framework that is required to be total on the domain of abstract programs.

The three relations →MiniHaskell, →MiniML and →SML represent the operational
semantics of the three languages. We require that they represent partial functions
from programs to values. These operational semantics serve as cross-check of our
denotational definitions of the language; in particular, →SML can be compared
against an (abstracted) version of the real SML semantics [6] in order to validate
convert. Making these two diagrams commute (while the first commutation is
based on formal proofs presented in this paper) constitutes the correctness of
our overall translation process.

2.3 Denotational Semantics in HOL

The cornerstone of any denotational semantics is its fixpoint theory that gives
semantics to systems of (mutual) recursive equations. The well-known Scott-
Stratchey-approach is based on complete partial orders (cpo’s); variants thereof
have also been used in standard semantics textbooks such as [11] to give seman-
tics to the languages we discuss here (cf. chapter 9).
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Several versions of denotational semantics theories are available for Isabelle [7,
10]. In both, the type class mechanism is used in order to model cpo’s, which pro-
vide a least element ⊥ and completeness on any type belonging to class cpo. This
is essentially captured in the theory [10] underlying this work in the axiomatic
class definition

axclass

cpo < cpo0

least ⊥ ≤ x

complete directed X ⇒ (∃ b. X <<| b)

i.e. completeness means that for any directed set (any non-empty set where two
elements have a supremum) there exists a least upper bound.

Moreover, in this type class a number of key concepts such as definedness
and strictness of a function and making a function strict are defined:

DEF :: α::cpo0 ⇒ bool DEF x ≡ x6=⊥
is_strict :: (α::cpo0 ⇒ β::cpo0) ⇒ bool

is_strict f ≡ (f ⊥ = ⊥)
strictify :: (α ⇒ β::cpo) ⇒ α ⊥ ⇒ β

strictify f x ≡ if DEF(x) then f(x) else ⊥

Further, a type constructor can be defined that assigns to each type τ a lifted

type τ⊥ by disjointly adding the ⊥-element. All types lifted by this type con-
structor are automatically in the type class cpo but not necessarily vice versa.
The function b c : α → α⊥ denotes the injection, the function d e : α⊥ → α its
inverse, extended by d⊥e = ⊥.

On cpo’s, the usual fixpoint combinator fix is defined that is shown to posses
the crucial fixpoint property

cont f

fix f = f(fix f)

for all functions f that are continuous. Further, there is the usual induction
principle for all fixpoints of all types belonging to class cpo:

cont f adm P
∧

x.

P (x)
....

P (f x)

P (fix f)

where the second-order predicate adm for admissibility captures that a predicate
P holds for a fixpoint if it holds for any approximation of it. adm distributes
over universal quantification, conjunction and disjunction, but not necessarily
over negation. Being defined is an admissible predicate, being total not. As a
consequence of induction, we derived a kind of bi-simulation principle:

cont f cont f ′
∧

x.

[P x]
....

f x = f ′ x
∧

x.

[P x]
....

P (f x) adm P

fix f = fix f ′
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which is the key for the proof of several crucial inference principles over recursive
programs to be described in the subsequent sections. If some property P is
invariant through execution of the body f , then P can be assumed for the “inner
call” when proving the bodies f and f ′ equivalent over them.

3 The Semantics of MiniHaskell and MiniML

3.1 The Denotational Semantics of MiniHaskell

Based on the theories of denotational semantics, we define our first contribution
— the formal definition of the lazy language MiniHaskell. The types of basic
operations like Bool were lifted from HOL types

types

Bool = bool⊥ Nat = nat⊥ Unit = unit⊥

and basic constants such as TRUE or ONE are defined accordingly by

TRUE :: Bool TRUE ≡ b True c
ONE :: Nat ONE ≡ b1 c

The core of the MiniHaskell semantics consists of the definitions for the abstrac-
tion, application, conditional and the LET-construct. As well-known in the liter-
ature, an important difference between the denotational theory and the object
language has to be made: the abstraction in MiniHaskell is a value — a so-called
closure — and not a function space. Thus, a naive identification of the object
language LAM with the meta language λ results in a completely wrong model
of the operational behaviour: the expression LAM x. ONE DIV ZERO should be
a value, i.e. different from λx. 1 DIV 0, which is just λx.⊥ or just ⊥ in the
function space. Consequently, the lifted function space is used, defined by:

types (α,β) V = (α ⇒ β)⊥

which results in the following definitions for the abstraction

Lam :: (α::cpo ⇒ β::cpo) ⇒ (α V β)

Lam F ≡ bF c

and its inverse, the application

Bl :: (α::cpo V β::cpo) ⇒ α ⇒ β

F Bl x ≡ dF e x

where we may write LAM x. P x for Lam P . The LET construct is just a syntac-
tical shortcut and defined by the application. The remaining definitions of the
conditional and the recursor are standard:

If :: [Bool , α::cpo , α] ⇒ α

IF x THEN y ELSE z ≡ case x of

bv c ⇒ if v then y else z

| ⊥ ⇒ ⊥
REC :: (α::cpo ⇒ α) ⇒ α

REC f ≡ fix f
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The basic operations of MiniHaskell are just strictified versions of the elementary
operations of HOL. The paradigmatic example for a 1-ary and a 2-ary function
are defined as follows:

SUC :: Nat ⇒ Nat

SUC ≡ strictify(λx. b Suc x c)
^ <^ :: [Nat , Nat] ⇒ Bool

(op ^ <^) ≡ strictify(λx. strictify(λy. bx<y c))

An example for a partial function is DIV:

DIV :: [Nat , Nat] ⇒ Nat

DIV ≡ strictify(λx.

strictify(λy. if y=0 then ⊥
else bx div y c))

As top-level constructs, we introduce the following two program definition con-
structs:

VAL :: [α,α] ⇒ bool

VAL f E ≡ (f = E)

FUN :: [α::cpo , α ⇒ α] ⇒ bool

FUN f F ≡ (f = REC(F)) ∧ cont F

This means that a recursive program is representable by the recursor REC of the
language MiniHaskell under the condition, that the representing functional F is
continuous. The Isabelle syntax engine is set up to parse also mutual recursive
function definitions as a combination of fix and pairing. For example, a mutual
recursive program in the object language MiniHaskell looks as follows:

fun fac x = IF x^=^ ZERO THEN ONE ELSE x*(fac Bl (x-ONE))

and add_fac x y = x+fac Bl y

and suc_fac a = add_fac Bl ONE Bl a;

Note, that the operators (op +), (op -) and (op *) are the overloaded (strictified)
variants from MiniHaskell.

3.2 Lazy Operational Semantics of MiniHaskell

In the following, we derive the operational semantics presented in [11] in order
to validate our denotational definitions. The basic concept of this operational
semantics is a notion of terms representing values, called canonical forms. The
judgment t ∈ Cτ states that a term t is a canonical form of type τ . It is defined
by the following structural induction on the type τ :

Ground type: n ∈ Cint = {ZERO, ONE, TWO, . . .} and
b ∈ Cbool = {TRUE, FALSE}

Function type: Closed abstractions are canonical forms, i.e.
(LAM x. t) ∈ Cτ1→τ2

if t is closed
Note, that we can not give an inductive definition for canonical forms since we
use a shallow embedding (the types presented above are represented on the meta-
level). Nevertheless, by defining the evaluation relation →l as equivalent to the
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logical equality (i.e. evaluation must be correct), we can now derive the rules for
the evaluation relation and check that they have the appropriate form t →l c,
where t is a typeable closed term and c is a canonical form, meaning t evaluates
to c. In the following, c, c1, c2 and c3 range over canonical forms:

c →l c
t1 →l c1 t2 →l c2

t1 op t2 →l c1 op c2

t1 →l TRUE t2 →l c2

(IF t1 THEN t2 ELSE t3) →l c2

t1 →l FALSE t3 →l c3

(IF t1 THEN t2 ELSE t3) →l c3

t1 →l LAM x. t t[x := t2] →l c

t1 Bl t2 →l c

t2[x := t1] →l c

(LET x = t1 IN t2 →l c)

REC y. (LAM x. t) →l LAM x. t [y := REC y. (LAM x. t)]

As can be expected, the rule for canonical forms expresses that canonical forms
evaluate to themselves. A key rule is that for the evaluation of applications: the
evaluation of an application proceeds by the substitution of the argument into
the function body; the treatment of the LET x = t1 IN t2 is analogously. The
rule for recursive definitions unfolds the recursion REC y. (LAM x. t) once, leading
immediately to an abstraction LAM x. t [y := REC y. (LAM x. t)], and so a canonical
form.

3.3 The Denotational Semantics of MiniML

Our semantic interface to the “real” SML target language, the language MiniML,
differs with two regards from MiniHaskell:

1. syntactically, all constant symbols in MiniML are followed by a prime, e.g.
ZERO’, ONE’, in order to distinguish them from their counterparts in Mini-

Haskell. This is for the sake of presentation only.
2. semantically, the two constructs application and LET differ from their coun-

terparts in MiniML.

In the sequel, we turn to the semantic issues. In most cases, the semantics of
the strict and the lazy constructs are the same. This holds for basic operators like
NOT’ or SUC’ as well as the abstraction, the conditional and the REC’ construct.
This justifies logical equations such as NOT’ ≡ NOT etc.

The crucial difference between the two languages is the strict application. As
usual, its denotational definition in MiniML is given by:

Bs :: (α::cpo V β::cpo) ⇒ α ⇒ β

F Bs x ≡ if x = ⊥ then ⊥
else if F = ⊥ then ⊥ else dF e x

The LET’ construct is defined as usual in terms of abstraction and strict
application (enforcing the evaluation of the let-expression prior to the evaluation
of its body).
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3.4 Eager Operational Semantics of MiniML

The rules for the strict evaluation relation →s is derived analogously to the lazy
one →l. Therefore, we can focus on the differences to MiniHaskell, which are
just the rules for the different constructs for the strict application and LET’. In
contrast to MiniHaskell, the arguments are first evaluated before performing a
substitution:

t1 →s LAM’ x. t t2 →s c2 t[x := c2] →s c

t1 Bs t2 →s c

t1 →s c1 t2[x := c1] →s c

(LET’ x = t1 IN’ t2) →s c

This concludes our definition and validation of the two languages MiniHaskell

and MiniML in terms of a (pre-existing) theory of denotational semantics. In the
following, we turn to the semantic translation between these languages by means
of derived rules.

4 The Semantic Translation

Between the considered languages, the translation of most language constructs
is a trivial rewriting due to semantic equivalence. The challenge, however, is the
translation of the lazy application to the strict one, and, on the larger scale,
the translation of lazy user-defined definition constructs to one or more strict
versions.

The default solution is well-known and simple: each expression is delayed i.e.
converted into a closure, and all basic operations were enabled to apply its ar-
gument first to the unit-element () in order to force the argument closure and to
produce an elementary value only when finally needed. Thus, any lazy applica-
tion can be simulated by an strict one, provided that arguments of applications
have been sufficiently delayed.

However, the default solution is fairly inefficient since it delays any computa-
tion. Therefore, optimizations are mandatory. The principle potentials for such
optimizations are

1. the strictness of the function to be applied to an argument (i.e. the argument
is used under all possible evaluations) or

2. the definedness of the argument (i.e. delaying is inherently unnecessary).

The concepts discussed above were made precise by a number of combina-
tors which serve either as coding primitive (such as the combinator delay and
force) or as combinators such as forcify that represents intermediate states of
the translation. We will derive rules that allow to “push” forcify combinators
throughout a program and thus perform the translation.

In the following, we present these concepts formally. First, we introduce the
type constructor del for representing delayed, i.e. suspended values:

types

α del = Unit V α
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The delay-constructor and the corresponding suspension destructor force can
both be defined completely in terms of our target language MiniML:

delay :: α::cpo ⇒ α del

delay f ≡ (LAM ’ x. f)

force :: (α::cpo)del ⇒ α

force f ≡ (f Bs UNIT ’)

Both combinators may remain in final program representations and are treated
as primitive by the translation function convert.

It turns out that from these definitions the characteristic theorem

force (delay e) = e

can be derived as could be expected.
Now we define the forcify combinator that converts a function into its

counterpart that deals with delayed values:

forcify :: (α V β::cpo) ⇒ (α del V β)

forcify f ≡ LAM ’ x. df e(force x)

While the delay and force combinator can be understood as a primitive that
can be coded by the converter, forcify is a combinator that is uncodable. It is
only used internally in the source-to-source translation and has to disappear at
the end.

The overall translation process consists of one language translation calculus
and three side-calculi — forcify-propagation, strictness-reasoning and defined-
ness reasoning, which consist, as mentioned, of derived rules.

4.1 Language Translation Calculus

As mentioned, all but two language constructs have equal semantics can therefore
be converted straight-forward by a trivial rewrite rule such as

SUC = SUC’

The key translation rule for the lazy application has the following form:

(f Bl a) = (forcify f) Bs (delay a)

This rule states that a lazy application can always be converted into a strict
one; the price is the delay of the argument and the necessary forcification of
the function of the application. This rule represents the default translation rule,
which is — since resulting in inefficient code — avoided whenever possible. The
following two rules represent the optimized alternatives of the default scheme:
a lazy application is identical with a strict application if its function is strict
or if the argument is known to be defined and the function is not the totally
undefined one:

is strict f

(f Bl a) = (f Bs a)

DEF a DEF f

(f Bl a) = (f Bs a)
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For the LET’-construct, these three cases are analogously. The Isabelle proofs
of these rules are not very hard but reveal a number of technicalities that are
easily overlooked in paper-and-pencil proofs.

These optimized translation rules lead to side-calculi that attempt to infer
the necessary information. One of them, the strictness calculus, will be discussed
in the following subsections.

4.2 Forcification-Propagation Calculus

In the following, we turn to the key of the default translation to MiniML, the
forcification-propagation. The base cases treat identities and constant abstrac-
tions as well as basic operators. For the latter, we can assume by construction
that they are strict since we only used a particular pattern of their definition
built upon strictify and HOL-functions.

forcify (LAM x. x) = LAM x. force x forcify (LAM x. c) = LAM x. c

f ≡ strictify g

forcify (LAM x. f x) = LAM x. f (force x)

∀f. f ≡ strictify (λx. strictify (g x))

forcify (LAM x. f c x) = LAM x. f c (force x)

The following rules describe the propagation over the core language constructs
for application, abstraction and conditional:

forcify (LAM x. ((f x) Bl (g x))) =
LAM x. ( (forcify (LAM x. (f x)) Bl x) Bl

(forcify (LAM x. (g x)) Bl x) )

forcify (LAM x. (LAM y. (f x y))) =
LAM x. LAM y. (forcify(LAM x. (f x y)) Bl x)

forcify (LAM x. (IF c x THEN f x ELSE g x)) =
LAM x. ( IF (forcify (LAM x. (c x)) Bl x)

THEN (forcify (LAM x. (f x)) Bl x)
ELSE (forcify (LAM x. (g x)) Bl x) )

Of particular interest is also the rule for the propagation of forcification
over the REC operator, which allows for the generation of recursive program
definitions. In particular, applications like forcifyf are mapped to the reference
f ′, where we assume that for f there has been the previous statement fun f x =
E which has been converted to the code-variant fun f ′ = forcify (LAM x. E).
It is automatically proven that this precompiled variant satisfies the property
(forcify f) Bs x = (f ′

Bs x) which justifies the mapping mentioned above.
Thus, “forcified” calls to previously defined functions were mapped to calls of
“forcified” definitions.

forcify (LAM x. (REC (f x))) =
LAM x. REC (forcify (LAM x. (f x)) Bl x)



138 Thomas Meyer and Burkhart Wolff

For n-ary functions, analogous rules have to be derived. Moreover, since any
function may be strict in the first argument, but not in the second, or vice versa,
or non-strict in all arguments, there are 2(n+1) − 1 rules for potential forcified
code variants for direct recursive functions.

4.3 Strictness Calculus

As already mentioned, optimized applications require the inference of strictness
properties of function bodies. Again, the inference rules follow the cases of our
programming language. The base cases treat the identity, the special case of the
abstraction yielding ⊥ and operations defined upon strictify.

is strict (λx. x) is strict (λx. ⊥)

f ≡ strictify g

is strict f

f ≡ strictify (λx. strictify (g x))

is strict (f c)

Note, that the case for the lambda abstraction is omitted since

is strict (λx. LAM y. (E x y))

simply does not hold: recall that a closure is a canonical form, hence a value
different from ⊥.

Since we suggest a source-to-source translation scheme, the calculus over
strictness must cope with terms in which both strict and lazy applications may
occur. Therefore, rules for both cases are needed. The inference reduces the
applications to semantic functions and substitutes their denotation into it; in
the case of the strict application, the argument must be strict in itself:

is strict (λx. df xe (a x))

is strict (λx. ((f x) Bl (a x)))

is strict (λx. df xe (a x)) is strict (λx. (a x))

is strict (λx. ((f x) Bs (a x)))

Note that the computation of the semantic functions df xe requires an own (triv-
ial) side-calculus allowing to “push” d e inside; this side-calculus is not presented
here.

With respect to the conditional, one gets two cases to establish strictness of
the overall construct: either the condition is strict in x or both branches:

is strict f

is strict (λx. (IF (f x) THEN (g x) ELSE (h x)))

is strict g is strict h

is strict (λx. (IF (f x) THEN (g x) ELSE (h x)))

The most technical proofs of this paper are behind the rules for inferring
strictness of recursive schemes and definition constructs. These schemes — which
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perform an implicit induction — are consequences of the bi-simulation briefly
presented in Section 2.3:

cont F
∧

H.

[is strict H]
....

is strict (F H)

is strict (REC F )

This rule performs (for the 1-ary recursive function) a kind of specialized fixpoint
induction proof: If we can establish strictness of the body F provided that a
function H replaced in the recursive call is strict, then the recursor REC F yields
a function that is strict in its first argument. Note, that for the n-ary cases
similar rules are needed that are omitted here.

5 Examples

The calculi are grouped into several sets of rules which were inserted in the Is-
abelle rewriter. As a result, several tactics are available that perform the trans-
lation phases fully automatically.

5.1 Example 1

As a first example, we define a function in MiniHaskell whose body consists of a 2-
ary lambda abstraction which is strict in its second argument. Its first argument
represents an undefined value ⊥:

fun f y = ( LAM a b. b) Bl (DIV x ZERO) Bl y;

The first translation phase is able to derive the strictness in the second argument
and replaces the second lazy application by a strict one:

fun f y = ( LAM a b. b) Bl (DIV x ZERO) Bs y;

The next translation phase replaces the remaining lazy application by our default
translation. Recall that a lazy application can always be converted into a strict
one by delaying the argument and forcifying the function of the application.
Furthermore, a forcification-propagation is performed:

fun f y =

LAM a b. (LAM a. b Bs delay a) Bs

delay (DIV x ZERO) Bs y;

A one-to-one translation is performed by the following translation phase. Each
MiniHaskell construct is replaced by its MiniML counterpart yielding a pure Min-

iML-program:

fun ’ f y =

LAM ’ a b.(LAM ’ a.b Bs delay a) Bs

delay (DIV ’ x ZERO ’) Bs y;
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The final translation phase performs an optimization by reducing the MiniML-
program to the identity:

fun ’ f y = y;

5.2 Example 2

As a second example, we define the factorial function in MiniHaskell representing
a recursive function:

fun fac x =

IF (x ^=^ ZERO) THEN ONE ELSE x * ( fac Bl (x - ONE));

Here, the first translation phase deduces that the function fac is strict in its
argument and replaces the lazy application in the recursive call by the strict
one:

fun fac x =

IF (x ^=^ ZERO) THEN ONE

ELSE x * ( fac Bs (x - ONE));

Finally, the next phase replaces each MiniHaskell-construct by its corresponding
MiniML-counterpart:

fun ’ fac x =

IF ’ (EQ ’ x ZERO ’)

THEN ’ ONE ’

ELSE ’ TIMES ’ x (fac Bs (MINUS ’ x ONE ’));

6 Conclusion

We address a well-known compilation problem of functional programming. We
embed the semantics of both languages into a theory of denotational semantics
and derive — as a check of these definitions — the corresponding operational
semantics of these languages. The resulting strict semantics can be compared
with the semantics of SML [6] and recognized as its abstracted version.

Finally, we derived a couple of rewrite rules that describe the translation of
both languages as a source-to-source translation, which is prototypically imple-
mented as a tactic-based compiler finally yielding executable code in SML.

Since the proofs of the translation rules are surprisingly simple (with few
exceptions that are interesting in themselves), our approach yields a testbed
for the implementation of compilers also for richer languages. Furthermore, it is
feasible to develop typical libraries such as lists and compile them with our tactic-
based compiler once and for all. Further, our approach may also be relevant to
boot-strapping schemes when developing a proven correct compiler.
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6.1 Further Work

We see the following issues for an extention of our work:

1. Extending MiniHaskell: a richer language comprising Cartesian products or
lazy data types would help, in particular for the generation of concrete code.

2. Low level target language: In principle, our approach can also be applied for
the generation of machine-code or JAVA byte-code.
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Abstract. The product of interactive theorem proving in an LCF-style
prover such as the HOL system is an ML script that can be replayed as
required. This paper describes an extension to the standard HOL system
architecture whereby such replays may be executed in less time than is
currently the norm. The savings, however, depend on expensive decision
procedures being able to capture, for any input, sufficient information
about the case that it will serve as a valuable hint for subsequent repeats.

A case study is described wherein a decision procedure for BDD con-
struction was tweaked to record hints that allow replay of some HOL
proofs to be done dramatically faster.

1 Introduction

Technically, a proof in the context of an LCF-style theorem prover is just some
sequence of primitive inferences that result in the creation of an appropriate
object of abstract datatype theorem. Since this sequence (for interesting appli-
cations such as program verification and serious mathematics) is too long to be
saved (let alone inspected), the ML commands that were used to create that
proof, are used as a proxy for it. That is, when we say a proof is replayed it is
this script that is executed again.

There are three important situations where proof replay occurs.

– A script is often developed iteratively over many sessions and its structure
tends to evolve as proofs get improved and as new lemmas are found. With
each change to the foundations of a theory and each generalization of theo-
rems the script as it stands will need to be replayed. Moreover, the user is
likely to start each session, by re-executing the script that has been developed
so far.

– When any user does an installation of HOL (say) the libraries must be cre-
ated afresh by executing a large collection of such scripts.

– When a proof is received in a proof-carrying-code situation it is checked; the
whole point of such a proof is that it will be replayed by every ‘customer’.

In each of these cases the time to replay a script is an important consideration
for the user. A speed-up of just one order of magnitude makes a huge difference
to someone waiting - it slashes times expressed in minutes to times in seconds
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(also hours to minutes and days to hours). In fact, we have found even greater
factors can apply.

Although many (if not most) of the ML commands in a proof script will in-
evitably take the same time during replay, interactive theorem proving in many
problem domains of interest depends on decision procedures that have expo-
nential complexity. Typically it is calls on such decision procedures that will
dominate replay time. Since one of the obstacles to more widespread adoption
of formal methods is the ready applicability of theorem-proving, we can expect
new and complex theories to be developed, with even greater dependence on
efficient automation.

A key observation that leads to the suggestion that proofs can be optimized
for replay is that they often involve search in a massive space before any actual
formal inferences need be done. If the results of this search can be captured in
some compact way then that same search need not be done next time around.

As an illustrative example, consider the case where a large search space is
covered by a binary tree that is searched breadth first to some depth, d, before
a suitable node is found and suppose the proof to be constructed is proportional
to d (the length of the path back to the root). Further, suppose the cost of
search is just one microsecond per node visited whereas the cost of constructing
proof is 10 millisecond per node on the path back to the root. Table 1 shows
the improvement we could expect with optimized replay, assuming only that the
path which is discovered can be captured as a reasonably small string of text.
In this case unoptimized replay time will be (2d + 104

× d) microseconds.

Table 1. Binary search example – replay times

Depth Unoptimized Optimized
(d) replay replay

10 11 msec 10 msec
20 1.05 secs 20 msec
30 18 mins 30 msec
40 30 hrs 40 msec

One could argue that the situation captured in the last line of Table 1 is most
unlikely to occur in practice because the user is likely to factor the problem first.
However one can easily imagine a script with several dozen invocations of this
decision procedure where the search depths were 20 or more.

One lesson to be extracted from this example is that with such speed-ups
feasible with exponential decision procedures, breadth-first search offers greater
possibilities for dramatic optimizations.
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2 The Architecture

In this section we discuss an extension of the standard HOL[3] system architec-
ture. The ideas almost certainly apply to other LCF-style interactive theorem
provers but it is left to the reader to adapt the mechanism appropriately.

The aim is to support decision procedures written in the style of a memo

function1. The big distinction is that a decision procedure cannot work by just
remembering the theorem that it returned previously, since that would avoid
the proof activity that is its raison d’être. Rather it should commit to memory
information that will make redoing the proof of the theorem much faster.

Because a typical memo function stores previous mappings in local variables
such information is lost when the enclosing session ends. We don’t just need a
persistent database either, since the replay may be done by a distinct user on a
different platform at a different time.

The memory mechanism proposed in this paper that supports optimized
replay of proof scripts is termed a hints file. Such a file will accompany each
proof script that contains calls on a decision procedure that can use it. Here are
the rules for this ‘memory device’:

– If there is no hints file (not even an empty one) then no attempt to optimize
is appropriate.

– If the input for a call to a decision procedure matches an entry in the hints
file that accompanies the proof script then there is useful information in that
entry.

– Otherwise, the decision procedure may add a mapping to the hints file to
allow for speedup when this case re-occurs during replay.

Naturally, when a proof is replayed (such as in the case of proof-carrying
code) there will be a significant overhead in accessing the hints file so that it
is incumbent on the author of a decision procedure to avoid this mechanism if
expected savings are outweighed by the cost of finding the hint and reading it
in.

Since it is possible that a single proof script may contain invocations of
multiple decision procedures that utilize the hints file, it is imperative that the
association of input with hint must be decorated with other information that
identifies which decision procedure produced (and will reuse) the hint.

On the basis of the above discussion, the reader might well conclude that
an associative memory is the natural mechanism for implementing the hints
file. It is certainly one possibility but that level of generality may be overkill.
Implementing a true associative memory as a sequential file requires an initial
index (probably a hash table) and the ability to randomly access the string data
that follows. Since the hints file gets accessed sequentially on replay, in tandem

1 “A memo function remembers which arguments it has been called with and if called
with the same arguments again it will simply return the result from its memory
rather than recalculating it.” – FOLDOC (Free On-Line Dictionary of Computing),
URL: www.etext.org/Quartz/computer/internet/dictionary.gz
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with the proof script, a scheme that keeps hints in the order that they will be
needed should be more efficient.

In the experiment described in the next section a simple sequentially accessed
text file was used as the hints file. Because the focus of the project was simply
to measure savings on replay, a hints file was written on one run and read on the
next one. If our aim is to ship a hints file with proof script in the case of proof
carrying code, that model of operation can work. However, in other settings
where this architecture might be used, proof scripts can evolve and we can get
hints in the file that need to be garbage collected. This is clearly the subject of
further design experiments.

3 BDD Construction – A Case Study

A BDD (Binary Decision Diagram) can be thought of as the dag representation
of a truth table for a propositional formula. The two BDDs shown in Figure 1
both represent the same propositional formula, (a∨ b)∧ (c∨ d) but the order of
the variables is different; it is [a → b → c → d] in the first but [d → a → c → b]
in the second.

In every path though a BDD the variables appear in the same order; this is
just as it is for all the rows of a truth table. This constraint is adopted so that
every propositional formula has a canonical representation, for each variable
ordering.

a

b

c

d

0 1

True
False

d

a a

c c

b

0 1

Fig. 1. Equivalent BDDs – same formula, different variable order

BDDs have wide application in hardware and software verification and con-
sequently have been given serious attention in the world of higher order logic
theorem proving. Harrison[4] made a three-way comparison of constructing a
BDD deductively in HOL, using SML as the language and a C implementation.
Gordon[2] interfaced the widely used BuDDy system to HOL to act as a BDD
construction oracle; in this system theorems proved using BDDs therefore are
tagged to indicate that they are dependent on this oracle.
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A principal goal of any useful BDD construction algorithm is to choose a
variable order that minimizes the number of nodes in the BDD. It has been
observed that starting with a good order can reduce the running time of some
BDD constructions by several orders of magnitude.

There are thus two obvious possibilities for the hint to speed up BDD con-
struction on replay. We could use the variable order found on the first run as the
starting point in replay or we could use the whole BDD produced. The variable
order is textually compact; the BDD in the cases that matter is likely to be too
large.

Barthwal, in her BSc honours thesis[1] explored in detail the option of us-
ing variable order as the hint for optimizing replay of the BDD construction
algorithm as it might be invoked in decision procedures for tautology testing or
equivalence of formulae.

3.1 Experimental Design

In this case study the BuDDy BDD engine was used to translate propositional
formulae to their BDD representation in HOL. Comparisons were made of the
performances of the algorithm in the absence of hints and on replay with a
variable order specified.

The quantities measured were elapsed time and the number of nodes in the
generated BDD. Various knobs that a BuDDy user can twiddle to aid perfor-
mance, such as nodetable size and cache size, were set to recommended values.

There are two ways that BuDDy can be invoked to achieve an answer that
hopefully has a good variable order. The build process can be invoked (possibly
using a given order of variables) and the result can then be reduced using one
of a number of reordering algorithms. Alternatively, reordering can be invoked
automatically during the build process. The case study explored both options
for the initial BDD build. Of course, on replay no reordering is done since the
variable order from the hints file should be maintained.

The main choice that the user must make is that of reordering algorithm. In
the experiment, all the five built-in ones were used to see if that choice might
make a significant difference to the results. One of the five, providing a random
reordering of variables, is part of BuDDy for testing purposes but provides a
useful reference. The four smarter algorithms are called Sift, Siftite, Win2

and Win2ite.

3.2 Test Data

John Harrison has produced a few little OCAML programs that generate families
of tautologies. These programs, modified to produce HOL formulae, are described
in Table 2. The upper limits on the number of variables were based on the
practical limits of memory and time; runs exceeding 1 day were aborted.
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Table 2. The Harrison Problem Set

Name Description Number of
variables

Adder Equivalence problems for Carry-Select 11-102
vs Ripple-Carry adders

Mult Equivalence problems for Carry-Select 16-138
vs Ripple-Carry multipliers

Prime Primality testing hardware 3-99

Ramsey Formulae encoding assertion R(s, t) < n 1-46
for the Ramsey number R(s, t)

3.3 Highlights from Results

For any input formula, there is a baseline time of interest, τb; it is the time
taken for the formula to be translated to a BDD without auto-reordering or
subsequent reordering. Naturally, it costs more to do a subsequent reduction of
the BDD produced by BDD Build. In fact, the penalty for doing such reordering
is significant. For many big tests it was greater than 10 × τb.

Of greater interest is the fact that, in most cases2, auto-reorder also caused
a slowdown. Again, there were cases where the slowdown was an order of mag-
nitude.

The lesson to be drawn from these results is that there may be a substantial
cost involved in optimizing the BDD in order to create a good hint.

In spite of the significant cost of finding a suitable variable ordering to record
as a hint there were large savings to be made. The best stories to report are:

– the BDDs corresponding to the largest of the adders tested could be con-
structed in one hundredth the time if given the hint and if using the Sift

or the Siftite reordering algorithms.

– the BDDs corresponding to the largest of the multipliers tested could be
constructed in one fiftieth the time if given the hint and if using the Sift or
the Siftite reordering.

– The shape of the curves suggests that greater savings are likely if the sizes
of the adders were to grow.

On the other hand, there were disappointing results:

– constructing the BDDs corresponding to the primality, the non-primality
and Ramsey tests actually took longer in the presence of the hints file.

Clearly the lesson here is that whether or not to use the hints file architecture
depends on the domain in question.

2 The only case in which auto-reorder sped up BDD construction was with the Adder
tests involving large numbers of nodes.
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4 Other Common Decision Procedures

Much of the progress made in theorem proving has depended on the discovery
of decision procedures for areas of mathematics and computer science. Indeed,
many of the HOL system libraries depend on them. Moreover, improving the
uptake of formal methods in software engineering (where verifiability is greatly
to be valued) is clearly dependent on achieving a degree of automation that
enables reasoning about specifications, designs and programs to be done at a
higher level than is currently the case. In this context, better automation really
implies better theories of real world domains and better decision procedures for
those theories.

Who can say whether our replay architecture will be a boon in new applica-
tion domains but we are allowing for the possibility that it will. In this section
we ask the question, for each of several decision procedures, “Could this function
perform much better on some arguments in the presence of hints and will such
improvement in speed, considering overheads, result in better performance on
replay for proof scripts that utilize the hints file?”

4.1 Satisfiability

SAT solvers are very important decision procedures mainly because they can
be applied in many different application areas. They make an ideal target for
optimization because verifying that a substitution satisfies a formula takes time
proportional to the length of that formula, whereas the complexity of finding
such a mapping is exponential in the number of variables.

The hint that would be saved for replay is, of course, the substitution.
It might be argued that this decision procedure does not provide much sup-

port for the idea of the hints file since a user can take the output of the SAT
solver and textually insert it into the script as a suitable witness. One downside
of doing that is that it makes the proof script a bit less readable; but it also
makes the proof more fragile in the sense that if changes are subsequently made
to the script upstream then the proof script might break because the formula to
be satisfied may have changed. Being more automatic, a system using a hints
file can adapt to the change in the proof.

A bigger problem with the suggestion of explicitly including the output of
the SAT solver in the proof script is that the satisfiability decision procedure
may be being called by some other decision procedure. In this case, the hints file
provides the memo-ization that is hard for the user to duplicate.

4.2 Tautology Checking

Although BDDs are sometimes the method of choice for checking tautologies3,
St̊almarck’s algorithm as implemented by Harrison [5] has the advantage of gen-
erating an untagged theorem in HOL. Two matters that require experimentation

3 especially if there are other uses for BDDs in the same project



Optimizing Proof for Replay 149

are whether it is faster, even if the user is prepared to trust BuDDy, and whether
it could be factored into a search phase and a proving phase connected by a pipe
that carries a fairly small amount of information. The authors’ guess is that the
latter is not the case and so is not a candidate for proof optimization using the
hints file mechanism.

4.3 First order logic

Decision procedures for first order logic are another very good fit for the hints
architecture we propose. Such procedures typically spend a great deal of time
exploring widely branching inference trees. Existing first order decision proce-
dures in Isabelle and HOL (resolution, model elimination and tableau methods)
all use the technique of performing this search outside the logic, performing only
the successful chain of inferences in the trusted kernel. This provides a great deal
of efficiency in itself. The hints architecture would further cache information to
allow this chain to be recreated efficiently on replay.

One obvious implementation of the hints file would be to simply store a di-
rect encoding of the primitive inferences themselves. Such a format need not
be excessively verbose because the implementations of these decision procedures
use a relatively narrow set of inferences, in very constrained ways. Indeed, be-
cause such an encoding is generated by the tool performing the search, the hints
implementation may be little more than writing it to disk.

4.4 Arithmetic

Any method for finding satisfying assignments to systems of linear inequalities
can clearly be augmented with a hints file where satisfying assignments exist.
Additionally, when a method such as the Fourier-Motzkin technique finds that a
system of inequalities is unsatisfiable, much of its work consists of enumerating
consequences of the initial system. Only one of these consequences needs to be
false for the system to be unsatisfiable, and again only the chain of inferences
leading to this particular consequence needs to be performed by the trusted
kernel.

As in the case of first order logic, existing implementations of these proce-
dures in LCF-style systems perform the search for a refutation (or satisfying
assignment) outside the logic, and then replay only those inferences absolutely
necessary. Again, the hints architecture for this application could simply store
an encoding of the proof.

5 Discussion

In this paper we have shown that in one significant case study the judicious use
of a hints file can help a decision procedure cause invocations of itself on replay
to be much faster than if the hints were unavailable. We have also suggested
that in other cases the same dramatic increase in efficiency might be realized.
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The fact that the provision of hints will make proof replay go faster prompts
us to ask where the hints should go. Moreover, since an obvious place in many
circumstances is the proof script itself, it begs the question of why go to the
trouble of managing a companion file to the proof script.

We have argued above, in the case study, that there are problems of making
the proof script less readable and less maintainable. These objections apply in
general. One would hardly argue that the code of a program in a higher level
language should be cluttered with automatically derivable optimization hints to
make subsequent compilation more efficient.

5.1 Library Optimization

With current HOL system distribution, the replay of the proofs that make the
theory library is not as time consuming for a user as it was a few years ago when
it took a large fraction of a day. That is because the great increase in machine
speed more than matches the relatively small increase in library complexity in
that time. Although we are yet to see the demise of Moore’s law, it would be
defeatist to not allow for the possibility that a dramatic upturn in the acceptance
of formal methods and the consequent expansion of the library support that
should be shipped with HOL.

On the other hand, it doesn’t actually follow that even with lots more invo-
cations of decision procedures, the hints file architecture will provide such large
savings in a library build. The question is complicated by the fact that in the fu-
ture we expect to be able to prove the code for decision procedures to be correct,
allowing theorem creation after search without requiring constructing a primi-
tive proof. The elimination of the base proof construction obligation would make
many library proof scripts more efficient (although the proofs of correctness of
those proof procedures would have to be added to the library).

5.2 Program Verification

The higher order logic community perpetually believes that respectability for
formal program verification is just around the corner. In fact, the growth of web
technologies may engender acceptance of proof as the best form of guarantee
to affix to code. In such a future world, the proofs sought will be ones that are
inexpensive to transmit and check.

It’s hard to even talk about what improvements would be made using self-
conscious decision procedures in program verification without mounting a serious
project in this area. On the other hand this is the area that optimizaton for proof
carrying code depends on.

Homeier [6] has a verification condition generator that can be used to generate
VCs in higher order logic. It seems like this tool presents an ideal opportunity
to explore the extent to which optimization for replay can be expected to reduce
the time taken to check a code-carried proof.
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6 Conclusion

In this paper we have asserted that, at least in the case of the HOL system,
extending the architecture to allow for hints files will enable faster replay of
proof scripts. We suggest that the idea can also be adapted to other interactive
theorem provers that might be part of the infrastructure for checking proof
carrying code.

The empirical evidence for the claim was found in the many results produced
in a systematic study of the BuDDy package as it is distributed with HOL. It was
found that decision procedures that make use of BDDs can have a win if they
use the hints file to record a ‘good’ variable ordering in limited circumstances:

– The size of the problem should not be too small or else the overhead of
consulting a file is greater than the benefit that might flow from use of the
hint.

– The decision procedure must be advised that the set of likely inputs are from
a domain where savings are to had.

– The variable reordering algorithm adopted must be also appropriate to the
domain.

The main conclusion that we draw at this point is that the idea is good but
several more case studies need to be done to make the picture clearer and the
case stronger.
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Abstract. The ARM Vector Floating-point coprocessor is used by the

ARM processor to perform floating-point arithmetic on single registers

or vectors of registers. This paper details the development of a simulator

written in HOL which uses the formally specified IEEE library created

by John Harrison.

1 Introduction

This paper details the development of a Higher Order Logic model of the ARM
Vector floating-point programmer’s model. The model uses the HOL4 theorem
proving environment to manipulate and prove theorems in higher order logic. In
particular this system has methods to evaluate functions consistently with the
axioms and rules defined for higher order logic, hence provided with a formal
specification of desired behaviour this system can be used to create a ‘Gold
Standard’ simulator for a processor.

1.1 The ARM VFP

The ARM processor is only capable of performing operations on integers in the
range [0, 232), hence calculations involving non-integer rationals either require
careful implementation in software or a specialised coprocessor. Implementation
in software is much slower than implementation in dedicated hardware, so real-
time applications will either have to be re-written using fixed-point arithmetic
or make use of dedicated hardware, a floating-point coprocessor.

The ARM Vector Floating-point architecture is a coprocessor architecture
designed to perform calculations on non-integer rationals on behalf on the ARM
processor it is attached to. The VFP provides instructions to carry out arithmetic
on a subset of rational numbers in the range [2−149, 2128) for single precision
values and [2−1074, 21024) for double precision values. The VFP Architecture also
provides instructions which can perform operations between scalars and vectors,
and vectors and vectors.
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Coprocessor Communication

The ARM processor operates on a series of 32-bit long instructions, a subset
of which are floating-point instructions, these cannot be executed on the ARM
processor itself. Instead, these instructions raise an ‘Undefined Instruction’ ex-
ception, which is handled by the ARM processor by passing the instruction to
the VFP coprocessor. In a VFP coprocessor implementation the coprocessor will
have access to the parent processor’s register file and the system memory.

1.2 Motivation

Creation of a ‘Gold Standard’ simulator from a formal specification has a number
of uses: in creating the formal specification anything which is badly defined in
the original specification will be easily spotted, and results obtained using the
simulator are guaranteed to be correct. Generating results in this manner allows
two very useful statements to be proved:

1. By running a program on the model we can prove that given a correct real
world implementation of the architecture the programme produces the de-
sired behaviour.

2. A real world implementation of the architecture may be compared against
the model to show that it produces the correct results.

There already exists a model formulated in HOL of the ARM instruction set
architecture [3] which defines the processor state space, consisting of registers
and memory. The VFP coprocessor formulation in HOL was constructed as a
function from a product of the ARM state space and the VFP state space and
an instruction to a new product of state spaces. In this way it would be possible
for the ARM processor model to call the VFP coprocessor model in the event of
a floating-point instruction.

1.3 HOL

HOL [6] is an automated proof system for Higher Order Logic in which functions
and data types may be defined and reasoned over. All theorems deduced using
HOL must be be proved using well defined rules from a small set of axioms.

The HOL syntax is well-typed and incredibly rich, allowing universal, existen-
tial and unique existential quantification, lambda abstraction, Hilbert’s choice
operator, predicate sets and more. This allows the easy definition of a VFP func-
tion that calculates a new state given a previous state and an instruction.

Theorems in HOL are written as:

{Assumptions} |- Conclusion : thm

The assumption set is omitted when none are present.



154 James Reynolds

Sequents

Theorems in HOL are manipulated using sequents; manipulation rules which
maintain the consistency of theorems. For example, the conclusion P ∧Q is only
provable from the assumptions if P and Q may be proved from the assumptions
separately:

A ` P A ` Q

A ` P ∧ Q
.

Sequents can combined to create tactics and proof tools.

Evaluation

Evaluation in HOL takes place by adding functions to a compset, these functions
are pattern matched to the sub-terms in the expression currently being evaluated
and if they match a rewrite is performed. For instance:

compset := { |- a + a = 2 * a : thm }

EVAL ‘‘5 + 5‘‘;

val it = |- 5 + 5 = 2 * 5 : thm

If no such theorem exists within the compset, then the sub-term cannot be
reduced.

1.4 IEEE Floating-point

The IEEE [4] have informally specified a standard for floating-point arithmetic,
which defines the results of floating-point operations; however, it does not specify
how these results can be calculated.

Every floating-point number represents a rational number, so the IEEE spec-
ification defines the result of an operation to be the ‘closest’ floating point repre-
sentation to the result of the calculation using the corresponding rationals. John
Harrison [1] created a formally specified version of this standard which uses the
axiom of choice to formally define this relation.

The Axiom of Choice

The axiom of choice, is used to ‘select’ values which have the desired property,
for example division could be written as:

a ÷ b = (εx. a = x ∗ b)

where ε is the Hilbert choice operator.
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The axiom of choice is a controversial axiom for a number of reasons. For
example, in the previous Equation, how can a value of x be selected if a is
non-zero and b is zero? When creating a simulator, the axiom of choice causes
problems as it allows equations to be formalized without the need to define how
results are obtained.

The result of this is that a formal specification which uses the axiom of choice
cannot be directly used to create a simulator, instead an algorithm to find the
value selected must be formulated and proved to select the correct value.

2 The Programmer’s Model [5]

The programmer’s model, as mentioned in Section 1.2, provides a ‘Gold Stan-
dard’ operation for an architecture. The programmer’s model for the VFP ar-
chitecture defines how the results of a floating-point calculation relate to the
real number calculation, and the instructions that may be used to perform these
calculations.

2.1 Floating-point Formats

This Section outlines the general floating-point formats as defined by the IEEE 754
standard, specific instantiations of which are used in the VFP architecture, and
details how operations are performed on numbers in these formats. In addition it
describes details of these formats which are specific to the ARM Floating-Point
coprocessor that had been left open in the standard.

Floating-point Numbers
The IEEE floating-point library defines a floating-point number format as a
pair of num values; the ‘width’ of memory to store the fraction and to store the
exponent. Floating point numbers within this format are therefore elements of
the set:

FP(E,F ) , {(s, e, f) ∈ N × N × N | s ∈ {0, 1} ∧ 0 ≤ e < E ∧ 0 < f < 2F }

where E is the exponent width and F the fraction width. Values with e = E

represent special values: infinities or NaNs.
Floating point numbers within this set represent real numbers as follows:

exponent = 0 ⇒ val = −1sign × 2−(bias−1) × (0.fraction) (1)

0 < exponent ≤ E ⇒ val = −1sign × 2exponent−bias × (1.fraction) (2)

where bias is defined as:

bias = 2E−1 − 1 .

This implementation presents two values for zero: plus zero, (0,0,0) and
minus zero (1,0,0). These two values behave identically in all but a few excep-
tional instructions, such as the sign of the infinity resulting from a Division by
Zero exception.
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HOL Representation

Values are stored in HOL as three tuples and formats as two tuples, with a
predicate defined to constrain tuples to the format:

is valid (E,F ) (s, e, f) , s < 2 ∧ e < 2E ∧ f < 2F .

Functions have also been defined to calculate values for the bias, the maximum
exponent and other important format constants. The library then defines a valof
function for converting a floating-point number to the real number it represents.

As mentioned in Section 1.4, the IEEE standard requires the result of a
floating-point computation to be the closest floating-point representation, sub-
ject to rounding conditions, of the real number result of the calculation. In HOL
this is defined using the axiom of choice:

round Format mode x , εa.

is finite and satisfies rounding conditions ∧
∀b. b is finite and satisfies rounding conditions ⇒

abs(valof Format a − result) ≤
abs(valof Format b − result)

where finite is a predicate that is true iff the floating-point number is a normal
value, a denormal value, or a zero.

This may be read as: select the floating-point number that satisfies the round-
ing conditions, and all other values that satisfy the rounding conditions are fur-
ther away (produce a greater rounding error) from x.

Special Values
Values with the exponent equal to the maximum exponent are special reserved
values:

Exponent Fraction Meaning
0 0 < f < 2F Denormal numbers

0 < e < E 0 < f < 2F Normal numbers
E 0 ±∞ Depending on sign
E 0 ≤ f < 2F−1 (bit F - 1 not set) Signaling NaNs
E 2F−1 ≤ f < 2F (bit F - 1 set) Quiet NaNs

The IEEE 754 standard defines the resulting NaN of an operation in which all
operands are NaNs to be one of the operands. Unfortunately the IEEE library
defines operations which produce an NaN to produce any NaN. Therefore all
floating-point operations were wrapped with a function that selects the NaN
according to the rules defined in the ARM Vector floating-point programmer’s
model [5].
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2.2 Rounding Modes

The IEEE 754 standard defines four rounding modes; Round to Nearest (RN),
Round towards Plus Infinity (RP), Round towards Minus Infinity (RM) and
Round towards Zero (RZ). These are defined in the following fashion:

RN Minimises abs(rounding error), if two such minima exist then select the
item with an even fraction component.

RP Minimises abs(rounding error) subject to the condition: 0 ≤ rounding error
If the result is greater than the largest possible floating-point number then
the result is +∞.

RM Minimises abs(rounding error) subject to the condition: rounding error ≤ 0
If the result is less than the smallest possible floating-point number then the
result is +∞.

RZ Minimises abs(rounding error) subject to the condition: abs(rounded result)
≤ abs(exact result).

These are defined using a function which selects a floating-point number which
minimises the rounding error subject to an arbitrary condition:

is closest X x P a ,
P a ∧

(∀ b. P b ⇒ abs (valof X a - x) ≤ abs (valof X b - x))

closest X x P Q ,

εa. is closest X x P a
∧ ((∃b. is closest X x P b ∧ Q b) ⇒ Q a)

where P is the condition predicate and Q is the selection predicate in the case of
there existing two floating-point numbers that satisfy the condition. The latter
of these may be read as: select the number that is closest, and if there exists a
number that is closest and satisfies Q then the selected number satisfies Q as
well.

The rounding function then uses the following selections along with some
logic to ensure that the conditions outside the range of floating-point numbers
are met:

Mode: P: Q:
RN (λa. finite X a) (λa. EVEN (fraction a))
RP (λa. finite X a ∧ valof X a ≤ x) (λ a. T)
RM (λa. finite X a ∧ x ≤ valof X a) (λ a. T)
RZ (λa. finite X a ∧ abs (valof X a) ≤ abs x) (λ a. T)

2.3 Format of the General-purpose Registers

A VFP implementation contains 32 general purpose registers which are capable
of holding a 32-bit word, hence a single precision, (8,23), value. These registers
are named S0–S31.



158 James Reynolds

The double precision, (11,52), registers overlap the single precision registers
in memory using two single precision registers to hold a double precision register,
for example: D0 is stored in S0 and S1, D1 is stored in S2 and S3 and so on. The
programmer’s model does not, however, define how a double precision register
is stored in the two corresponding single precision registers.

As this system aims to be implementation independent this means that the
method of storing and retrieving floating-point registers should enable us to
prove:

∀reg s data. (readsingle(writesingle s data) s = data)

where s and d are the single register to write to and the data to store in it
respectively. However we should never be able to prove:

∀reg d data f. ∃f. (f(readdouble(writesingle s data) d) = data)

where s and d are single and double floating point registers which overlap.
The VFP defines two instructions which must store then load a number of

double precision registers regardless of what they contain in at most 2N + 1
words. The VFP defines a standard format for storing registers with tags, in order
for the above theorems to hold and correct memory operation to take place this
format (or an equivalent implementation defined format) must be used.

2.4 Integer - Floating Point Conversions

Each single precision register may hold a 32-bit integer, the register contents are
identical for a 32-bit integer and a single precision value represented by the same
word. This means that a direct copy of a single precision register to memory can
be used to store either integers or single precision values.

Conversion uses the same rounding technique as floating-point operations.

2.5 Vector Operations

Vector operations are constructed by defining the system parameters length and
stride held in a special register. Instructions are then performed on a vector of
registers, len long, moving on stride registers at a time, and starting from the
register given by the instruction. Registers from the first register bank, S0–S7
for single precision registers and D0–D3 for double precision, are considered as
scaler unless the instruction forces them to be otherwise.

Singles : Doubles :
v[0] = S v[0] = D

v[1] = (S + stride)mod 8 v[1] = (D + len × stride)mod 4
... ...

v[len] = (S + len × stride)mod 8 v[len] = (D + len × stride)mod 4
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Instructions come in three forms: one operand, two operands or three operands.
In all cases, if the destination register lies within a ‘scalar’ register bank then
the operation is automatically a scalar operation:

Destination: Monadic: Non-monadic
Scalar = Op(Scalar) = Scalar ⊗ Scalar ⊕ Scalar
Vector [0] = Op(ScalarA) = Vector[0] ⊗ Scalar ⊕ Vector[0]
... ... ...
Vector [len] = Op(ScalarA) = Vector[len] ⊗ Scalar ⊕ Vector[len]
Vector [0] = Op(Vector[0]) = Vector[0] ⊗ Vector[0] ⊕ Vector[0]
... ... ...
Vector [len] = Op(Vector[len]) = Vector[len] ⊗ Vector[len] ⊕ Vector[len]

For non-monadic operations the destination register is not a ‘scalar’ register
then the first source operand is automatically considered a vector regardless of
which bank it is in.

Unpredictable Results

There are various cases when the VFP considers the results of an operation to be
unpredictable; in cases where vectors overlap, such as VectorA[i] = VectorB[j],
then the result is unpredictable unless the start registers of the two vectors are
equal. Similarly, if the a vector overlaps a scalar then the results are considered
unpredictable.

Unpredictable results should be coded in such a way that they may be rep-
resented in calculations but very little can be proved about them for instance:

` (u ∗ 0 = 0) ∧ (0 ∗ u = u) but not ` (u ∗ a = b)

where u is an unpredictable value.

2.6 Examples

The model is capable of calculating floating-point arithmetic and using the re-
sults of these to calculate the results of floating point instructions.

|- EVAL ‘‘fadd (8,23) To_nearest (0,31,1048575) (0,31,525288)‘‘;

> val it =

|- fadd (8,23) To_nearest (0,31,1048575) (0,31,525288)

= (0,31,786432) : thm

|- EVAL ‘‘fmul (8,23) To_nearest (0,127,500) (0,128,715)‘‘;

> val it =

|- fmul (8,23) To_nearest (0,127,500) (0,128,715)

= (0,128,1215) : thm
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|- EVAL ‘‘fdiv (8,23) float_To_zero (0,127,22) (0,127,7)‘‘;

> val it =

|- fdiv (8,23) float_To_zero (0,127,22) (0,127,7)

= (0,127,14) : thm

Operations are completed in reasonable times, however for simulating larger
programs more optimisation will be required:

a: b: result: Time(s):
(0,15,524288)+ (0,15,262144)=(0,16,393216) 9.3

(0,31,1048575)+ (0,31,525288)=(0,31,786432) 11.7
(0,62,2097151)+ (0,62,1048575)=(0,63,1572863) 9.7

(0,125,4194303)+(0,125,2097151)=(0,126,3145727) 22.0
(0,251,8388607)+(0,251,4194303)=(0,252,6291455) 87.1

3 Implementation

As mentioned earlier in Section 1.3 the model was implemented as a function
from a system state and an instruction, to another system state. As the coproces-
sor requires access to the ARM register file, the memory [3] and the coprocessor
registers all of these things must be included in the state:

|- FP_State: ARM mem reg psr, fp_reg, fp_status_reg

The model is a function with the type:

|- Processor: FP_State -> Instruction -> FP_State

Functions were created to perform loading and storing of results into registers,
memory access, transfer of information between the VFP and the ARM processor
and functions that use the IEEE library to calculate results.

3.1 Unpredictable Results and Register Storage

As mentioned in Section 2.5 and 2.3, the results of many operations will be
‘unpredictable’, and nothing should be provable about loading a single precision
value from a register holding a double value. In Section 1.4 the axiom of choice
was introduced, and it was stated that the axiom of choice can only be ‘resolved’
if an algorithm can be defined to implement the choice. There clearly exist no
such values, and hence no such algorithm, in situations such as:

εx.
0

x
= 1 .

Furthermore, there is no such algorithm when the choice is entirely arbitrary, so
it would not be possible to resolve the axiom of choice in a case such as:

εx. T
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As such this value will pass unchanged through all equations and execution
will be forced to stop when an attempt is made to evaluate an equation using
it, since, as mentioned in Section 1.3, evaluation uses theorems supplied to the
compset, and no such theorem can be proved.

3.2 Vector Arithmetic

Vector arithmetic was implemented by way of ‘lifting’ the standard arithmetic
operations and register store operations to perform these operations on lists of
numbers.

Vectors of registers were formulated as functions from numbers to registers,
and operations as functions from vectors to vectors. In the case of two operand
vector operations:

v1 ⊗ v2 , λn. (v1 n) ⊗ (v2 n)

Write v r , λn. write(v n) r

Add va vb , (write vd (va + vb))

This results in an easy to read formulation of all operations, however six
separate functions were required, as operations can operate on singles or doubles
and take one, two or three arguments.

4 IEEE Standard Conformance

As the floating-point operations defined in the IEEE library make use of the
axiom of choice it is not possible to execute them without providing an algorithm
to calculate the correct value. There are a number of ways in which this can be
achieved:

1. Provide algorithms for add, multiply etc... and prove they are correct.
2. Provide a general algorithm for rounding any real number and prove this is

correct.
3. Provide a general algorithm but allow it to be optimised in the case of

particular operations.

The final option was chosen here as it allows a single calculation of a real number
value and optimisations to be added as and when they are required.

4.1 The Rounding Calculation

This was achieved by defining a REAL2FLOAT function and a NEXTFLOAT func-
tion, the former calculates the closest floating-point number to a real number in
‘Round to Zero’ mode, and the latter calculates the next floating-point number
away from zero, if such a number exists.
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Considering only the s = 0 case Equations 1 and 2 may be reversed to give
the following Equations:

2exponent = val ×
2biasX+fracwidthX

2fracwidthX + fraction

0 < exponent < E ⇒ fraction = val ×
2biasX+fracwidthX

2exponent
− 2fracwidthX

exponent = 0 ⇒ fraction = val × 2biasX+fracwidthX−2

If δ is the smallest positive non-zero floating-point number (2−149 for single
precision), then the rational value:

⌊

val

δ

⌋

× δ

will have the same floating-point representation in ‘Round to Zero’ mode as the
real number it was derived from.

Functions to calculate the logarithm to the base 2 of a number, LN , and to
round real numbers to natural numbers, REAL2NUM , were defined:

0 < x ⇒ x DIV 2 < 2LN x ≤ x

0 ≤ x ⇒ REAL2NUM(x) ≤ x ≤ REAL2NUM(x) + 1

These definitions were then used to create a REAL2FLOAT function that would
round down a real number to a floating-point representation.

4.2 Round to Zero Proof

To prove that this function rounds to zero the following three conditions were
proved as well as the x < 0 counterparts:

∀Xx. −thresholdX ≤ x ≤ thresholdX

⇒ finite X (REAL2FLOAT X x)

∀Xx. 0 < x ⇒ valofX(REAL2FLOAT X x) ≤ x

∀X x b. 0 < x ∧ finite X b ∧ valofXb ≤ x

⇒ valofXb ≤ valofX(REAL2FLOAT X x)

The first and second conditions were proved using repeated simplification [2]
and application of the following transitive split theorems defined on the reals
and natural numbers:
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∀ac. a < c = ∃b. a ≤ b ∧ b < c

∀ac. a < c = ∃b. a < b ∧ b ≤ c

∀ac. a ≤ c = ∃b. a ≤ b ∧ b ≤ c

These theorems allowed the goal a < c to be split into two goals, with a
specified intermediary term.

The third was proved by forming a contradiction of the following:

` valof X b <= r ∧ valof X (REAL2FLOAT X r) < valof X b

Then using the fact that an inequality between the value of two floating point
numbers may be written as an inequality on their components:

` ∀Xab.(sign a = 0) ∧ (sign b = 0) ⇒
valofXa < valofXb =

exponenta < exponentb ∨
(exponenta = exponentb)∧fractiona < fractionb

The NEXTFLOAT function was defined by checking whether incrementing the
fraction would lead to another finite floating-point number and incrementing
the exponent otherwise. In the case of the maximum or minimum floating point
number being reached the same number was retained. By using this method it
was easily provable that the function always returned a finite number given a
finite number.

The function NEXTFLOAT X (REAL2FLOAT X x) was then proved to be the
minimum floating-point representation to a real number whose absolute value
was larger than that of the real number. This was achieved by showing the
following:

` ¬(x = top float X) ⇒ valof X x < valof X(NEXTFLOAT X x)

Hence the value of this function is strictly greater than that of REAL2FLOAT
and because this is the minimum representation less than or equal to the real
number this value must be greater than or equal to the real number.

It was then proved that this function was the minimum such value by show-
ing that any other floating-point representation would have to be greater than
REAL2FLOAT, and NEXTFLOAT was, by definition, the minimum such representa-
tion.

The Final Rounding Function

Using the functions REAL2FLOAT and NEXTFLOAT a rounding function ROUND was
created which followed the IEEE library definition. The function simply tests
which function satisfies the criteria given and returns that function.
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4.3 Uniqueness Proofs

In order to prove that ROUND was equivalent to the IEEE rounding function,
ε x. closest X x P Q, the following had to be proved for each rounding mode
and corresponding predicates P and Q:

∀X x. closest X (ROUND X x mode) P Q

∀X x y. (closest X x P Q) ∧ (closest X y P Q) ⇒ (x = y)

These could then be resolved with the SELECT UNIQUE theorem to show that
the two were equivalent.

The latter proof presented a number of problems however, as the rounding
function is not unique, as the standard defines both +0 and -0. For this reason
the functions were proved over 12 separate regions (here δ is the smallest positive
non-zero floating-point number as mentioned in Section 4.1):

Rounding : Unique negative Zero Unique Positive
Nearest r < −δ ÷ 2 −δ ÷ 2 ≤ r ≤ δ ÷ 2 δ ÷ 2 < r

Zero r ≤ −δ −δ < r < δ δ ≤ r

+∞ r ≤ −δ −δ < r ≤ 0 0 < r

−∞ r < 0 0 ≤ r < δ δ ≤ r

The closest function cannot be proved to be unique in the regions around
zero, for this reason the more simple goal is zero X (closest X x P Q) was
proved. Fortunately, all the floating-point functions are defined with an enclosing
zerosign function, designed to select the correct sign for any resulting zero.

Using the 12 proofs the following could be proved:

|- !X x m. zerosign X s (ROUND X x m) = zerosign X s (round X x m)

where ROUND is the rounding function defined earlier and round is the rounding
function using the closest definition.

Limits on Formats

In order to complete many of the proofs, it was necessary to place constraints
upon the values which the fraction width and the exponent width can take. These
limits however impose few practical limitations as merely require the fraction
width to be non-zero and the bias to be greater than that.

These constraints are met by both single and double precision formats, as
well as many of the extended formats.
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4.4 Conversion to a Single Function With Constraints

At this point it is possible to evaluate a floating-point operation by evaluat-
ing the operation on the corresponding real numbers and rounding the result.
Unfortunately this approach is incredibly inefficient as numbers will have to be
multiplied by 2fracwidthX+biasX or 2150 for single precision values as the table
below shows:

a: b: result: Time(s)
(0,15,524288)+ (0,15,262144)=(0,16,393216) 44.9

(0,31,1048575)+ (0,31,525288)=(0,31,786432) 53.3
(0,62,2097151)+ (0,62,1048575)=(0,63,1572863) 45.4

(0,125,4194303)+(0,125,2097151)=(0,126,3145727) 62.7
(0,251,8388607)+(0,251,4194303)=(0,252,6291455) 201.4

For this reason a generic float op function was defined, such that given
functions which match certain criteria it could be proved to be equal to the
rounding function:

|- !data real2float lethreshold nearest isexact r m s.

P (real2float) /\ Q (lethreshold) /\ ...

==>

(zerosign X s (round X m r) =

zerosign X s

(generic_float_op X m r

(data,real2float,lethreshold,

nearest,isexact))))

The use of the data member allows functions to be passed the operands of
an operation. In the case of add, the function add data calculates the sum of
the floating-point numbers prior to division by 2bias+fracwidth which is used in
the remaining functions:

|- (zerosign X s (round X m (valof X a + valof X b)) =

zerosign X s

(generic_float_op X m (valof X a + valof X b)

(add_data X a b,add_real2float,

add_lethreshold,add_nearest,

add_isexact)))

The only deviation from the original rounding function is in the calculation
of whether the nearest float towards zero or away from zero should be used.
Instead of calculating the difference in rounding error:

abs(valof X a − x) < abs(valof X b − x)

A calculation based on which side of the mid-point x lies was used, as finding
the sum of two floating-point numbers is a problem that would have to be solved
in creating functions for addition.
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It is relatively simple to prove that for 0 < x and a < b the previous equation
is equal to:

(valof X a + valof X b)

2
< x

5 Implementation of Optimisations

The add and multiply operations have been successfully optimised, such that
operations take less than a second, rather than minutes. The square root function
required slightly more work, but is on the verge of completion.

Calculation time is highly dependent upon the magnitude of intermediate
results as the following table shows:

Calculation Inference steps Time (s)
2100 52434 0.80
2200 204449 3.05
2300 456971 6.95
2400 808464 12.2
2500 1261328 19.1

There are two steps that are taken to keep the magnitude of calculations as low
as possible, the first step was to create functions that calculate fractions and
exponents without involving unnecessarily large powers and the second was to
create rewrite rules that reduce the magnitude of the intermediate results of a
calculation when possible.

This two step method ensures that the function definitions remain easy to
reason about, but simulation runs quickly as the rewrite rules ensure that cal-
culation is performed in a more efficient manner.

5.1 Calculation functions

Using addition as an example it is easy to see that by creating a function that
uses numbers of a lower magnitude calculation is much faster.

Addition was optimised by creating a function that calculates the value of
(valof X a + valof X b) ÷ δ without multiplying and dividing by large powers
of two. This was used to calculate a fraction and exponent, and the resulting
values proved to satisfy the conditions imposed in Section 4.4.

Example

Addition using just this technique is much faster, as the following table shows:
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a: b: result: Time(s):
Standard Optimised

(0,15,524288)+ (0,15,262144)=(0,16,393216) 44.9 9.3
(0,31,1048575)+ (0,31,525288)=(0,31,786432) 53.3 11.7
(0,62,2097151)+ (0,62,1048575)=(0,63,1572863) 45.4 9.7

(0,125,4194303)+(0,125,2097151)=(0,126,3145727) 62.7 22.0
(0,251,8388607)+(0,251,4194303)=(0,252,6291455) 201.4 87.1

5.2 Rewrite optimisations

Throughout calculation there are many sums of the form:

2a(2b + c) ± 2d(2b + e)

2f

where c < 2b, e < 2b and d < a. These were optimised by creating rewrite
rules that change this calculation to one in which the division is replaced by
factorising and subtracting powers. Then, as it is known that e < 2b, division of
the constants c and e by a power of two larger than b can be shown to be simply
zero.

Logarithms were optimised by using case statements to select values based
on equations such as the following:

∀a b. 0 ≤ b < 2a ⇒ log2(2
a + b) = a

∀a b. 2a ≤ b < 2a+1 ⇒ log2(2
a + b) = a + 1 .

Cached rewrites A further optimisation was added at this stage, as floating
point calculations for a given accuracy will all involve calculation of similar
powers of two these could be cached. This was achieved by creating a function
that calculated powers of two, then creating a rewrite rule for this function that
looked up the result in a hash-table performing the calculation and storing the
result if it was not found. This caching improved performance by a factor of at
least four.

These optimisations result in a simulator that can perform calculations in
under half a second:

a: b: result: Time(s):
(0,15,524288)+ (0,15,262144)=(0,16,393216) 0.374

(0,31,1048575)+ (0,31,525288)=(0,31,786432) 0.481
(0,62,2097151)+ (0,62,1048575)=(0,63,1572863) 0.380

(0,125,4194303)+(0,125,2097151)=(0,126,3145727) 0.399
(0,251,8388607)+(0,251,4194303)=(0,252,6291455) 0.441

The resulting mean time taken, on a 3.2GHz machine for 5000 additions and
subtractions, is 0.44 seconds, the average number of inference steps involved
being 25700.
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5.3 Multiply

The multiply functions work in much the same way as the add functions, except
the additional optimisation that the multiple of two denormal numbers will be
zero is used.

5.4 Square Root

A square root of an integer may be calculated by performing a bitwise algorithm
that checks each bit of the result to see if it should be part of the root.

The natural number root, r, of another natural number, v is defined as:

r2 ≤ v < (r + 1)2 (3)

The algorithm was then proved to be correct by showing that it satisfied
inequality, Equation 3.

Unfortunately direct calculation of the square root proved to be particularly
slow, even for single precision numbers. Therefore the logarithm to the base
two of the square root was calculated directly using the same method. For this
function the two following properties may be proved:

22x ≤ v ∧ ∀y.22y ≤ v ⇒ y ≤ x

Using these this function it should be possible to divide values by the eventual
exponent before the square root is taken providing a large speed up.

6 Further Work

The square root algorithm needs to be completed and division optimised, the
coprocessor also needs to be able to convert integers to floating point numbers
and back. The IEEE floating-point library only defines a function which rounds
a number to the nearest integer valued floating point number, this can be proved
to be equivalent to rounding to the nearest integer, but it is not immediately
obvious.

Finally the coprocessor model should be integrated with the ARM model [3]
mentioned in Section 1.2 allowing complete programs containing floating-point
instructions to be simulated.
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Abstract. Experience from teaching a course in Higher Order Logic
theorem proving is recounted, from both the student and teacher per-
spective.

1 Introduction

Higher Order Logic is great fun to work with, but we all had to learn it somehow.
In the past, highly talented and persistent researchers and PhD students strug-
gled to learn the logic (the easy part) and the capabilities of the implementations
(the hard part). In many cases, successful practitioners absorbed the necessary
collection of incantatations, minutiae, tricks, and other dark arts by sitting at
the feet (or at a desk in the same office) of a Master, who had quite often been
trained in a similar fashion. Such apprenticeships are often successful, since they
allow very efficient information exchange. However, they are rather less efficient
when the number of students increases.

The more structured approach of designing and delivering a course in a class-
room setting has been taken many times before, of course. The lead author him-
self learned HOL from Graham Birtwistle, in a course largely based on painstak-
ing reading of hardware verification transcripts in hol88. We would pore over
proofs, following each tactic application and its result. This approach has much
to recommend it, but is perhaps overly monastic for the students of today. Plus,
the range of technologies available for disseminating information is much greater
today.

A successful course by Tom Melham was used to teach the fundamentals of
HOL and the hol88 system for many years. The course provided a thorough,
bottom-up route to facility with HOL: first, a small amount of ML was taught,
then the basics of the logic (types, term formation, primitive rules of inference),
then more advanced topics such as tactics, then higher-level packages, and finally
extended case studies. The course could be adjusted to various time frames, up
to a full week. Both the Isabelle and PVS communities have also conducted
similar courses, and trained many accomplished researchers as a result.
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2 Course Structure

The course was advertised as a graduate-level course with the only requirement
being “desire and ability to reason formally”. In the end sixteen students (some
undergraduates) completed the course, and a number of others sat in. None of
the participants had any knowledge of mechanized theorem proving at the start
of the course. Only a few had been exposed to ML.

The first month and a half of the course were devoted to learning the basics
of the HOL-4 system. This involved approximately two weeks learning ML, and
two assignments:

– A collection of proofs in the theories of lists and regular expressions.
– Proofs about summation (Σ), applications of decision procedures, and proofs

in set theory

In all exercises in the assignments, the goals were explicitly given so that
students did not have to formulate correct goals.

At the beginning, classroom lectures focused on gaining familiarity with how
to make definitions and express statements in the HOL logic. After that, proof
tools were discussed, beginning with high-level proof tools (the simplifier, first
order proof search, and decision procedures) and finishing with low-level tactics.
Only a slight amount of discussion was devoted to forward inference vs. tactics:
the ongoing assumption was that most proofs would be performed by tactic
application.1 In general, high-level proof tools were given much more emphasis
than low-level tools. In retrospect, the emphasis on highly automated tools was
one of the more arguable choices.

Subsequently, the students submitted a project proposal and embarked on a
project, which took the duration of the course. The remainder of the lectures
in the course were given over to a survey of automated theorem proving. This
included the following topics:

– Equational Logic

• Unification and matching
• Proofs in equational logic
• Rewriting (unconditional and conditional)
• How to write your own simplifier in ML

– Propositional Logic
• Proof, satisfaction, and refutation
• Normal forms
• Soundness and Completeness
• Proof procedures (truth tables, resolution, and DPLL)

– First Order Logic
• Syntax, proofs, and Skolemization
• Models (Soundness, Deduction Theorem, Compactness, Completeness

(Henkin’s proof))

1 In some cases, this hampered students in their project work.
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– Decision Procedures
• Decidability, undecidability
• Fourier-Motzkin (Dense Linear Orders)
• Quantifier Elimination, Cooper’s algorithm

3 Projects

One of the prime reasons for the spread of higher order logic theorem provers is
their expressive power: since these systems can basically formalize ‘anything of
interest’, there is scope for a wide range of formalizations. This is reflected in the
following projects which were proposed and undertaken by the students. Some
students originally proposed projects (e.g., Lie Algebra) requiring resources be-
yond those of the current version of HOL-4; in those cases, the instructor tried to
point students towards more immediately fruitful proposals. However, in general
little control of content was exercised, other than that the student had to know
the subject matter well.

3.1 Expression Compiler

Initially, a compiler for a language with assignments and While loops was pro-
posed. Specifying the implementation and correctness took some time, but real
problems only occurred when the proofs were started (goals were simply too
large). This prompted a retreat to simpler languages. Eventually, a compiler
for arithmetic expressions was proved correct. The correctness proof required a
significant generalization of the goal, which required instructor intervention.

3.2 Gödel Encoding

Gödelizing a formula means to translate it to a unique number. The project was
to define the encoding and decoding functions and prove that decoding inverts
encoding. (The student also re-formalized much of basic arithmetic, in order to
gain more experience in theorem proving.)

3.3 Regular Languages

Automata and regular languages were formalized, and standard meta-theorems
were proved: closure of regular languages under boolean operations and Kleene
star. Also the Pumping Lemma for regular languages was proved. The proof of
the Lemma requires the PigeonHole Principle, in a slightly non-standard form,
which was not already available in HOL-4. Finally, the Pumping Lemma was
applied to show the non-regularity of some specific languages. An interesting
aspect of the work is that the student discovered that the obvious definition of
regular sets in HOL will not work, since the definition has two type variables
occurring in the right-hand-side of the definition, and only one on the left-hand-
side.
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3.4 Attempting to Break SHA-1 using SAT

The SHA-1 cryptographic hash function is heavily used in security applications,
although there have been recent reports that it has been broken. The first phase
of the project formalized SHA-1 as a functional program and then attempted to
find pairs of plaintext that would hash to the same value. This can be mapped to
a SAT problem by symbolically executing SHA-1. The attempt was ultimately
unsuccessful, and it is not clear this path is feasible. The first problem was that
the result of symbolic execution was not in CNF, and the conversion to CNF
using the existing HOL-4 mechanism was very slow. Since SHA-1 does 80 rounds
of hashing, we reduced the number of rounds. At one round, things were feasible,
but at two, they were not. Formulas became so large that it wasn’t clear what
was going on.

3.5 IDEA Crypto Algorithm

The IDEA encryption algorithm is used in PGP (Pretty Good Privacy) and pro-
vides another application of symbolic execution to prove functional correctness
of encryption algorithms [4]. The correctness of IDEA requires that its version
of multiplication (mod 216 + 1) has an inverse. This required much work, the
full formalization is discussed in [5].

3.6 Hardware Adders

Hardware verification was a popular topic: several projects on proving correct-
ness of circuits were undertaken. One reason for this popularity may have been
that a course on fast hardware implementation of arithmetic operations was be-
ing delivered by Erik Brunvand in the same semester2. Basic implementations
such as ripple-carry and carry-lookahead adders were proved correct. More ad-
vanced prefix adders (Ladner-Fisher and Brent-Kung) were also verified. Mostly,
conventional imp ⊃ spec proofs were performed; however, one project took a
somewhat different tack, using a Perl module for parsing Verilog to parse (fixed
width) Verilog circuit descriptions into HOL terms, and then checking their
equivalence with a ripple-carry adder using HolSatLib, HOL-4’s interface to
commonly-used SAT solvers.

3.7 Hardware Multipliers

The class of Carry/Save Array multipliers were formalized, starting from the
transistor level, and applied to prove the unsigned Baugh-Wooley multiplier
correct. The definitions were quite general, and provide a platform from which
the correctness of other fast multipliers can be proved with less effort.

2 Webpage: http://www.cs.utah.edu/classes/cs5830
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3.8 Abstract Interpretation of Analog/Mixed Signal Circuits

Analog/mixed circuits are becoming more prevalent in implementations. How-
ever, formal tools for dealing with their properties are few and far between and
haven’t managed to scale well yet. One solution to this problem is to discretize
the behaviour, then run finite-state tools. But then the problem is correctness
of the abstraction. The project was just to show the essence of this correctness
argument, where behaviour is abstracted to 2D zones in the plane.

3.9 FFT over Polynomial Trees

This project worked from a paper by Venanzio Capretta on verifying the Fast
Fourier Transform in Type Theory[1]. There was significant overhead to over-
come, especially absorbing Type Theory after one had just managed to learn
the basics of higher order logic. Ultimately, the major challenge was formulating
and applying induction principles for the underlying tree representation used in
the original paper.

3.10 Matrices

The theory of matrices was tackled. Initial attempts at defining a matrix as a
list of lists led to complex proofs for simple goals, involving nested induction.
This lead to an exploration of a number of other formalizations, ending with the
representation of a matrix as a triple, consisting of row bound, column bound,
and indexing function. Based on this, the theory was developed up to the as-
sociativity of matrix multiplication. A large part of the effort was taken up by
defining and developing a theory of summations.

3.11 Groups

The algebra of groups was tackled, and progressed to the First Isomorphism
Theorem. The definition of groups was simple, but significant problems were
encountered in applying the usual proof tools (first order proof search and sim-
plification) in algebraic derivations. Simple identities were indeed simple, but
solving group membership side-conditions needs special proof support (naively
applying first order proof search works only in simple settings). Another chal-
lenge was dealing with the quotient construction in the Isomorphism theorem.
Initially, Hilbert’s Choice operator was used, but this lead to the usual difficul-
ties. Happily, Skolemization was applicable instead.

3.12 Mutual Exclusion

The mutual exclusion problem was formulated set-theoretically, and the theo-
rem that at most one process could be in the critical section at one time was
proved. Each process was formalized as a non-deterministic finite-state machine,
and a global scheduler (an application of the Axiom of Choice) was used to arbi-
trarily pick from multiple processes attempting to enter the critical section. An
interesting next step in this effort would be to deal with fairness and liveness.
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3.13 Thread Interleaving and Transactions

The Reduction Theorem from the research paper [2] was formalized and proven.
The effort to follow the informal presentation in the paper provided the main
difficulty, but in the end the informal definitions and proof were clarified and
improved by the HOL formalization. Unlike many of the other projects, the
number of definitions and the size of the statement of the theorem were quite
large; there was therefore a large component of making sure that definitions
actually captured the intended ideas.

3.14 Program Transformation

It is well-known that, subject to some constraints, linear recursions can be trans-
lated to tail recursions; however, it has been an ongoing challenge to automate
this. The project was to implement a simple version of the translation, sup-
ported by formal proof. The code was applied to common recursive functions in
the theory of numbers and lists, e.g., factorial, reverse, flattening a list of lists,
etc. The final version of the tool took a linear recursion, analyzed it, defined the
corresponding tail recursion, and used automated proof to return an equality
relating the two.

3.15 Java Program Verification

Krakatoa [3] is a system for verifying Java programs annotated with JML asser-
tions. It is parameterized with backends for various theorem provers (the Coq
port is most highly developed, but ports also exist for PVS, Harvey, CVC-Lite,
among others). Integrating a HOL-4 backend and pushing through some stan-
dard examples required overcoming a wide range of obstacles. The HOL-4 port
has recently been integrated into the Krakatoa release.

4 Comments from the Instructor

The students came up with an impressive range of examples, far more—and
better—than I would have been able to come up with alone. Letting students
choose projects in the intersection of their interest and competence is a good
idea, although it can mean that the instructor is ‘at sea’ in some discussions.
However, since the instructor is there to provide theorem proving expertise, the
lack of domain knowledge wasn’t usually a problem.

The main problem for the instructor was the sheer amount of time and energy
required to teach students enough so they could ‘stand on their own two feet’.
My office was packed for the entire semester with students seeking help. The
lack of a Teaching Assistant was a contributing factor, but, had there been a
TA, he/she would have been also completely swamped. The learning curve is
very steep! This was mitigated by other factors, chief among them being that it
is fun to help people learn theorem proving.
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We have to admit that interactive theorem provers are very powerful but also
bewildering for beginners:

– Simply managing to formulate correct statements (well-formed types, well-
formed terms, sensible goals) is a significant hurdle. It is very easy to get
into situations where complex formulations (e.g., uniqueness, maximality,
relativized statements, dealing with partial functions) require some logic
sophistication.

– Finding the correct tool to use at any point can be difficult. Moreover, there
can be a ‘superstitious’ aspect to tool use, wherein, once a tool is found to
solve one goal, the user tries to use it in all situations, when in fact other
tools would be more appropriate. For example, first order proof search can be
magically useful, but it can flounder on goals easily dealt with by a simplifier;
and vice versa.

– Finding pre-proved theorem to apply (out of the 11,000 or so provided by
HOL-4), or even remembering how to look for existing theorems can be hard.
This of course is an ongoing problem with all interactive proof systems.

A common response to the question How do I do X in HOL? is Well, I
know at least three ways. This flexibility is good for experts, and frustrating for
beginners.

Part of getting a novice proof tool user to stand on their own two feet is teach-
ing them a workable proof methodology. Being able to decompose a verification
into a series of definitions and lemmas is fundamental to success. Fortunately,
this was not a difficult notion for the students and seemed to be naturally taken
up.

There is an astonishing range of abilities when it comes to ‘picking up’ a
piece of software and learning to use it effectively. Interactive theorem provers
like HOL-4 provide a wide range of theories, features, tools, documentation, and
so forth. Arriving at a mental picture of what the tool is was a struggle for
some. (Simply saying that HOL-4 is a system for generating proofs in Higher
Order Logic isn’t enough, alas.) Some students had little trouble navigating the
system, while others were quickly blocked. How to eliminate this difference is an
important problem.

A common phenomenon is that of dialing-back : the original proposal was
far too ambitious, even with the requirement that the project proposal had
to include a fall-back plan. As the course played out, expectations had to be
continuously revised. This happens with all projects, of course.

A more characteristic difficulty with theorem proving is the unpleasant phe-
nomenon of Being Stuck. One can easily get into this situation by stating false
goals, not knowing the proof, not being able to formalize a known informal proof,
etc. It is not catastrophic to Be Stuck, provided it is a temporary state of affairs.
However, some students were extremely uncomfortable with the idea. This seems
to be a significant difference between the practices of programming and proving:
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usually there is a way forward in programming, while Getting Stuck is always a
danger in formal proofs.

A majority of the students became quite enthusiastic. Quite a few projects
have continued after the end of the course, sometimes because the student wanted
to ‘finish that last theorem’, and sometimes because the project lies within their
wider research goals.

Finally, given the project nature of the course, it was unclear whether the
supplementary lectures were useful. However, attendance was surprisingly good
all the way through the course. It is not clear whether this is because the content
was so interesting or because of inertia.

5 Comments from the Students

We now present a lightly edited list of comments from the students. Some of
the comments reflect the students’ lack of experience, but that’s just the point:
these are typical comments from beginners, just after they’ve finished the main
task of learning a new system.

– The system is vast and frustrating, I can’t get it to do what I want.
– The command-line interface is too primitive.
– It is easy to forget how to get things done.
– Using pre-proved theorems with automated theorem provers on some of the

assignments was easy and fun.
– Searching for a suitable theorem for use by a proof procedure is a nightmare.
– I was surprised by case-sensitivity.
– Mostly the high-level tactics are not useful and low-level tactics had to be

used for most proofs.
– It would be nice if tactics printed out useful information when they fail.
– It is amazing that the HOL system contains such an enormous set of theories

and proofs.
– There should already be a library supporting verification of arithmetic cir-

cuits.
– More homework and representative examples before starting the project.
– Dealing with assumptions is often irritating: they manage to confuse the

automated provers when there are many assumptions.
– I had difficulty understanding error messages.
– The documentation needs more examples and explanations for students.
– There is a lack of examples when developing proofs.
– Performing a proof step can cause ‘things to magically change’ and I don’t

understand how the change happened.
– I was unable to get automated reasoners to understand set notation.
– I thought the most difficult part would be to do the reasoning steps but in

fact getting the definitions right was the hard part.
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– HOL itself was agreeable once things got rolling. The tool support I found
most lacking was creating tactics. This is because it was time consuming and
confusing to figure out when and where the case splits were in larger proofs.

– It is good that each recursively defined function automatically gets its own
induction theorem.

– It would be helpful if HOL supported the deletion of assumptions that are
no longer needed.

– Seemingly obvious paths are not obvious to HOL.
– In many instances, the advantages of using case analysis vs. induction was

not clear.
– Defining a procedural process as a provable statement of logic required a lot

of effort. But once defined, the statement appeared simple, even elegant.
– While the proof clearly was evident on paper, translating the steps into HOL

was not intuitive, it seemed arcane.
– The tutorial and reference guides were not helpful, and the online help was

less so.
– Develop a ‘How-To’ for various commonly performed proof steps.
– Write a FAQ for converting ML to HOL.
– HOL has a well-formed set theory, but more theorems could be added to

HOL, especially cardinality theorems and equalities between set expressions.
– Writing and proving the universe was, perhaps, too large a jump.
– I feel that I outperformed myself in this project. I didn’t plan to complete

the whole thing, because the verification of ... alone requires the effort of a
project. But the topic of this project really intrigued me, so I spent double
time and efforts on it.

6 Conclusion

In the instructor’s view the course results were quite encouraging: he had been
expecting much resistance to the idea and practice of formal methods as per-
formed in HOL-4, but most of the projects were interesting and successful. Al-
though it was hard work (more than one student called it the hardest course
they had ever taken), the majority of students did manage to learn enough to
make a large and complex proof system do what they wanted. The collection of
projects listed here could serve as a basis for others who are designing a similar
project-based theorem proving course.

One observation is that most of the successful projects started from previous
formalizations, or at least a correct set of definitions. Perhaps attempting to
solidify definitions and get substantial proofs done is too much of a burden for
beginners. On the other hand, we don’t want to stifle application of the proof
tools to already settled mathematics; several of the most successful projects of
the course did involve much wrestling with definitions.

One crucial issue in teaching interactive proof is the following: Given that
there is a finite amount of time (and student patience), what proof tools should
be emphasized?. This course took the approach of focusing on the most highly



Teaching a HOL Course: Experience Report 179

automated tools. However, once the going gets tough in a proof, more specialized
steps may need to be taken (simplifying only one specific occurrence of a term,
explicitly instantiating a theorem, throwing away assumptions after use, etc)
and the students did not have an adequate basis for going ahead with such
steps. Possibly an assignment explicitly addressing such thorny aspects could be
constructed.

Next time the course is taught, there will be a more significant attempt
at integrating the lectures with the content; otherwise, the lectures don’t seem
to bear much relationship with the verifications in progress. Possibly another
assignment could be added so that students can gain experience with writing
their own proof tool, which is one of the major applications of HOL-4.

Focusing on a particular proof language, as is done with the Isar language in
Isabelle could also ease the burden on the students, although understanding the
behaviour of complex simplifiers and decision procedures would still be required.

In many universities, first order logic and its meta-theory, such as the sound-
ness and completeness theorems, are routinely taught to undergraduates. A tool-
supported undergraduate course in Higher Order Logic would seem to offer new
benefits, e.g., more compelling examples. The tool support, thanks largely to the
long-term effort of the TPHOLs community, is substantially there; all that needs
to be produced is an attractive curriculum for undergraduates. A project-based
course described here still seems best for the graduate level though.
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Abstract. This paper describes the integration of a leading SAT solver
with Isabelle/HOL, a popular interactive theorem prover. The SAT solver
generates resolution-style proofs for (instances of) propositional tautolo-
gies. These proofs are verified by the theorem prover. The presented
approach significantly improves Isabelle’s performance on propositional
problems, and furthermore exhibits counterexamples for unprovable con-
jectures.

1 Introduction

Interactive theorem provers like PVS [17], HOL [8] or Isabelle [18] traditionally
support rich specification logics. Proof search and automation for these logics
however is difficult, and proving a non-trivial theorem usually requires manual
guidance by an expert user. Automated theorem provers on the other hand,
while often designed for simpler logics, have become increasingly powerful over
the past few years. New algorithms, improved heuristics and faster hardware
allow interesting theorems to be proved with little or no human interaction,
sometimes within seconds.

The two paradigms can be combined to obtain the best from both worlds.
By integrating automatic decision procedures with interactive provers, we can
preserve the richness of our specification logic and still increase the degree of
automation [20]. Most interactive theorem provers nowadays come with a variety
of built-in decision procedures that were specifically developed for the particular
prover. Such decision procedures are often based on complex algorithms. To
ensure that a potential bug in the decision procedure does not render the whole
prover unsound, theorems in Isabelle, like in other LCF-style [6] provers, can be
derived only through a set of core inference rules. Therefore it is not sufficient for
a decision procedure to return whether a formula is provable, but the decision
procedure must also generate the actual proof, expressed in terms of the prover’s
inference rules.

? This work was supported by the PhD program Logic in Computer Science of the
German Research Foundation.
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Built-in decision procedures enhance the capabilities of interactive provers,
but seldom do they incorporate the latest advances in automated theorem prov-
ing. Automated theorem provers have become complex systems in their own
right. Integrating their algorithms into an interactive system is a tedious task
that requires continual maintenance. Therefore interfacing the two systems might
be the more economic solution: later improvements to the ATP system are ob-
tained “for free” in the interactive prover, only changes to its interface – which
should happen much more rarely than changes to the algorithm – still require
maintenance. This is an idea that goes back at least to the early nineties [12].

Formal verification is an important application area of interactive theorem
proving. Problems in verification can often be reduced to Boolean satisfiability
(SAT), and recent SAT solver advances have made this approach feasible in prac-
tice. Hence the performance of an interactive prover on propositional problems
may be of significant practical importance. In this paper we describe the inte-
gration of zChaff [15], a leading SAT solver, with the Isabelle/HOL [16] prover.
We show that using zChaff to prove theorems of propositional logic dramat-
ically improves Isabelle’s performance on this class of formulas. Furthermore,
while Isabelle’s previous decision procedures simply fail on unprovable conjec-
tures, zChaff is able to produce concrete counterexamples. This can again be
particularly useful in the context of formal verification, where a counterexam-
ple amounts to input data exhibiting faulty behavior of the hardware or system
under examination.

The next section describes the integration of zChaff with Isabelle/HOL in
more detail. In Section 3 we evaluate the performance of our approach, and
report on experimental results. Related work is discussed in Section 4. Section 5
concludes this paper with some final remarks and points out directions for future
research.

2 System Description

To prove a propositional tautology φ in the Isabelle/HOL system, but with the
help of zChaff, we proceed in several steps. First φ is negated, and the negation
is converted into an equivalent formula φ∗ in conjunctive normal form. φ∗ is
then written to a file in DIMACS CNF format [4], the input format supported
by zChaff (and many other SAT solvers). zChaff, when run on this file, returns
either “unsatisfiable”, or a satisfying assignment for φ∗.

In the latter case, the satisfying assignment – restricted to the Boolean vari-
ables occuring in φ – is displayed to the user. The assignment constitutes a
counterexample to the original conjecture. When zChaff returns “unsatisfiable”
however, things are more complicated. If we have confidence in the SAT solver,
we can simply trust its result and accept φ as a theorem in Isabelle. The theo-
rem is tagged with an “oracle” flag to indicate that it was proved not through
Isabelle’s own inference rules, but by an external tool. In this szenario, a bug in
zChaff could allow us to derive inconsistent theorems in Isabelle/HOL.
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The LCF-approach instead demands that we verify zChaff’s claim of un-
satisfiability within Isabelle/HOL. While this is not as simple as the validation
of a satisfying assignment, the increasing complexity of SAT solvers has before
raised the question of support for independent verification of their results, and
in 2003 zChaff has been extended by L. Zhang and S. Malik [25] to generate
resolution-style proofs that can be verified by an independent checker.1 Hence
our main task boils down to using Isabelle/HOL as an independent checker for
the resolution proof found by zChaff.

zChaff stores this proof in a text file that is read in by Isabelle, and the
individual resolution steps are replayed in Isabelle/HOL. Section 2.1 describes
the necessary preprocessing of the input formula, and details of the proof recon-
struction are explained in Section 2.2. The overall system architecture is shown
in Figure 1.

Input
formula Preprocessing

Theorem reconstruction
Proof

Trace

satisfiable?

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle

Fig. 1. System Architecture

2.1 Preprocessing

Isabelle/HOL offers higher-order logic (on top of Isabelle’s meta logic), whereas
zChaff only supports formulas of propositional logic in conjunctive normal form.
Therefore the (negated) input formula φ must be preprocessed before it can be
passed to zChaff.

1 This is the very reason why we chose zChaff as the SAT solver to be integrated with
Isabelle/HOL. Extending other DPLL-based solvers with proof-generating capabil-
ities should be relatively simple [25], but despite some work in this direction [5],
zChaff, to our knowledge, is currently the only proof-generating SAT solver that is
publicly available.
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First connectives of the meta logic, namely meta implication (=⇒) and meta
equivalence (≡), are replaced by the corresponding HOL connectives −→ and
=. This is merely a technicality. Then the Boolean constants True and False
are eliminated from φ, as are implication, −→, and equivalence, =. The only
remaining connectives are conjunction, disjunction, and negation. Finally φ is
converted into negation normal form, and then into conjunctive normal form
(CNF). The naive conversion currently implemented may cause an exponential
blowup of the formula, but a Tseitin-style encoding [23] could easily be used
instead. Quantified subformulas of φ are treated as atomic.

Note that it is not sufficient to convert φ into an equivalent formula φ′ in
CNF. Rather, we have to prove this equivalence inside Isabelle/HOL. The result
is not a single formula, but a theorem of the form φ = φ′. Our main workhorse
for the construction of this theorem is a generic function thm of, proposed by
A. Chaieb and T. Nipkow [3]:

thm_of decomp t =

let

(ts, recomb) = decomp t

in recomb (map (thm_of decomp) ts)

It takes a decomposition function decomp of type α → α list × (β list → β)
and a problem t of type α, decomposes t into a list of subproblems ts and
a recombination function recomb, solves the subproblems recursively, and uses
recomb to combine the recursive solutions into an overall solution. In our setting,
t is a formula, decomp will look at its syntactic structure, and β is the type of
theorems. We use reflexivity of = when t is just a literal, and tautologies like
¬P = P ′ =⇒ ¬Q = Q′ =⇒ ¬(P ∧ Q) = P ′

∨ Q′ (which are easily provable in
Isabelle/HOL) to implement the recombination function. All of the conversions
mentioned above can then be handled with proper instantiations for decomp.

zChaff treats clauses as sets of literals, making implicit use of associativity,
commutativity and idempotence of disjunction. Therefore some further prepro-
cessing is necessary, aside from conversion to CNF. Using associativity of con-
junction and disjunction, we rewrite φ′ into an equivalent CNF formula with un-
necessary parentheses removed. In a second step, we remove duplicate literals, so
that every clause contains each literal at most once. Finally, using P∨¬P = True,
we remove every clause that contains both a literal and its negation. Each pre-
processing step yields an equivalence theorem that was proved in Isabelle/HOL,
and transitivity of = allows us to combine these theorems into a single theorem
φ = φ∗, where φ∗ is the final result of our conversion. Unless φ∗ is already equal
to True or False, it is then written to a file in DIMACS CNF format, and zChaff
is invoked on this file.

2.2 Proof Reconstruction

When zChaff returns “unsatisfiable”, it also generates a resolution-style proof of
unsatisfiability and stores the proof in a text file [25]. This file consists of three
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sections: clauses derived from the original problem by resolution, the values of
variables implied by these clauses, and a conflict clause, i.e. a derived clause in
which all literals are false. The text file is parsed by Isabelle, and the relevant
information contained in it – i.e. the resolvents of newly generated clauses, the
antecedents of variables, and the conflict clause’s ID – is used to reconstruct
the unsatisfiability proof in Isabelle/HOL. Proof reconstruction is based on two
simple functions: one that uses resolution to derive new theorems of the form
φ∗

−→ c from existing theorems φ∗
−→ c1, . . . , φ∗

−→ cn (where c and c1,
. . . , cn are single clauses), and another function that proves φ∗

−→ l (where l

is a single literal) from l’s antecedent φ∗
−→ c. Here c must be a clause that

contains l, and for all other literals l′ in c a theorem of the form φ∗
−→ ¬l′

must be provable. These functions correspond to the first and second section,
respectively, of the text file generated by zChaff.

prove_clause clause_id =

resolution (map prove_clause (resolvents_of clause_id))

prove_literal var_id =

let

th_ante = prove_clause (antecedent_of var_id)

var_ids = filter (fn i => i <> var_id)

(var_ids_in_clause th_ante)

in resolution (th_ante :: map prove_literal var_ids)

Resolution between two clauses c1 and c2 is always performed with the first
literal in c1 that occurs negated in c2. Note that resolution must internally use
associativity and commutativity of disjunction to reorder clauses, and idempo-
tence to ensure that the resulting clause contains each literal at most once.

Proof reconstruction proceeds in three steps. First the conflict clause is
proved by a call to prove clause. Then prove literal is called for every literal
in the conflict clause, to show that the literal must be false. Finally resolving
the conflict clause with these negated literals yields the theorem φ∗

−→ False.

For efficiency reasons, the actual implementation is slightly different from
what is shown above. Some clauses that were derived by zChaff may be used
many times during the proof, while others are perhaps not used at all. Theorems
that were proved once are therefore stored in two arrays (one for clauses, one for
literals), and simply looked up – rather than reproved – should they be needed
again. Hence our implementation is not purely functional.

2.3 A Simple Example

In this section we illustrate the proof reconstruction using a small example.
Consider the following input formula

φ ≡ (¬v1 ∨ v2) ∧ (¬v2 ∨ ¬v3) ∧ (v1 ∨ v2) ∧ (¬v2 ∨ v3).
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Since φ is already in conjunctive normal form, preprocessing simply yields the
theorem φ = φ. The corresponding DIMACS CNF file, aside from its header,
contains one line for each clause in φ:

-1 2 0

-2 -3 0

1 2 0

-2 3 0

zChaff easily detects that this problem is unsatisfiable, and creates a text file
with the following data:

CL: 4 <= 2 0

VAR: 2 L: 0 V: 1 A: 4 Lits: 4

VAR: 3 L: 1 V: 0 A: 1 Lits: 5 7

CONF: 3 == 5 6

This tells Isabelle that first a new clause (with ID 4) is derived by resolving
clause 2, v1 ∨ v2, with clause 0, ¬v1 ∨ v2. The first variable that occurs both
positively and negatively in clause 2 and clause 0 is v1; this variable is eliminated
by resolution.

Now the value of variable 2 (VAR: 2) can be deduced from clause 4 (A: 4).
v2 must be true (V: 1). Clause 4 contains only one literal (Lits: 4), namely v2
(since 4÷ 2 = 2), occuring positively (since 4 mod 2 = 0). This decision is made
at level 0 (L: 0), before any decision at higher levels.

Likewise, the value of variable 3 can then be deduced from clause 1, ¬v2∨¬v3.
v3 must be false (V: 0).

Finally clause 3 is our conflict clause. It contains two literals, ¬v2 (since
5 ÷ 2 = 2, 5 mod 2 = 1) and v3 (since 6 ÷ 2 = 3, 6 mod 2 = 0). But we already
know that both literals must be false, so this clause is not satisfiable.

Note that information concerning the level of decisions, the actual value of
variables, or the literals that occur in a clause is redundant in the sense that it
is not needed by Isabelle to validate zChaff’s proof. This information can always
be reconstructed from the original problem.

3 Evaluation

Isabelle/HOL offers three major automatic proof procedures: auto, which per-
forms simplification and splitting of a goal, blast [19], a tableau-based prover, and
fast, which searches for a proof using standard Isabelle inference. Details can be
found in [16]. We compared the performance of our approach to that of Isabelle’s
existing proof procedures on all 42 problems contained in version 2.6.0 of the
TPTP library [22] that have a representation in propositional logic. The prob-
lems were negated, so that unsatisfiable problems became provable. All bench-
marks were run on a machine with a 3 GHz Intel Xeon CPU and 1 GB of main
memory.



186 Tjark Weber

Problem Status auto blast fast zChaff

MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4

Table 1. Running times (in seconds) for TPTP problems

19 of these 42 problems are rather easy, and were solved in less than a second
each by both the existing procedures and the SAT solver approach. Table 1 shows
the times in seconds required to solve the remaining 23 problems. An x indicates
that the procedure ran out of memory or failed to terminate within an hour.

Proof reconstruction in Isabelle/HOL is currently several orders of magni-
tude slower than proof verification with an external checker [25] written in C++.
While there may still be potential for optimization in the Isabelle/HOL imple-
mentation, profiling indicates that this difference must mainly be attributed to
the data structures and functions provided by Isabelle’s LCF-style kernel, which
are not geared towards clausal reasoning.

The SAT solver approach dramatically outperforms the automatic proof pro-
cedures that were previously available in Isabelle/HOL. The other procedures
combined solved only 8 of the harder problems. Running times between the dif-
ferent procedures vary wildly, and they all fail to terminate for the 7 satisfiable
(i.e. unprovable) problems. In contrast, the SAT solver approach solves all prob-
lems, takes less than two seconds on all but two problems, and provides actual
counterexamples for the unprovable problems. Furthermore, the rightmost col-
umn of Table 1 already shows the total (combined) time for the invocation of
zChaff and the following proof reconstruction in Isabelle/HOL. zChaff alone ter-
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minates after a fraction of this time, at which point a definite answer can already
be displayed to the user – a feature that is particularly useful in our interactive
setting.

4 Related Work

Michael Gordon has implemented HolSatLib [7], a library which is now part of
the HOL 4 theorem prover. This library provides functions to convert HOL 4
terms into CNF, and to analyze them using a SAT solver. In the case of un-
satisfiability however, the user only has the option to trust the external solver.
No proof reconstruction takes place, “since there is no efficient way to check for
unsatisfiability using pure Hol98 theorem proving” [7]. A bug in the SAT solver
could ultimately lead to an inconsistency in HOL 4.

Perhaps closer related to our work is the integration of automated first-order
provers, recently further explored by Joe Hurd [10, 11] and Jia Meng [13, 14].
Proofs found by the automated system are either verified by the interactive
prover immediately [10], or translated into a proof script that can be executed
later [14]. The main focus of their work however is on the necessary translation
from the interactive prover’s specification language to first-order logic. In con-
trast our approach is so far restricted to instances of propositional tautologies,
but it avoids difficult translation issues, and uses a SAT solver, rather than a
first-order prover.

Other applications of SAT solvers in the context of theorem proving include
SAT-based decision procedures for richer logics (e.g. [2, 21]), as well as SAT-
based model generation techniques (e.g. [1, 24]). These applications again require
involved translations, and a correctly implemented SAT solver is usually taken
for granted.

5 Conclusions and Future Work

Our results show that the zChaff-based tactic is clearly superior to Isabelle’s
built-in tactics for propositional formulas. With the help of zChaff, many for-
mulas that were previously out of the scope of Isabelle’s built-in tactics can now
be proved – or refuted – automatically, often within seconds. Isabelle’s applica-
bility as a tool for formal verification, where large propositional problems occur
in practice, has thereby improved considerably.

However, it is also important to note that Isabelle’s performance is still not
sufficient for problems with thousands of clauses, like some of those found in
the SATLIB library [9]. While zChaff and other recent SAT solvers may well
be able to decide these problems in practice, their sheer size currently does
not permit an efficient treatment in Isabelle/HOL. Further work is necessary
to investigate if this issue can be resolved by relatively minor optimizations to
Isabelle’s kernel, or if a kernel extension with optimized data structures and
algorithms for propositional logic is more promising.
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The approach presented in this paper has applications beyond propositional
reasoning. The decision problem for (fragments of) richer logics can be reduced to
SAT [2, 21]. Consequently, proof reconstruction for propositional logic can serve
as a foundation for proof reconstruction for other logics. Based on our work, one
only needs a proof-generating implementation of the reduction to integrate the
whole SAT-based decision procedure with an LCF-style theorem prover.

Acknowledgments The author would like to thank Sharad Malik and Zhaohui Fu
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Abstract. In [11], a method used to prove liveness properties in the
setting of inductive protocol verification is proposed. As a companion
paper, this paper shows the practical aspects of the proposed method.
Elevator control system, a benchmark problem in formal specification
and verification, has been chosen as a case study. A liveness property
could be difficult to prove when it concerns non-trivial loops in the un-
derlying state transition diagram. The liveness property proved in this
paper is such a difficult property, which has never been proved before for
an elevator control system with arbitrarily large state space. We show
that using the method proposed in [11], such difficult liveness properties
can be proved with reasonable human effort.
Keywords: Inductive Protocol Verification, Temporal Reasoning, Is-
abelle, Elevator Control System

1 Introduction

As a companion paper of [11], this paper describes how the method proposed
there is used to verify the liveness of an elevator control system. Elevator control
system is a benchmark problem in the area of formal specification and verifica-
tion. The liveness of elevator control system is non-trivial. In a number of efforts
to formalize elevator control systems [7,10,9,3,4,2,12,6,1,5,8], only [12], [7], [1],
[8] and [5] treat liveness. Since we can not find paper [1] and [5], a comparison
of this paper with only [12], [7] and [8] is given in Table 1.

Work
For arbitrarily

large state space?
Conclusion

[12] No
�(〈(|Down n|)〉 ↪→ ♦ 〈(|Stop n|)〉);
�(〈(|Up n|)〉 ↪→ ♦〈(|Stop n|)〉);
�(〈(|To n|)〉 ↪→ ♦〈(|Stop n|)〉)

[7] No
�(〈(|Down n|)〉 ↪→ ♦ 〈(|Stop n|)〉);
�(〈(|Up n|)〉 ↪→ ♦〈(|Stop n|)〉)

[8] Yes
�(Down n ↪→ ♦ Stop n);
�(Up n ↪→ ♦ Stop n)

This paper Yes �(〈(|Arrive p m n|)〉 ↪→ ♦ 〈(|Exit p m n|)〉)

Table 1. A comparison with previous works

It can be seen from Table 1 that the liveness conclusion in this paper is more
realistic than those in [12,7,8], because Arrive p m n represents the event that

? This research was funded by National Natural Science Foundation of China, under
grant 60373068 ‘Machine-assisted correctness proof of complex programs’
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person p arrives at floor m wanting to go to floor n and Exit p m n represents
the event that person p gets off at floor n. The meaning of events in an elevator
control system is explained in section 2.1. The works in [12,7,8] only prove that
if a button is pressed at floor n(represented by event Up n or Down n), the
elevator will eventually stop at floor n, or if the button n inside the elevator
is pressed(represented by event To n), the elevator will eventually reach and
stop at floor n. These properties do not necessarily guarantee that a person who
want to go to a certain floor will eventually reach there, considering the cases
when a person temporarily forgets to get onboard when the elevator arrives or
forgets to get off when the elevator reaches his destination. The consideration of
human behavior gives rise to non-trivial loops in the underlying state transition
diagram. Such non-trivial loops make liveness proof difficult.

It is shown in this paper that such difficult liveness properties can be established
with reasonable human labor, using the method proposed in [11], under stronger
non-standard fairness constraints. Compared with [8], the effort spent in this
paper is greater, but the conclusion is stronger as well. Compared with [12,7], this
paper can deal with systems with arbitrarily large state space. This is because
the theorem proving technique used in this paper overcomes the state space
explosion problem, which is intrinsic to the model checking technique used in
[12,7].

As an illustration of the method in [11], a detailed explanation is given on how
an informal state-transition diagram can help in the construction of a liveness
proof.

The rest of this paper is organized as the following: section 2 gives the formal
definition of the elevator control system in full detail; section 3 describes the
liveness proof; section 4 concludes.

2 Formalizing the elevator control system

2.1 Events

The elevator control system to be formalized is shown in Figure 1. We consider
systems with only one elevator. The elevator can be in stationary state, as shown
in Figure 1, or on the move, as shown in Figure 2. There are two buttons on
each floor, N and H, used by users to signal to the elevator control system their
requests to go up or down. There is a control panel inside the elevator. After
getting into the elevator, users can signal their destinations by pressing number
buttons on the control panel. We do not consider the open and close of elevator,
neither the on and off of various kind of lights. People can get on and off the
elevator as long as the elevator is in stationary state. There is no limit on the
number of people the elevator can hold.

Without loss of generality, both floor and user are represented as natural number:

types floor = nat — type for floors
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Control panel

Fig. 1. Elevator in stationary

Control panel

Fig. 2. Elevator on the move

types user = nat — type for users

The type of events that may happen in an elevator control system is defined as:

datatype event =

Arrive user floor floor —
Arrive p m n: User p arrives at floor m, planning to
go to floor n.

| Enter user floor floor —
Enter p m n: User p enters elevator at floor m, plan-
ning to go to floor n.

| Exit user floor floor —
Exit p m n: User p gets off elevator at floor n, m is the
floor, where user p entered elevator.

| Up floor — Up n: A press of the N-button on floor n.

| Down floor — Down n: A press of the H-button on floor n.

| To floor — To n: A press of button n on elevator’s control panel.

| StartUp floor — StartUp n: Elevator starts moving upward from floor n.

| StartDown floor — StartDown n: Elevator starts moving down from floor n.

| Stop floor floor —
Stop n m: Elevator stops at floor m. Before stopping, the
elevator is moving from floor n to floor m.
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| Pass floor floor —
Pass n m: Elevator passes floor n without stopping. Before
passing floor m, the elevator is moving from floor n to floor
m.

2.2 Observation functions

Observation functions compute values from current state τ . Concurrent system
uses these observation values when deciding which events are eligible to happen
next.

The observation function now-flr computes the state of elevator. The definition
of now-flr is:

consts now-flr :: event list ⇒ (floor × floor)
now-flr [] = (0 , 0 )
now-flr (Stop n m # τ) = (m, m)
now-flr (StartUp n # τ) = (n, n + 1 )
now-flr (StartDown n # τ) = (n, n − 1 )
now-flr (Pass n m # τ) = (if n < m then (m, m + 1 ) else (m, m − 1 ))

now-flr (e # τ) = now-flr τ

now-flr τ = (n, n) means the elevator is static at floor n. now-flr τ = (n, m),
(n 6=m) means the elevator is moving from floor n to floor m.

Observation function up-set computes the set of floors, on which there is a ”go-
up” request not served. The definition of up-set is:

consts up-set :: event list ⇒ floor set
up-set [] = {}
up-set (Up n # τ) = {n} ∪ (up-set τ)
up-set (StartUp n # τ) = up-set τ − {n}

up-set (e # τ) = up-set τ

A request to go up is signaled when the N-button is pressed. The request is
served when the elevator starts moving up from the requesting floor.

Observation function down-set computes the set of floors, on which there is a
”go-down” request not served. The definition of down-set is:

consts down-set :: event list ⇒ floor set
down-set [] = {}
down-set (Down n # τ) = {n} ∪ (down-set τ)
down-set (StartDown n # τ) = down-set τ − {n}

down-set (e # τ) = down-set τ

A request to go down is signaled when the H-button is pressed. The request is
served when the elevator starts moving down from the requesting floor.

Observation function dest computes the set of floors, which users want to arrive,
but have not been arrived. The definition of dest is:

consts dest :: event list ⇒ floor set
dest [] = {}
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dest (To n # τ) = {n} ∪ dest τ
dest (Stop n ′ n # τ) = dest τ − {n}

dest (e # τ) = dest τ

After entering elevator, a user signals a request to go to floor n by pressing button
n on the control panel. This request is considered served when the elevator stops
at floor n.

Observation function arr-set computes the set of people, who are still waiting
to enter the elevator. The definition of arr-set is:

consts arr-set :: event list ⇒ event set
arr-set [] = {}
arr-set (Arrive p m n # τ) = {Arrive p m n} ∪ arr-set τ
arr-set (Enter p m n # τ) = arr-set τ − {Arrive p m n}

arr-set (e # τ) = arr-set τ

Arrive p m n ∈ arr-set τ means user p is waiting at floor m and he is planning
to go to floor n.

Observation function ent-set τ computes the set of people, who have entered the
elevator, but yet to exit. The definition of ent-set τ is:

consts ent-set :: event list ⇒ event set
ent-set [] = {}
ent-set (Enter p m n # τ) = ent-set τ ∪ {Enter p m n}
ent-set (Exit p m n # τ) = ent-set τ − {Enter p m n}

ent-set (e # τ) = ent-set τ

Enter p m n ∈ ent-set τ means user p has entered the elevator, but has not
exited yet, moreover, user p entered the elevator at floor m and he is planning
to go to floor n.

The motion of elevator alternates between Up and Down pass. Observation func-
tion is-up computes the current pass of the elevator.

consts is-up :: event list ⇒ bool
is-up [] = True
is-up (StartUp m # τ) = True
is-up (StartDown m # τ) = False

is-up (e # τ) = is-up τ

is-up τ means the elevator is in Up-pass; otherwise, the elevator is in Down-pass.
If the elevator is currently in Up-pass, a happening of StartDown changes it into
Down-pass, and it remains in Down-pass until the next happening of StartUp.

2.3 User and elevator rules

The height of the building, in which the elevator is mounted, is assumed to be
no more than H floors, where H is an arbitrary natural number greater than 0.
There are H+1 floors served by the elevator. The set of these floors is {0 . . .H }.
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The elevator control system is formalized as the following concurrent system
elev-cs, which contains 16 rules, each describing either the behaviour of users or
the elevator. To understand the definition of elev-cs, it should be noticed that
the elevator needs to go to floor n only when there are some requests at floor n,
or there is a user inside the elevator, who wants to go to floor n. Therefore, the
set of floors to which the elevator needs to go, is naturally written as: up-set τ
∪ down-set τ ∪ dest τ .

consts elev-cs :: (event list × event) set
inductive elev-cs intros

e0 : [[m 6= n; m ≤ H ; n ≤ H ]] =⇒ (τ , Arrive p m n) ∈ elev-cs

—

Rule e0 describes the behaviour of users. If user p arrives at level m and wants
to go to level n, both m and n should be less than H, and m should be different
from n. This way, the height of the building is implicitly constrained to be no
more than H floors.

e1 : [[Arrive p m n ∈ arr-set τ ; n < m]] =⇒ (τ , Down m) ∈ elev-cs

—
Rule e1 describes the behaviour of users. When a user p is waiting at level m
and he wants to go to level n, if n < m, he will press the H-button at floor m.

e2 : [[Arrive p m n ∈ arr-set τ ; m < n]] =⇒ (τ , Up m) ∈ elev-cs

—
Rule e2 describes the behaviour of users. When a user p is waiting at level m
and he wants to go to level n, if m < n, he will press the N-button at floor m.

e3 : [[Enter p m n ∈ ent-set τ ]] =⇒ (τ , To n) ∈ elev-cs

—
Rule e3 describes the behaviour of users. After a user p enters elevator and
he wants to go to floor n, he will press button n on the control panel.

e4 : [[now-flr τ = (m, m); Arrive p m n ∈ arr-set τ ]]
=⇒ (τ , Enter p m n) ∈ elev-cs

—
Rule e4 describes the behaviour of users. If a user p is waiting at floor m, and
he wants to go to floor n, if the elevator is now stopped at floor m, then user
p can get onboard the elevator.

e5 : [[now-flr τ = (n, n); Enter p m n ∈ ent-set τ ]]
=⇒ (τ , Exit p m n) ∈ elev-cs

—
Rule e5 describes the behaviour of users. If a user p is inside the elevator, and
he wants to go to floor n, if the elevator is now stopped at floor n, then user
p can get off the elevator.

e6 : [[now-flr τ = (n, n); is-up τ ;
∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). n < x ]]

=⇒ (τ , StartUp n) ∈ elev-cs

—

Rule e6 describes the behavior of the elevator. The set up-set τ ∪ down-set
τ ∪ dest τ represents all requests in the system. The elevator is currently is
Up pass, and stopped at floor n. If there exist requests which are above floor
n (specified as ∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). n < x ), then, the
elevator should start moving up.

e7 : [[now-flr τ = (n, n); ¬ is-up τ ;
∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). n < x ;

∀ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). n ≤ x ]]
=⇒ (τ , StartUp n) ∈ elev-cs
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—

Rule e7 describes the behaviour of the elevator. The elevator is currently in
Down pass and stopped at floor n. If all requests in the system are no lower
than floor n (specified by the ∀ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). n ≤
x ), and there are some requests which are strictly above floor n (specified by
∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). n < x )), then the elevator should
turn around, start moving up.

e8 : [[now-flr τ = (n, n); ¬ is-up τ ;
∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). x < n]]

=⇒ (τ , StartDown n) ∈ elev-cs

—
Rule e8 describes the behavior of the elevator. It is the dual of e6, but is used
to generate StartDown n.

e9 : [[now-flr τ = (n, n); is-up τ ;
∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). x < n;

∀ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). x ≤ n]]
=⇒ (τ , StartDown n) ∈ elev-cs

—
Rule e9 describes the behavior of the elevator. It is the dual of e7, but is used
to generate StartDown.

e10 : [[now-flr τ = (n, n+1 ); (n+1 ) ∈ up-set τ ∪ dest τ ]]
=⇒ (τ , Stop n (n+1 )) ∈ elev-cs

—

Rule e10 describes the behavior of the elevator. When the elevator is moving
from floor n to floor n+1, the elevator will stop at floor n+1 if there is
somebody inside the elevator who wants to get off at floor n+1 or there is
somebody at floor n+1 who wants to go upward.

e11 : [[now-flr τ = (n, n+1 ); ∀ x ∈ up-set τ ∪ down-set τ ∪ dest τ . x ≤ (n+1 )]]
=⇒ (τ , Stop n (n+1 )) ∈ elev-cs

—

Rule e11 describes the behavior of the elevator. It describes the case when the
elevator is going up from floor n to n+1, and the premises in e10 do not hold.
If, in this case, all requests in the system are from floors no higher than n+1,
there is no need for the elevator to go pass floor n+1. Therefore, it should stop
at floor n+1. In this case, there must be somebody at floor n+1, who want to
go down.

e12 : [[now-flr τ = (n + 1 , n); n ∈ down-set τ ∪ dest τ ]]
=⇒ (τ , Stop (n + 1 ) n) ∈ elev-cs

e13 : [[now-flr τ = (n + 1 , n); ∀ x ∈ up-set τ ∪ down-set τ ∪ dest τ . n ≤ x ]]
=⇒ (τ , Stop (n + 1 ) n) ∈ elev-cs

—
Rule e12 and rule e13 describe the behavior of the elevator. They are the
counterparts of rule e10 and rule e11, but for the case when the elevator is
moving down.

e14 : [[now-flr τ = (n, n+1 ); (n+1 ) /∈ up-set τ ∪ dest τ ;
∃ x ∈ up-set τ ∪ down-set τ ∪ dest τ . (n+1 ) < x ]]

=⇒ (τ , Pass n (n+1 )) ∈ elev-cs

—

Rule e14 describes the behaviour of the elevator. When the elevator is moving
from floor n to floor n+1, the elevator will not stop at floor n+1 if nobody
inside the elevator who wants to get off at floor n+1 and there is nobody at
floor n+1 who wants to go upward.

e15 : [[now-flr τ = (n + 1 , n); n /∈ down-set τ ∪ dest τ ;
∃ x ∈ up-set τ ∪ down-set τ ∪ dest τ . x < n]]
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=⇒ (τ , Pass (n + 1 ) n) ∈ elev-cs

—
Rule e15 describes the behaviour of the elevator. It is the dual of rule e14,
but for the case when the elevator is moving down.

3 Liveness proof

3.1 Overview

The proved liveness property for the elevator control system is lemma arrive-will-exit :

[[elev-cs ` σ;
PF elev-cs
({|F p m n, E p m n, 4 ∗ H + 3 |} @ {|FT p m n, ET p m n, 4 ∗ H + 3 |}) σ]]

=⇒ σ |= �〈(|Arrive p m n|)〉↪→♦〈(|Exit p m n|)〉

the conclusion of arrive-will-exit says: if a user p arrives at floor m and wants
to go to floor n (represented by the happening of event Arrive p m n), then he
will eventually get there (represented by the happening of event Exit p m n).

The premise of arrive-will-exit is a parametric fairness assumption. The expla-
nation of parametric fairness and the definition of PF are given in [11]. In unfair
executions, if StartUp and StartDown are given higher priority than Enter, a
user will keep missing the elevator. On the other hand, if Enter is given higher
priority than StartUp and StartDown, the elevator will fail to move. When the
elevator reaches a user’s destination, if StartUp and StartDown have higher pri-
ority than Exit, the user may fail to get off the elevator. The fairness assumption
is necessary to prevent such occasions from happening infinite many times.

The proof of arrive-will-exit is split into two lemmas, lemma will-enter :

[[elev-cs ` σ; PF elev-cs {|F p m n, E p m n, 4 ∗ H + 3 |} σ]]
=⇒ σ |= �〈(|Arrive p m n|)〉↪→♦〈(|Enter p m n|)〉

which says: if a user p arrives, he will eventually get into the elevator, and lemma
will-exit :

[[elev-cs ` σ; PF elev-cs {|FT p m n, ET p m n, 4 ∗ H + 3 |} σ]]
=⇒ σ |= �〈(|Enter p m n|)〉↪→♦〈(|Exit p m n|)〉

which says: if the user p gets into the elevator, he will eventually get off. The
combination of will-enter and will-exit into arrive-will-exit is done using lemma
trans-resp:

[[σ |= �ϕ↪→♦ψ ; σ |= �ψ↪→♦ω ]] =⇒ σ |= �ϕ↪→♦ω

and lemma PF-app-eq :

PF cs (pel1 @ pel2) σ = (PF cs pel1 σ ∧ PF cs pel2 σ)

The real hard work hides in the proof of will-enter and will-exit, both use the
proof rule resp-rule, which is derived in [11]:
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[[RESP cs F E N P Q ; cs ` σ; PF cs {|F , E , N |} σ]] =⇒ σ |= �〈P〉↪→♦〈Q〉

The application of resp-rule requires us to find two functions ?F, ?E and a nat-
ural number ?N, such that the RESP premise is satisfied. The formal definition
of RESP is given in [11]. The definition of RESP expresses some requirements
on the underlying state-transition system. The definition of RESP requires ?F

to be a measuring function which returns the distance from the current state to
the desired Q-state. The RESP also requires function ?E to be a strategy for
choosing the next eligible event to happen, so that the happening of the selected
?E -event will decrease the ?F -measurement. The ?N is an upper bound of ?F.
The existence of ?F, ?E and ?N will ensure the desired liveness property.

For the proof of will-enter, the assignment of ?F, ?E and ?N is:

?F 7→ F p m n, ?E 7→ E p m n, ?N 7→ 4∗H + 3

where, H is the building height. It has been formally proved (in lemma FE-resp)
that:

RESP elev-cs (F p m n) (E p m n) (4 ∗ H + 3 ) (|Arrive p m n|) (|Enter p m n|)

In subsection 3.2, we are going to explain how F and E are found, with the help
of state-transition diagram, using the heuristic described in [11]. And then, in
subsection 3.3, the proof structure of FE-resp is explained briefly.

For the proof of will-exit, the assignment of ?F, ?E and ?N is:

?F 7→ FT p m n, ?E 7→ ET p m n, ?N 7→ 4∗H + 3

and it has been formally proved (in lemma FET-resp) that:

RESP elev-cs (FT p m n) (ET p m n) (4 ∗ H + 3 ) (|Enter p m n|) (|Exit p m n|)

The finding of FT and ET and the proof of FET-resp are omitted, because they
are similar to the finding of F and E and the proof of FE-resp.

3.2 The finding of F and E

The state-transition diagram, which inspired us to find F and E, is shown in
Figure 3. Figure 3 is for a 5-floor system (floors 0 , 1 , 2 , 3 , 4 ). The diagram is
from the view of a user p, who arrives at floor 2 and plans to go to floor 4. The
happening of Arrive p 2 4 brings the system from state Arrive p 2 4 /∈ arr-set

τ to Arrive p 2 4 ∈ arr-set τ ∧ 2 /∈ up-set τ . The latter state is the one after
user p’s arrival, but before he presses the N-button on floor 2. The next event
to happen is the pressing of N-button on floor 2 (the event Up 2 ), which brings
the system into the macro-state Arrive p 2 4 ∈ arr-set τ ∧ 2 ∈ up-set τ .

The macro-state Arrive p 2 4 ∈ arr-set τ ∧ 2 ∈ up-set τ is refined into many
sub-states, with each sub-state reflects the current pass and the value of now-flr.
When the elevator is on the move, the value of now-flr uniquely identifies the
state. For example, the state marked with (n, n+1 ) means the elevator is in



Liveness Proof of An Elevator Control System 199

StartUp 0
d(0,0)

(0,1)

u(1,1)

Stop 0 1

(1,2)

StartUp 1

u(2,2)

Stop 1 2

(2,1)

StartDown 2

Stop 2 1

(1,0)

StartDown 1

Stop 1 0

u(2,3)

u(3,3)

Stop 2 3

(3,4)

StartUp 3

(4,3)

Stop 4 3

(3,2)

StartDown 3

u(4,4)

Start 2 Stop 3 2

Stop 3 4 StartDown 4

d(2,2)

StartUp 2

StartDown 2

d(1,1)

StartUp 1

StartDown 1

d(3,3)

StartUp 3

StartDown 3

Pass 0 1

Pass 1 2

Pass 2 3 Pass 4 3

Pass 3 2

Pass 2 1

Arrive p 2 4

Up 2

Enter p 2 4Enter p 2 4

Fig. 3. State-transition diagram for Arrive p 2 4
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Up-pass and is moving from floor n to floor n+1. Similarly, the state marked
with (n, n−1 ) means the elevator is in Down-pass and is moving from floor n

to floor n−1. When the elevator is stopped, the value of now-flr is (n, n) for
some n. In this case, the value of now-flr alone can not identify the current
pass. Therefore, an u or d is added before (n, n) to identify the current pass.
The state marked with u(n, n) means the elevator is stopped at floor n, and
is currently in Up-pass. The state marked with d(n, n) means the elevator is
stopped at floor n, and is currently in Down-pass. For top floor 4, there is no
state d(4 , 4 ). Similarly, for ground floor 0, there is no state u(0 , 0 ).

In Figure 3, the outgoing edges attached to each state represents all events, the
happening of which will lead the system out of the state. Those events, which
do not change system state are omitted. Once the system gets into a state,
there must be at least one outgoing edge, which is eligible to happen next. The
subset of outgoing edges, which are eligible to happen next, may change with the
happening of events. For example, suppose the system is currently in state u(2 ,
2 ), then, either StartUp 2 or StartDown 2 is eligible to happen next. At first,
if there is no request for the elevator to go higher than floor 2, the next event
eligible to happen is StartDown 2. Then, the happening of a Up 3 event will
change the next eligible event from StartDown 2 to StartUp 2, because, now,
there is a request at floor 3. At state u(2 , 2 ), in addition to StartDown 2 and
StartUp 2, the event Enter p 2 4 is also eligible to happen, because user p wants
to go from floor 2 to floor 4 and the happening of Enter p 2 4 will get user p

onboard the elevator. The happening of Enter p 2 4 will lead the system into
the desired state: Arrive p 2 4 /∈ arr-set τ ∧ Enter p 2 4 ∈ ent-set τ . In state
u(2 , 2 ), the happening of StartUp 2 or StartDown 2 means user p missed the
elevator. The fairness assumption ensures that user p can not always miss the
elevator.

The spanning tree of Figure 3, which inspires the definition of F and E is shown
in Figure 4. It is actually a directed acyclic graph (DAG), the spanning tree with
some short cuts added. A top-sorting of the graph gives F -values, as marked to
the left of each state. The DAG is formed by retaining the shortest path from
each state to the desired state. Some states in Figure 3 have more than one
outgoing edges, because the shortest path from that state depends on more
refined information. Suppose the system is now at state u(3 , 3 ), if there are
some needs above floor 3, then event StartUp 3 is the one on shortest path;
otherwise, StartDown 3 is the one on shortest path. Function E chooses the
right event based on these more refined information.

In Figure 4, some states are assigned F -values higher than necessary. This is just
to make the formal definition of F more concise. The increase of F -values will
not affect the desired properties of F p 2 4.

The correctness of the heuristic to construct F and E will finally be judged by
formal proofs. The formal definitions of F p m n and E p m n are shown in
Figure 5 and Figure 6 respectively. The m and n in Figure 5 and Figure 6 can
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be viewed as the generalization of 2 and 4 in Arrive p 2 4. The H can be viewed
as the generalization of the building height 4 above.

It can be checked by the reader that the definition of F p m n in Figure 5 gives
exactly the values illustrated in Figure 4. It is also noticeable that the evaluation
of F p 2 4 only involves the upper-half of Figure 5. The lower-half of Figure 5
deals with the case when n < m, for example: n 7→ 3 , n 7→ 2. However, the
spirit of the lower half of Figure 5 is still the same as upper half, and therefore,
will not be explained further.

constdefs F :: user ⇒ nat ⇒ nat ⇒ event list ⇒ nat
F p m n τ ≡
( if Arrive p m n /∈ arr-set τ then 0

else if now-flr τ = (m, m) then 1
else if (m < n ∧ m /∈ up-set τ) then 4∗H + 2
else if (¬ m < n ∧ m /∈ down-set τ) then 4∗H + 2
else let (k1, k2) = now-flr τ in

if m < n then
if (¬ is-up τ) then

if k1 = k2 then 2∗m + 2∗k1 + 1
else 2∗m + 2∗k1

else if k1 < m then
if k1 = k2 then 2∗m − 2∗k1 + 1

else 2∗m − 2∗k1
else if k1 = k2 then 2∗m + 4∗H − 2∗k1 + 1

else 2∗m + 4∗H − 2∗k1
else if (¬ is-up τ) then

if k1 ≤ m then
if k1 = k2 then 4∗H − 2∗m + 2∗k1 + 1

else 4∗H − 2∗m + 2∗k1
else if k1 = k2 then 2∗k1 − 2∗m + 1

else 2∗k1 − 2∗m
else if k1 = k2 then 4∗H − 2∗m − 2∗k1 + 1

else 4∗H − 2∗m − 2∗k1)

Fig. 5. The definition of F

constdefs E :: user ⇒ nat ⇒ nat ⇒ event list ⇒ event
E p m n τ ≡
( if Arrive p m n /∈ arr-set τ then (StartUp m)

else if now-flr τ = (m, m) then (Enter p m n)
else if (m < n ∧ m /∈ up-set τ) then (Up m)
else if (¬ m < n ∧ m /∈ down-set τ) then (Down m)
else let (k1, k2) = now-flr τ in

if (¬ is-up τ) then
if k1 = k2 then

if (∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). x < k1)
then (StartDown k1)
else (StartUp k1)

else
if (k2 /∈ down-set τ ∪ dest τ) ∧

(∃ x ∈ up-set τ ∪ down-set τ ∪ dest τ . x < k2)
then (Pass k1 k2)
else (Stop k1 k2)

else if k1 = k2 then
if (∃ x ∈ (up-set τ ∪ down-set τ ∪ dest τ). k1 < x)

then (StartUp k1)
else (StartDown k1)

else
if (k2 /∈ up-set τ ∪ dest τ) ∧

(∃ x ∈ up-set τ ∪ down-set τ ∪ dest τ . k2 < x)
then (Pass k1 k2)
else (Stop k1 k2))

Fig. 6. The definition of E

The definition of E p m n follows the same structure as F p m n, except that the
decisions in E p m n does not depend on whether n < m or m < n. Given the
state-transition diagram in Figure 3, the definition of E p m n, at lowest level, is
just to describe which outgoing edge to choose depending on more refined state
information. The E p m n is such defined that the returned event always follows
the shortest path. Such a strategy will ensure that the happening of an E -event
will always lead to a state with lower F -value.

3.3 The proof of FE-resp

Using the introduction rule of RESP, the proof of FE-resp splits into two lemmas,
lemma F-mid :

[[elev-cs ` τ ; d(|Arrive p m n|) 7−→¬(|Enter p m n|)∗e τ ; ¬ (|Enter p m n|) τ ]]
=⇒ 0 < F p m n τ ∧ F p m n τ < 4 ∗ H + 3

corresponding to the mid assumption in locale RESP, and lemma FE-fd :

[[elev-cs ` τ ; 0 < F p m n τ ]]
=⇒ τ [elev-cs> E p m n τ ∧ F p m n (E p m n τ # τ) < F p m n τ

corresponding to the fd assumption in locale RESP.

The proof of F-mid further splits into two lemmas, lemma pre-nar :
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[[d(|Arrive p m n|) 7−→¬(|Enter p m n|)∗e τ ; ¬ (|Enter p m n|) τ ]]
=⇒ Arrive p m n ∈ arr-set τ

which reduces the states between the happening of Arrive p m n and the hap-
pening of Enter p m n to state: Arrive p m n ∈ arr-set τ , and lemma ar-mid :

[[elev-cs ` τ ; Arrive p m n ∈ arr-set τ ]]
=⇒ 0 < F p m n τ ∧ F p m n τ < 4 ∗ H + 3

The proof of both FE-fd and ar-mid follow the structure of F p m n using a
series of cases commands. The proof is straight forward, with the state-transition
diagram of Figure 3 and 4 in mind. The proof of FE-fd is the lengthiest one,
which takes 1269 lines of Isabelle/Isar and several days to complete. The arith

command is heavily used to solve elementary number theory goals.

4 Conclusion

The formal verification described in this paper is written in a structured, human
readable style, using Isabelle/HOL/Isar. Our experiment shows that: using the
method proposed in [11], the liveness problem of elevator control system can be
treated with a reasonable amount of human efforts. Table 2 lists the composition
of the formal proof. The effort to derive arrive-will-exit from will-enter and
will-exit takes only a dozen of lines, therefore, is not listed in Table 2. In Table

Contents
Nr. of

lines

Nr. of

lemmas

Nr. of

working

days
Definitions of the elevator control system, F, E,
FT and ET

≤ 200 – *

Safety properties 579 12 2
Proof of will-enter, including some preliminary
lemmas

2012 10 5

Proof of will-exit, including some preliminary
lemmas

1029 8 3

Table 2. Summary of Isabelle/Isar proof scripts

2, the working days used to construct definitions is marked as ∗, because we
can not calculate accurately how many days are spent. The liveness proof of the
elevator control system started in June 2004. It has gone through several major
revisions. It has been several years since we started considering liveness proof
for inductive protocol verification in general.

Our experience shows, once an understanding of the underlying problem is ob-
tained, construction of formal proof doesn’t take much time. The most difficult
part of a formal proof is to come up with a proper abstraction, which can keep
the complexity of formal proof tractable. The finding of such an abstraction has
to be carried out case by case, and each may take indefinitely long time. We be-
lieve that we have found such an abstraction for the liveness of elevator control
system, perhaps, for the liveness verification in general.
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Abstract. Multiplicative inverses have been widely used in cryptogra-
phy. The basic method to find multiplicative inverses is to use Euclid’s
Algorithm. When used for this purpose, several changes have to be made
to the algorithm in order to make it more effective in finding these in-
verses. In this work, we use HOL-4 theorem prover to specify and verify
Euclid’s Algorithm as it is used in finding multiplicative inverses.

1 Introduction

Although Euclid’s Algorithm is best known for finding greatest common divisors,
it can also be used to find multiplicative inverses. For example, the secret-key
cryptographic algorithm IDEA [1991] uses it for this purpose. However, the gen-
eral Euclid’s Algorithm doesn’t guarantee the existence of the multiplicative
inverse for any given number with respect to any modulus. Therefore, cryp-
tographic algorithms specialize Euclid’s Algorithm with certain parameter and
modulus values to ensure the existence of multiplicative inverses for a range of
input values. Further, in order to use the specialized Euclid’s Algorithm in com-
puter computations, additional changes also have to be made to the algorithm.

In this paper, we use the HOL-4 [Kananaskis 3] theorem prover to verify the
correctness of the general Euclid’s Algorithm, specialized Euclid’s Algorithm and
the “computerized” version of the algorithm as they are used in the calculation of
multiplicative inverses. The specialized and “computerized” versions are based
on IDEA. With the proof of Euclid’s Algorithm, the verification of IDEA is
trivial. We will show it in the appendix. The proof in this work not only can aid
in the verification of IDEA, but also can shed light for the verification of other
algorithms that use multiplicative inverses such as RSA [1977].

2 Euclid’s Algorithm

Euclid’s Algorithm is originally used to find the greatest common divisor of
two integers. With some extension, however, we can use it to find multiplicative
inverses modulo n. The multiplicative inverse of a number is defined as the
number whose product with the original number equals to one under the modulus
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n. We describe the general Euclid’s Algorithm used for finding inverses as follows.
We start with two natural numbers r1 and r2, and they can be represented as:

r1 = u1 ∗ x + v1 ∗ y (1)

r2 = u2 ∗ x + v1 ∗ y (2)

u1, u2, v1, v2, x, and y are integers. First, if r1 < r2, then we subtract
equation 1 from equation 2; otherwise, we subtract 2 from 1. Second, we use
the resulting equation and one of the previous equations that has the smaller r

as the new equations 1 and 2. We repeat these two steps until r1 or r2 equals
to zero. This scenario will happen because if a natural number continuously
decreases it will become zero. Another fact is the original r1 and r2 have the
same greatest common divisor as the final r1 and r2. Because one of the final
r1 and r2 is zero, the other must be the greatest common divisor. This is the
rationale that ensures Euclid’s Algorithm can find the greatest common divisor
of any r1 and r2. Then, how do we use it to find multiplicative inverses? Well,
we use a special case of the original rationale. If r1 and r2 are relatively prime,
their greatest common divisor will be one. One of the final equations will be of
the form 1 = u ∗ x + v ∗ y. If we mod both sides of the equation with y, it will
become 1%y = (u ∗ x)%y, so we find u is the multiplicative inverse of x modulo
y. Now suppose we want to find the multiplicative inverse of x modulo y, and x

and y are relatively prime. In order to use Euclid’s Algorithm, we need a way to
construct the equations 1 and 2. We simply assign the values 1, 0, 0, 1, x and y

to variables u1, u2, v1, v2, r1 and r2. So, the equations become:

x = 1 ∗ x + 0 ∗ y (3)

y = 0 ∗ x + 1 ∗ y (4)

In the equations 3 and 4, x and y are used as natural numbers at the left-hand
side (due to the assignment to r1 and r2) but integers at the right-hand side.
To meet both requirements, they should be natural numbers, because natural
numbers can be used as integers not otherwise. This is one difference between 1,
2 and 3, 4. We will also show this difference in the general and specialized speci-
fications of Euclid’s Algorithm. It should be noted that x has the multiplicative
inverse under the modulus y only if they are relatively prime.

2.1 Specification

We divide the specification into two parts. The general specification is based
on equations 1 and 2, and it is mainly used for reasoning about the greatest
common divisor. The specialized specification is based on equations 3 and 4,
and it is used for reasoning about the multiplicative inverse.
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General Euclid’s Algorithm. We specify the general Euclid’s Algorithm as
two functions, one is the simple subtraction between the equations 1 and 2,
and another is the iteration of the first function. This separation makes the
specification more clear, and verification easier because the verification of the
two functions can focus on different aspects of the algorithm.

val dec_def =

Define

‘dec (r1:num, r2:num, u1:int, u2:int, v1:int, v2:int) =

if r1 < r2

then (r1, r2 - r1, u1, u2 - u1, v1, v2 - v1)

else (r1 - r2, r2, u1 - u2, u2, v1 - v2, v2)‘;

val (inv_def,inv_ind) =

Defn.tprove

(Hol_defn

"inv"

‘inv (r1, r2, u1, u2, v1, v2) =

if ((FST (r1, r2, u1, u2, v1, v2) = 1) \/

(FST (SND (r1, r2, u1, u2, v1, v2)) = 1) \/

(FST (r1, r2, u1, u2, v1, v2) = 0) \/

(FST (SND (r1, r2, u1, u2, v1, v2)) = 0))

then (r1, r2, u1, u2, v1, v2)

else inv (dec (r1, r2, u1, u2, v1, v2))‘,

WF_REL_TAC ‘measure (\(a,b,c,d,e,f). a+b)‘ THEN

RW_TAC arith_ss [dec_def]);

val P_def = Define

‘P ((r1:num, r2:num, u1:int, u2:int, v1:int, v2:int), x:int, y:int) =

(((int_of_num r1) = u1*x + v1*y) /\ ((int_of_num r2) = u2*x + v2*y))‘;

The two functions, dec and inv, only define the operations on u1, u2, v1, v2,
r1 and r2, but they cannot specify the relations among them. Thus, we need the
predicate P to show that the equations 1 and 2 exists among these variables. It
should be noted that the induction function dec stops when r1 or r2 equals to
zero or one, but for equations 1 and 2, the induction should stop only when r1 or
r2 equals to zero. The reason for this change is that our ultimate goal is to find
the multiplicative inverse, not the greatest common divisor. As discussed in the
beginning of this section, for searching the multiplicative inverse, it is enough to
stop when r1 or r2 equals to one. We still need to use r1 or r2 equals to zero as
another stopping condition, because the algorithm doesn’t ensure that r1 or r2

will become one for any given x and y. Our use of FST and SND on the list (r1,
r2, u1, u2, v1, v2) seems unnecessary, but it helps HOL’s symbolic expansion in
the verification when the input of inv is not a tuple, but a function that returns
a tuple.

Specialized Euclid’s Algorithm The specialized algorithm is based on the
equations 3 and 4, but it has one change. It uses a specific value 65537 for the
variable y, because we want to verify multiplicative inverses for this modulus
only. We choose this special modulus, because it is a prime. Since any nonzero
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natural number that is less than a prime is relatively prime to this prime, we
can ensure that all natural numbers from 1 to 65536 have multiplicative inverses
modulo 65537. Multiplicative inverses of other numbers or under other modulus
can be verified with the similar approach as the one we will give, provided
numbers and modulus are relatively prime.

val ir1_def = Define ‘(ir1 x) = FST (inv (x, 65537, 1, 0, 0, 1))‘;

val ir2_def = Define ‘(ir2 x) =

FST (SND (inv (x, 65537, 1, 0, 0, 1)))‘;

val iu1_def = Define ‘(iu1 x) =

FST (SND (SND (inv (x, 65537, 1, 0, 0, 1))))‘;

val iu2_def = Define ‘(iu2 x) =

FST (SND (SND (SND (inv (x, 65537, 1, 0, 0, 1)))))‘;

The specialized algorithm is defined on top of the general algorithm, because
it calls the function inv. The definition only extracts the final values of u1, u2,
r1 and r2, because only they are useful in the verification of inverses.

2.2 Verification

The verification has three parts. In the first part, we create lemmas from the-
orems in several standard theories. These lemmas help the verification of the
algorithm, but their definitions are very general, so we don’t group them to-
gether with proofs that are specific to the algorithm. In the second part, we
prove theorems of the general algorithm. In the third part, we specialize some
theorem in the second part and extend them to show more attributes of the
specialized algorithm.

Extension to Standard Theories First, we extend the mod operation in the
Integer Theory. i16 Lemma3 shows that (a + b ∗ c)%c = a%c. It is used to prove
the equivalence of r = u ∗ x + v ∗ y and r%y = (u ∗ x)%y when y is not zero.
Then, we extend the theory divides and gcd. minv Lemma1, minv Lemma2,
and minv Lemma3 show that the greatest common divisor of any number from
1 to 65536 and 65537 is 1. gcd Lemma1 and gcd Lemma2 are used to prove the
greatest common divisor of r1 and r2 is always the same no matter how inv and
dec functions change them.

i16_Lemma3:

‘!a:int b:int c:int. ~(c = 0) ==> (((a + b * c) % c) = (a % c))‘

minv_Lemma1:

‘!a b. b < a ==> ~(0 < b) \/ ~divides a b‘

minv_Lemma2:

‘!x:num. ((0 < x) /\ (x < 65537)) ==> ~(divides 65537 x)‘

minv_Lemma3:

‘!x:num. ((0 < x) /\ (x < 65537)) ==> ((gcd x 65537) = 1)‘

gcd_Lemma1:

‘!a b. b <= a ==> (gcd (a-b) b = gcd a b)‘

gcd_Lemma2:

‘!a b. a <= b ==> (gcd a (b-a) = gcd a b)‘
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General Algorithm Verification The theorems in this part prove the follow-
ing facts:

1. decP Theorem and invP Theorem show that if (r1, r2, u1, u2, v1, v2), x and
y satisfy the equations 1 and 2, they still satisfy these equations after their
values have been changed by the functions dec and inv.

2. i16 Lemma4 and i16 Lemma7 prove that if (r1, r2, u1, u2, v1, v2), x and y
satisfy the equations 1 and 2 and y is not zero then r1%y = (u1 ∗ x)%y and
r2%y = (u2 ∗ x)%y even after (r1, r2, u1, u2, v1, v2) are changed by the
function inv.

3. i16 Lemma5 shows that the inv function changes r1 or r2 to 1 or 0.
4. minv Lemma4 and minv Lemma6 prove that the r1 and r2 keep the same

greatest common divisor even after they have been changed by dec and inv

functions.

With the above facts 2 and 3, we can draw the conclusion that (u1∗x)%y = 1
or (u2 ∗ x)%y = 1 or (u1 ∗ x)%y = 0 or (u2 ∗ x)%y = 0, which is very close
to the proof of the multiplicative inverse that we want. But we don’t want to
draw this conclusion here, because our ultimate goal to prove the correctness of
multiplicative inverses produced by the specialized algorithm, and thus we delay
this conclusion until the next subsection. The fact 1 and 4 will also be used by
the next subsection.

decP_Theorem:

‘!r1 r2 u1 u2 v1 v2 x y. (P ((r1, r2, u1, u2, v1, v2), x, y))

==> (P (dec (r1, r2, u1, u2, v1, v2), x, y))‘

invP_Theorem:

‘!r1 r2 u1 u2 v1 v2 x y. (P ((r1, r2, u1, u2, v1, v2), x, y))

==> (P (inv (r1, r2, u1, u2, v1, v2), x, y))‘

i16_Lemma4:

‘!r1 r2 u1 u2 v1 v2 x y. (P ((r1, r2, u1, u2, v1, v2), $& x, y)

/\ ~(y = 0)) ==>

(((int_of_num (FST (r1, r2, u1, u2, v1, v2))) % y =

(FST (SND (SND (r1, r2, u1, u2, v1, v2))) * $& x) % y) /\

((int_of_num (FST (SND (r1, r2, u1, u2, v1, v2)))) % y =

(FST (SND (SND (SND (r1, r2, u1, u2, v1, v2)))) * $& x) % y))‘

i16_Lemma7:

‘!r1 r2 u1 u2 v1 v2 x y. (P ((r1, r2, u1, u2, v1, v2), $& x, y)

/\ ~(y = 0)) ==>

(((int_of_num (FST (inv(r1, r2, u1, u2, v1, v2)))) % y =

(FST (SND (SND (inv (r1, r2, u1, u2, v1, v2)))) * $& x) % y) /\

((int_of_num (FST (SND (inv (r1, r2, u1, u2, v1, v2))))) % y =

(FST (SND (SND (SND (inv (r1, r2, u1, u2, v1, v2))))) * $& x) % y))‘

i16_Lemma5:

‘!r1 r2 u1 u2 v1 v2.

(FST (inv (r1,r2,u1,u2,v1,v2)) = 1) \/

(FST (inv (r1,r2,u1,u2,v1,v2)) = 0) \/

(FST (SND (inv (r1,r2,u1,u2,v1,v2))) = 1) \/

(FST (SND (inv (r1,r2,u1,u2,v1,v2))) = 0)‘
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minv_Lemma4:

‘!r1:num r2:num u1:int u2:int v1:int v2:int. gcd r1 r2 =

gcd (FST(dec(r1, r2, u1, u2, v1, v2)))

(FST(SND(dec(r1, r2, u1, u2,v1, v2))))‘

minv_Lemma6:

‘!r1:num r2:num u1:int u2:int v1:int v2:int. gcd r1 r2 =

gcd (FST(inv(r1, r2, u1, u2, v1, v2)))

(FST(SND(inv(r1, r2, u1, u2,v1, v2))))‘

Specialized Algorithm Verification The theorems in this part prove the
following facts:

1. i16 Lemma1 shows that the parameters that specialize the algorithm satisfy
the equation 1 and 2 (They turn 1 and 2 into 3 and 4). i16 Lemma2 proves
that even after these parameters are changed by the function inv they still
satisfy these equations. This is a special case of the fact 1 proved in the
previous subsection.

2. i16 Lemma8 shows that after r1, r2, u1 and u2 are changed by the func-
tion inv they still satisfy r1%65537 = (u1 ∗ x)%65537 and r2%65537 =
(u2 ∗ x)%65537. This is a special case of the fact 2 proved in the previous
subsection.

3. i16 Lemma6 proves that the inv function changes r1 or r2 to 1 or 0. This is
a special case of the fact 3 proved in the previous subsection.

4. With the above facts 2 and 3, we draw the conclusion that (u1∗x)%65537 = 1
or (u2∗x)%65537 = 1 or (u1∗x)%65537 = 0 or (u2∗x)%65537 = 0 after r1,
r2, u1 and u2 are changed by the function inv. It is proved in i16 Lemma9.
i16 Lemma10 just exchanges the positions of u1 (or u2) and x in i16 Lemma9.
It provides some convenience to the later verification of multiplicative inverse
related attributes, because u1 or u2 is the inverse found by the algorithm
and the inverse is usually multiplied after the original number.

5. Based on the fact 4 proved in the previous subsection, we conclude that after
r1 and r2 are changed by the function inv their greatest common divisor still
equals to the greatest common divisor of the initial r1 and r2 that equal to
x and 65537.

6. From section 2.2.1 we know that the greatest common divisor of any number
x from 1 to 65536 and 65537 is 1, so based on the fact 5 above we can conclude
that, for these x values, after r1 and r2 are changed by the function inv their
greatest common divisor is 1. From here we can further conclude that r1 or
r2 equals to 1, because the fact 3 above says the inv function changes r1 or
r2 to 1 or 0. This is proved in minv Lemma8.

7. For any number x from 1 to 65536, the above fact 6 says the inv function
changes r1 or r2 to 1. If we reapply the fact 2, we will have (u1∗x)%65537 = 1
or (u2 ∗ x)%65537 = 1. This means that if r1 is changed to 1 then u1 is
the multiplicative inverse of x modulo 65537; otherwise u2 is the inverse.
Therefore, we have proved that the specialized Euclid’s Algorithm can find
the multiplicative inverse of any number from 1 to 65536!
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The first four facts show that u1 or u2 looks like the multiplicative inverse
of x modulo 65537, but there is one difference. Their production with x modulo
65537 doesn’t always equal to 1, and it could equal to 0, as shown in the fact
4. To make one of them the real inverse, we need to eliminate the possibility
in which their production equals to 0. It turns out that we can eliminate this
possibility only for x ranging from 1 to 65536, as we demonstrated in the last
three facts.

i16_Lemma1:

‘!x. P((x, 65537, 1, 0, 0, 1), (int_of_num x), (int_of_num 65537))‘

i16_Lemma2:

‘!x. P(inv(x, 65537, 1, 0, 0, 1), (int_of_num x), 65537)‘

i16_Lemma6:

‘!x. ((ir1 x) = 1) \/ ((ir1 x) = 0) \/ ((ir2 x) = 1) \/ ((ir2 x) = 0)‘

i16_Lemma8:

‘!x. ((int_of_num (ir1 x)) % 65537 =

((iu1 x) * (int_of_num x)) % 65537 ) /\

((int_of_num (ir2 x)) % 65537 = ((iu2 x) * (int_of_num x)) % 65537 )‘

i16_Lemma9:

‘!x. (((iu1 x) * (int_of_num x)) % 65537 = 0) \/

(((iu1 x) * (int_of_num x)) % 65537 = 1) \/

(((iu2 x) * (int_of_num x)) % 65537 = 0) \/

(((iu2 x) * (int_of_num x)) % 65537 = 1) ‘

i16_Lemma10:

‘!x. (((int_of_num x) * (iu1 x)) % 65537 = 0) \/

(((int_of_num x) * (iu1 x)) % 65537 = 1) \/

(((int_of_num x) * (iu2 x)) % 65537 = 0) \/

(((int_of_num x) * (iu2 x)) % 65537 = 1)‘

minv_Lemma7:

‘!x. gcd (ir1 x) (ir2 x) = gcd x 65537‘

minv_Lemma8:

‘!x. ((0 < x) /\ (x < 65537)) ==> (((ir1 x) = 1) \/ ((ir2 x) = 1))‘

minv_Lemma9:

‘!x. ((0 < x) /\ (x < 65537)) ==>

(((int_of_num x) * (iu1 x)) % 65537 = 1) \/

(((int_of_num x) * (iu2 x)) % 65537 = 1)‘

3 Euclid’s Algorithm in Computer Computation

The specialized Euclid’s Algorithm has been adapted to find multiplicative in-
verses using computers. In this section, we will verify that this adapted version
is still correct. The adapted version works with 16-bit words and uses them as
unsigned numbers. It makes three changes to the specialized Euclid’s Algorithm.
First, to ensure the inverse is not negative it returns the inverse modulo 65537
as the inverse. Second, it treats 0 as 65536 to make sure that any 16-bit word
value has the inverse and to be able to use the specialized algorithm. Finally, it
converts 16-bit values to another type of values to calculate inverses and then
converts inverses back to 16-bit values, and it also make these type conversions
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for multiplication. This change is made because 65537 cannot be represented as
a 16-bit word, so another type that can represent 65537 must be used in the
inverse calculation and multiplication. We will use integer for this purpose. In
the following, we verify the adapted version in two steps. In the first step, we
verify the first two changes. And in the second step we verify the third change.

3.1 New Inverse Definition And Encoding

Specification As mentioned at the beginning of the section, the multiplicative
inverse is redefined as the original inverse modulo 65537. This change is speci-
fied by piu1 def, piu2 def, and minv def. encode def and decode def specify the
second change.

val piu1_def = Define ‘piu1 x = (iu1 x) % 65537‘;

val piu2_def = Define ‘piu2 x = (iu2 x) % 65537‘;

val minv_def =

Define ‘minv x =

if ((int_of_num x) * (piu1 x)) % 65537 = 1

then piu1 x

else if ((int_of_num x) * (piu2 x)) % 65537 = 1

then piu2 x

else 0‘;

val encode_def = Define ‘encode x:num = if x = 0n then 65536n else x‘;

val decode_def = Define ‘decode x:num = if x = 65536n then 0n else x‘;

Verification The first change is proved by the first two facts below. The algo-
rithm can treat 0 as 65536, because the input 16-bit values to the algorithm are
from 0 to 65535 and the output values from the algorithm are from 1 to 65536
and thus there are no 65536 in the input and no 0 in the output. This encoding
is the second change. It is proved by the facts from 3 to 6.

1. mod Lemma1 and mod Lemma2 extend the integer theory for the mod op-
eration. They are used to prove that after u1 and u2 are taken mod of 65537
(becoming pu1 and pu2) one of them is still the inverse of x. This is proved
in minv Lemma10, which is a restatement of minv Lemma9 using the new
u1 and u2 (i.e. pu1 and pu2).

2. The minv is defined to choose the inverse from pu1 and pu2, and thus its
return value is the real inverse. minv Theorem proves that it satisfies the
definition of multiplicative inverse.

3. piu Lemma1, piu Lemma2, minv Corollary1, minv Corollary2 and minv Co
rollary3 prove that the output of the algorithm is from 1 to 65536.

4. encode Lemma1 and encode Lemma3 show that the input 16-bit values are
from 0 to 65535 and they can be encoded into 1 to 65536.

5. encode Lemma2 proves that the encoding works with the inverse algorithm.
6. decode Lemma1, decode Lemma2 and decode Lemma3 show that encoding

and decoding revert each other. This fact is useful to prove the correctness
of inverses in the modular multiplication in the next subsection.
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mod_Lemma1:

‘!a c. (~(c=0) /\ (a % c = 0)) ==> (~a % c = 0)‘

mod_Lemma2:

‘!a b c. ~(c=0) ==> ((a * b % c) % c = (a * b) % c)‘

minv_Lemma10:

‘!x. ((0 < x) /\ (x < 65537)) ==>

(((int_of_num x) * (piu1 x)) % 65537 = 1) \/

(((int_of_num x) * (piu2 x)) % 65537 = 1)‘

minv_Theorem:

‘!x. ((0 < x) /\ (x < 65537)) ==>

(((int_of_num x) * (minv x)) % 65537 = 1)‘

piu_Lemma1:

‘!x. (0 <= piu1 x) /\ (piu1 x < 65537)‘

piu_Lemma2:

‘!x. (0 <= piu2 x) /\ (piu2 x < 65537)‘

minv_Corollary1:

‘!x. ((0 < x) /\ (x < 65537)) ==>

((0 <= (minv x)) /\ ((minv x) < 65537))‘

minv_Corollary2:

‘!x. ((0 < x) /\ (x < 65537)) ==> ~((minv x) = 0)‘

minv_Corollary3:

‘!x. ((0 < x) /\ (x < 65537)) ==> ((0 < (minv x)) /\

((minv x) < 65537))‘

encode_Lemma1:

‘!x. (x < 65536) ==> ((0 < (encode x)) /\ ((encode x) < 65537))‘

encode_Lemma2:

‘!x. (x < 65536) ==>

(((int_of_num (encode x)) * (minv (encode x))) % 65537 = 1)‘

encode_Lemma3:

‘!w. ((0 < (encode (w2n w))) /\ ((encode (w2n w)) < 65537))‘

decode_Lemma1:

‘!x. ((0 < x) /\ (x < 65537)) ==> ((decode x) < 65536)‘

decode_Lemma2:

‘!x. ((0 < x) /\ (x < 65537)) ==> ((encode (decode x)) = x)‘

decode_Lemma3:

‘!x. (x < 65536) ==> ((decode (encode x)) = x)‘

3.2 Working With 16-bit Words

Specification winv is defined to get the inverse of the word16 type for a given
word16 value. This function first converts the input word16 value into a natural
number, encodes it, finds its inverse, and then decodes the inverse and converts
it back to word16. wmul defines the modular multiplication. It converts and
encodes two word16 values to integers, performs the modular multiplication,
and converts and decodes the product back into word16. MOD EQ0 is a spe-
cialized theorem from MOD P in arithmetic theory. It states “!p q.0 < q ==>

((pMODq = 0) =?k.p = k ∗ q)”. It is used in proving the range of the modular
multiplicative product is from 1 to 65536 in the next subsection.
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val winv_def = Define ‘winv (w:word16) =

n2w (decode (Num (minv (encode (w2n w)))))‘;

val wmul_def = Define ‘wmul x y =

n2w (decode (Num (((int_of_num (encode (w2n x))) *

(int_of_num (encode (w2n y)))) % 65537)))‘;

val _ = set_fixity "wmul" (Infixr 350);

val MOD_EQ0 =

(SIMP_RULE arith_ss [] (BETA_RULE (Q.SPEC ‘\x. x=0‘ MOD_P)));

Verification The theorems in this part prove the following facts:

1. Num Lemma1 infers the less relation between two natural numbers from the
less relation between the corresponding positive integers. It is an extension
to the integer theory, and used in the proof of type conversions.

2. wmul Lemma1 and wmul Lemma2 help wmul Theorem to prove the correct-
ness of word16 multiplicative inverse (winv) under the modular multiplica-
tion (wmul).

3. wmul ASSOC shows the modular multiplication (wmul) is associative. It
needs the proof of wmul Lemma4, which proves the product of the modular
multiplication won’t equal to zero. Because the multiplication takes the mod-
ulus 65537, we can conclude the multiplicative product is from 1 to 65536.
This fact helps prove the associative property.

4. wmul Mul1 proves any word16 value multiplies one equals to itself. This is a
property of the modular multiplication we defined, so we need prove it here.

With wmul Theorem, we have proved the adapted algorithm is correct! How-
ever, most applications that use multiplicative inverses also require the multi-
plication has the associative property and returns the multiplicand when it is
multiplied with one. Therefore, we went extra miles to prove our modular mul-
tiplication has these two properties.

Num_Lemma1:

‘!x y. ((0 <= x) /\ (0 <= y) /\ (x < y)) ==> ((Num x) < (Num y))‘

wmul_Lemma1:

‘!w. (((int_of_num (encode (w2n w))) *

(minv (encode (w2n w)))) % 65537 = 1)‘

wmul_Lemma2:

‘!x. ((0 < x) /\ (x < 65537)) ==>

(int_of_num (encode (w2n (n2w (decode (Num x))))) = x)‘

wmul_Theorem:

‘!w. w wmul winv(w) = 1w‘

wmul_Lemma4:

‘!x:word16 y:word16.

~((($& (encode (w2n x)) * $& (encode (w2n y))) % 65537) = 0)‘

wmul_ASSOC:

‘!x:word16 y:word16 z:word16. (x wmul y) wmul z = x wmul (y wmul z)‘

wmul_Mul1:

‘!w:word16. w wmul 1w = w‘
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4 Conclusions

We have formulated the specification and proof of Euclid’s Algorithm that is used
for the calculation of multiplicative inverses. We did this in a gradual manner.
First, we specify the general Euclid’s Algorithm and verify some of its prop-
erties, then we define the specialized Euclid’s Algorithm and prove its related
properties, and finally we show the functional correctness of the algorithm as it
is used in computer computation.

The proof we have provided is an important corner stone in verifying the
correctness of IDEA. We also expect it to be helpful in adding multiplicative
inverse related evidence in the proof of RSA. Moreover, we hope it can illuminate
the verification of other algorithms that use multiplicative inverses.

In the use of HOL-4 system for this work, we feel that theorems in some
basic theories are not rich enough. We have to prove quite some theorems that
are very general. Sections 2.2, 3.1 and 3.2 all have some extended theorems from
standard theories.
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A Formal Verification of IDEA with HOL

IDEA (International Data Encryption Algorithm) is a secret-key cryptographic
algorithm. It was published in 1991 by Xuejia Lai and James L. Massey of ETH
Zurich. It’s original name is IPES (Improved Proposed Encryption Standard).
This algorithm encrypts a 64-bit block of plain text into a 64-bit block of cypher
text using a 128-bit key. It has been studied by cryptoanalysts since its publica-
tion. So far, no weakness has been identified in publications. In this section, we
will first specify IDEA in HOL-4 [Kananaskis 3], and then provide the proof of
its correctness. The proof of Euclid’s Algorithm given above lays the foundation
of this proof.

The state of IDEA is initialized with the input data, and then transformed
by primitive operations in several rounds. Although IDEA operates on 64-bit
blocks, its primitive operations work with 16-bit quantities, and thus the state
is represented with four 16-bit words. The HOL library has a data type word16
that suits our need, so we define the state as a 4-tuple of word16. The algorithm
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uses a 128-bit quatity as the input key, so we define it as an 8-tuple of word16.
The input key is then expanded into 52 16-bit quantities. Each of these quan-
tities are defined as word16 values. We use a list to hold these values, and thus
needn’t provide the container type. One special characteristic of IDEA is that
it distinguishes between even rounds and odd rounds and different rounds use
different types of keys. The even rounds use the key type that has four 16-bit
values, while the odd rounds uses the type that has only two 16-bit values. As
a result, we have the different EvenKey and OddKey types. We also need two
container types to hold all even-round keys and all odd-round keys. These types
provide convenience to the round definitions such that each round can rotate
keys within them and always use the first key inside. EvenKeySched holds 8
EvenKeys, and OddKeySched holds 9 OddKeys.

In DES [1976], each Sbox maps a 6-bit value into a 4-bit value. In IDEA,
however, each primitive operations maps two 16-bit values into one 16-bit value.
IDEA has three primitive operations. They are bitwise exclusive or (xor), mod-
ulo addition, and modulo multiplication. The modulo addition is the addition
under the modulus of 216. It is the same as the addition provided in HOL
word16Theory. The exclusive or is also the same as the one in this theory. Thus,
we can use the two existent operations directly. On the other hand, the modulo
multiplication used in IDEA is different from the one provided in word16Theory.
It is under the modulus of 216 + 1, but the one in word16Theory is under the
modulus of 216. Therefore, we have to define our own modulo multiplication.
This is done in the proof of Euclids’ Algorithm (wmul def).

IDEA expands one 128-bit input key into fifty-two 16-bit encryption keys.
The expansion is done by chopping off eight 16-bit keys from the input key seven
times, and each time starts with a different offset that is a multiple of 25. For
the first time, we start from the beginning (bit 0) and chop the input key until
the end. For the second time, we offset the starting position by 25 bit, i.e. start
the chopping from the bit 25, and wrapping around to the beginning when the
end is reached. Next time, we offset another 25 bit from the previous starting
position, and so on. Because we only need fifty-two encryption keys, we chop off
four 16-bit keys for the last time. Because there is no “chopping” operation in
HOL, we use the shifting and bitwise xor operations to simulate it. For example,
the new KEY1 is the combination of the last 7 bits of the old KEY2 and the first
9 bits of the old KEY3, due to the effect of rotating the input key to the right
for 25 bits from its previous state. To get this result, we left shift the old KEY2
for 9 bits, right shift the old KEY3 for 7 bits, and xor them together. Please
note that we use the logical right shift (>>>) instead of the arithmetic right
shift (>>) in order to make sure that the vacated high bits are filled with zeroes.
After the key expansion, the expanded keys are grouped into the key schedule
for the odd rounds and the key schedule for the even rounds. This is done with
two operations. The first operation uses the first four keys in every six keys in
the list to make odd-round keys. Because there are totally fifty-two keys in the
list, four keys will be left after extracting keys in the group of six, these four keys
are used to make the last odd-round key. The second operation uses the last two
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keys in every six keys in the list to make even-round keys. The decryption keys
are made by inversing the encryption keys and (or) reversing the order in which
these key are used. For the odd rounds, the encryption keys are inverted and
then used in the reverse order. The first and fourth keys of every odd-round key
are the multiplicative inverses, and the second and third keys are the additive
inverse. These definitions are shown in the InverseKey def and InverseKeys def
below. For the even rounds, the decryption keys are made by simply reversing
the order of the encryption keys as shown in ReverseKeys def.

IDEA has seventeen rounds. Among them, nine rounds are odd rounds and
eight are even rounds (The round number starts from one). Even rounds and odd
rounds are different because they are designed differently and they use different
types of keys. The odd round is relatively simple. There are four 16-bit values
in the odd-round key, and there are also four 16-bit values in the input block,
so every pair of these 16-bit values are added or multiplied together to produce
one 16-bit value in the output block. This is defined by OddRound def. The
even round is more complicated. It uses two mangler functions to generate two
intermediate values, Yout and Zout, from the input key and block values. Then,
these two intermediate values are xor’ed with the input block values to produce
the output block values. In the original protocol specification [1991] there is
only one mangler function, which generates Yout and Zout in two steps. We
define two steps in the original mangler function as two separate functions to
simplify the verification. First, the transformation of the first two 16-bit values
in the input block is only affected by the first mangler step, so separating the
two steps is good for verifying this transformation. Second, the second mangler
step takes the output of the first step as one of its inputs, so separating the
two steps modularized operations, i.e. we can prove certain properties of the
first step and use these properties in the verification of the second step. The
seventeen rounds are executed by calling the Round function with 17 as the round
number value (the input parameter n). The Round function then recursively calls
itself with decreased round number n, new key from the rotated key schedule,
and transformed state. It calls EvenRound or OddRound function based on the
round number. The rotation of the key schedule is done by RotateOddKeys and
RotateEvenKeys.

One amazing feature of IDEA is that it can perform either encryption or
decryption without requiring any change to the primitive operations, rounds or
the orders in which they are carried out. In othere words, for the software im-
plementation of IDEA, we can use the same code to perform either operation.
Which operation is performed depends on which key is used. If we use the en-
cryption key, the code will encrypt the input block; if we use the decryption key,
it will decrypt the input block. In our specification, IdeaFwd is defined to run
seventeen rounds without distinguishing encryption from decryption. Then, the
encryption is defined by passing the expanded encryption key to IdeaFwd, and
the decryption is defined by passing the decryption key to it.

The specification is given below:

val _ = type_abbrev("Block", Type‘:word16 # word16 # word16 # word16‘);



218 Junxing Zhang and Konrad Slind

val _ = type_abbrev("InputKey", Type‘:word16 # word16 # word16 #

word16 # word16 # word16 # word16 # word16‘);

val _ = type_abbrev("EvenKey", Type‘:word16 # word16‘);

val _ = type_abbrev("OddKey", Type‘:word16 # word16 # word16 # word16‘);

val _ = type_abbrev ("EvenKeySched", Type‘:EvenKey#EvenKey#EvenKey#

EvenKey#EvenKey#EvenKey#EvenKey#EvenKey‘);

val _ = type_abbrev ("OddKeySched", Type‘:OddKey#OddKey#OddKey#OddKey#

OddKey#OddKey#OddKey#OddKey#OddKey‘);

val (MakeEnKeys_def,MakeEnKeys_ind) =

Defn.tprove (Hol_defn "MakeEnKeys"

‘MakeEnKeys n (K8::K7::K6::K5::K4::K3::K2::K1::rst) =

let (NK1, NK2, NK3, NK4, NK5, NK6, NK7, NK8) =

((K2<<9) # (K3>>>7), (K3<<9) # (K4>>>7),

((K4<<9) # (K5>>>7), (K5<<9) # (K6>>>7),

(K6<<9) # (K7>>>7), (K7<<9) # (K8>>>7),

(K8<<9) # (K1>>>7), (K1<<9) # (K2>>>7))

in if n = 0 then

(NK4::NK3::NK2::NK1::K8::K7::K6::K5::K4::K3::K2::K1::rst)

else

MakeEnKeys (n-1) (NK8::NK7::NK6::NK5::NK4::NK3::NK2::NK1

::K8::K7::K6::K5::K4::K3::K2::K1::rst)‘,

WF_REL_TAC ‘measure (FST)‘);

val MakeKeys_def = Define

‘MakeKeys ((K1, K2, K3, K4, K5, K6, K7, K8):InputKey) =

MakeEnKeys 6 [K8;K7;K6;K5;K4;K3;K2;K1]‘;

val ListToOddKeys_def =

Define ‘(ListToOddKeys [] oddkeys = oddkeys) /\

(ListToOddKeys ((k1::k2::k3::k4::k5::k6::t): word16 list)

((ok1,ok2,ok3,ok4,ok5,ok6,ok7,ok8,ok9): OddKeySched) =

ListToOddKeys t ((k1,k2,k3,k4),ok1,ok2,ok3,ok4,ok5,ok6,ok7,ok8)) /\

(ListToOddKeys ((k1::k2::k3::k4::t): word16 list)

((ok1,ok2,ok3,ok4,ok5,ok6,ok7,ok8,ok9): OddKeySched) =

ListToOddKeys t ((k1,k2,k3,k4),ok1,ok2,ok3,ok4,ok5,ok6,ok7,ok8))‘;

val ListToEvenKeys_def =

Define ‘(ListToEvenKeys [] evenkeys = evenkeys) /\

(ListToEvenKeys ((k1::k2::k3::k4::k5::k6::t): word16 list)

((ek1,ek2,ek3,ek4,ek5,ek6,ek7,ek8): EvenKeySched) =

ListToEvenKeys t ((k5,k6),ek1,ek2,ek3,ek4,ek5,ek6,ek7))‘;

val InverseKey_def = Define ‘InverseKey (k1,k2,k3,k4) =

((winv k1), ~k3, ~k2, (winv k4)) : OddKey‘;

val InverseKeys_def =

Define ‘InverseKeys (ok1,ok2,ok3,ok4,ok5,ok6,ok7,ok8,ok9) =

(InverseKey ok9,InverseKey ok8,InverseKey ok7,InverseKey ok6,

InverseKey ok5,InverseKey ok4,InverseKey ok3,InverseKey ok2,

InverseKey ok1) : OddKeySched‘;

val ReverseKeys_def =

Define ‘ReverseKeys (ek1,ek2,ek3,ek4,ek5,ek6,ek7,ek8) =

(ek8,ek7,ek6,ek5,ek4,ek3,ek2,ek1) : EvenKeySched‘;

val OddRound_def = Define

‘OddRound ((Ka, Kb, Kc, Kd):OddKey) ((Xa, Xb, Xc, Xd):Block) =
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(Xa wmul Ka, Xc + Kc, Xb + Kb,Xd wmul Kd ):Block‘;

val Mangler1_def = Define ‘Mangler1 ((Yin:word16), (Zin:word16),

(Ke:word16), (Kf:word16)) = ((Ke * Yin) + Zin) * Kf‘;

val Mangler2_def = Define ‘Mangler2 ((Yin:word16), (Ke:word16),

(Yout:word16)) = (Ke * Yin) + Yout‘;

val EvenRound_def = Define

‘EvenRound ((Ke, Kf):EvenKey) ((Xa, Xb, Xc, Xd):Block) =

let Yout = Mangler1 ((Xa # Xb), (Xc # Xd), Ke, Kf) in

let Zout = Mangler2 ((Xa # Xb), Ke, Yout) in

(Xa # Yout, Xb # Yout, Xc # Zout, Xd # Zout):Block‘;

val RotateOddKeys_def =

Define ‘RotateOddKeys (k1,k2,k3,k4,k5,k6,k7,k8,k9) =

(k2,k3,k4,k5,k6,k7,k8,k9,k1) : OddKeySched‘;

val RotateEvenKeys_def =

Define ‘RotateEvenKeys (k1,k2,k3,k4,k5,k6,k7,k8) =

(k2,k3,k4,k5,k6,k7,k8,k1) : EvenKeySched‘;

val (Round_def,Round_ind) =

Defn.tprove (Hol_defn "Round"

‘Round n (oddkeys: OddKeySched) (evenkeys: EvenKeySched)

(state:Block) = if (n = 0) then state else

if (EVEN n) then Round (n-1) oddkeys

(RotateEvenKeys evenkeys) (EvenRound (FST evenkeys) state)

else Round (n-1) (RotateOddKeys oddkeys) evenkeys

(OddRound (FST oddkeys) state)‘,

WF_REL_TAC ‘measure (FST)‘);

val IdeaFwd_def = Define ‘IdeaFwd oddkeys evenkeys =

Round 17 oddkeys evenkeys‘;

val IDEA_def = Define ‘IDEA key =

let oddkeys = ListToOddKeys (MakeKeys key) ZeroOddKeys in

let evenkeys = ListToEvenKeys (MakeKeys key) ZeroEvenKeys in

(IdeaFwd oddkeys evenkeys, IdeaFwd (InverseKeys oddkeys)

(ReverseKeys evenkeys))‘;

We defined many types that are aggregations of 16-bit values, so we need the-
orems to dissolve them into word16. The theorem FORALL ODDKEYSCHED
is proved to dissolve the odd key schedule into odd keys, and the theorem
FORALL ODDKEY is proved to further dissove an odd key into four word16
values. We also defined the similar theorems for the even key schedule, even key
and block.

For odd rounds, the most important proof is to show that the addition or
multiplication with inverses cancells the effect of the previous addition or mul-
tiplication with original values. For the addition, this proof is given by Odd-
Round Lemma1. For the multiplication, it is given by wmul Theorem, wmul AS
SOC and wmul Mul1 in the proof of Euclids’ Algorithm. As defined in the sec-
tion 3.2, wmul Theorem proves that the mulitiplication of one 16-bit value with
its inverse equals to one; wmul ASSOC proves that the modulo muliplication
(wmul) has the associative attribute, and thus the 16-bit value can be multi-
plied with its inverse before it is multiplied with the input value; wmul Mul1
proves that the input value doesn’t change when multiplied with one.
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For even rounds, we need work with the mangler functions first. Mangler1 Le
mma1 and Mangler2 Lemma1 prove that if two 16-bit values are multiplied with
the same mangler function individually and then multiplied together the result
equals to multiplying them directly. Mangler1 Lemma2 and Mangler2 Lemma2
show that the effect of multiplying a mangler function can be cancelled by mul-
tiplying the same function again. With the assistance of these lemmas, we can
prove that the effect of a even round operation can be inversed by simply run
the same operation with the same key again. What a magic!

Since we have shown that both even rounds and odd rounds are inversable, it
is easy to prove the whole seventeen rounds are inversable as shown in IDEA LE
MMA below. To prove the correctness of the encryption and decryption, we
simply apply the definition of the ecryption and decryption to the goal, and
then apply the lemma we just proved. In the verification of IDEA we used many
techniques learned from the proof of AES [2002].

FORALL_ODDKEYSCHED:

‘(!x:OddKeySched. Q x) = !k1 k2 k3 k4 k5 k6 k7 k8 k9.

Q(k1,k2,k3,k4,k5,k6,k7,k8,k9)‘

FORALL_ODDKEY:

‘(!x:OddKey. Q x) = !kw1 kw2 kw3 kw4. Q(kw1,kw2,kw3,kw4)‘

OddRound_Lemma1:

‘!w1:word16 w2:word16. w1 + w2 + ~w2 = w1‘

OddRound_Inversion:

‘!s:Block k:OddKey. OddRound (InverseKey k) (OddRound k s) = s‘

Mangler1_Lemma1:

‘!w1 w2 w3 w4 w5 w6. w5 # Mangler1 (w1, w2, w3, w4) #

(w6 # Mangler1 (w1, w2, w3, w4)) = w5 # w6‘,

Mangler2_Lemma1:

‘!w1 w2 w3 w4 w5. w4 # Mangler2 (w1, w2, w3) #

(w5 # Mangler2 (w1, w2, w3)) = w4 # w5‘

Mangler1_Lemma2:

‘!w1 w2 w3 w4 w5. w5 # Mangler1 (w1, w2, w3, w4) #

Mangler1 (w1, w2, w3, w4) = w5‘

Mangler2_Lemma2:

‘!w1 w2 w3 w4. w4 # Mangler2 (w1, w2, w3) #

Mangler2 (w1, w2, w3) = w4‘

EvenRound_Inversion:

‘!s:Block k:EvenKey. EvenRound k (EvenRound k s) = s‘

IDEA_LEMMA:

‘!plaintext:Block oddkeys:OddKeySched evenkeys:EvenKeySched.

IdeaFwd (InverseKeys oddkeys) (ReverseKeys evenkeys)

(IdeaFwd oddkeys evenkeys plaintext) = plaintext‘

IDEA_CORRECT:

‘!key plaintext. ((encrypt,decrypt) = IDEA key) ==>

(decrypt (encrypt plaintext) = plaintext)‘
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Abstract. This paper describes an extension of Paulson’s inductive pro-
tocol verification approach. With this extension, liveness properties can
be verified. The extension requires no change of the system model un-
derlying the original inductive approach. Therefore, all the advantages,
which makes Paulson’s approach successful in safety reasoning are kept,
while liveness reasoning capability is added. The liveness approach it-
self is reasonably convenient, as shown by its application to a non-trivial
benchmark example – the liveness of elevator control system[18]. This
work constitutes the first step towards developing inductive protocol
verification into a general approach for the verification of concurrent
systems.
Keywords: Inductive Protocol Verification, Temporal Reasoning, Is-
abelle

1 Introduction

Paulson’s inductive approach for protocol verification[13] has been used to ver-
ify fairly complex security protocols [15,14]. The success gives incentives to ex-
tend this approach to a general approach for concurrent system verification. To
achieve this goal, a method for the verification of liveness properties is needed.
This paper proposes such a method.

The original inductive approach is only used to prove safety properties, i.e.
properties about finite execution traces. In this paper, liveness properties are
expressed as predicates on infinite execution traces. Infinite traces are repre-
sented as functions of the type: nat ⇒ ′a, where the ′a is the type of events.
To make sure what is proved is indeed liveness properties, a shallow embedding
of LTL (Linear Temporal Logic)[8] is given. According to Manna and Puneli[8],
temporal properties can be classified into three classes: safety properties, re-
sponse properties and reactivity properties. The proof of safety properties is
well solved by the inductive approach. In this paper, proof rules for liveness
properties (both response and reactivity) are derived. The proof rules are used
to reduce the proof of liveness properties to the proof of safety properties, so that

? This research was funded by National Natural Science Foundation of China, under
grant 60373068 ‘Machine-assisted correctness proof of complex programs’
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the original inductive approach’s advantages in the proof of safety properties can
be fully exploited. The application of this approach to the liveness verification
of an elevator control system is presented in a companion draft paper[18]. Our
experiences convinced us of the practicability of this approach.

The proof rules are derived based on a new notion of fairness, parametric fairness,
which is a adaption of the α-fairness [17,2,6] to the setting of HOL. Parametric
fairness is properly stronger than standard fairness notions such as weak fairness
and strong fairness. We will explain why the use of parametric fairness can
deliver more liveness results through simpler proofs.

There have been a lot of works on the embedding of temporal logics and I/O
automata in theorem proving systems, [4,11,10,12,5,1] are just a few of them.
It is not obvious how these works can work together with Paulson’s inductive
approach. This paper seems to be the first effort towards this direction.

The paper is organized as the following: section 2 presents the system model
used in inductive approach, as well as a set of syntactic sugars to make later
developments prettier; section 3 gives a shallow embedding of LTL; section 4
introduces and justifies parametric fairness; section 5 explains the liveness proof
rules; section 6 discusses related works; section 7 concludes.

2 Concurrent systems

In inductive approach, system states are identified with finite executions , which
are represented as lists of events. Events in a state list are arranged in reverse
order of happening. The decision of which event to happen next is made accord-
ing to the current system state. Definitions based on this view is given in Figure
1.

Since the set of events depends on specific systems, the type of events is defined as
a polymorphic type ′a and the type of system states is defined as ′a list. System
states are written as τ . In this paper, finite trace, event trace, finite execution
and system state are used interchangeably. Infinite executions (or infinite traces)
are written as σ, which is of type nat ⇒ ′a. Therefore, the event happened at
step i is σ i and it is usually abbreviated as σi. The first i events of an infinite
execution σ can be packed into a list in reverse order to form a finite execution
and such a packing is written as [[σ]]i.

The type of concurrent systems is ( ′a list × ′a) set and concurrent systems are
written as cs. The expression (τ , e) ∈ cs means that the event e is legitimate to
happen under state τ , according to cs. The notation (τ , e) ∈ cs is abbreviated as
τ [cs> e. The set of valid finite executions of a concurrent system cs is written
as vt cs, which is inductively defined. The expression τ ∈ vt cs means that the
finite execution τ is a valid finite execution of cs. The expression τ ∈ vt cs is
usually abbreviated as cs ` τ . The operator ` is overloaded, so that the fact
that σ is a valid infinite execution of cs can be written as cs ` σ. It can be seen
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constdefs i-th :: (nat ⇒ ′a) ⇒ nat ⇒ ′a (-- [64, 64] 1000)
σi ≡ σ i

consts prefix :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list ([[-]]- [64, 64] 1000)
primrec [[σ]]0 = []

[[σ]](Suc i) = σi # [[σ]]i

constdefs may-happen ::
′a list ⇒ ( ′a list × ′a) set ⇒ ′a ⇒ bool (- [-> - [64, 64, 64] 50)
τ [cs> e ≡ (τ , e) ∈ cs

consts vt :: ( ′a list × ′a) set ⇒ ′a list set
inductive vt cs
intros

vt-nil [intro] : [] ∈ vt cs
vt-cons [intro] : [[τ ∈ vt cs; τ [cs> e]] =⇒ (e # τ) ∈ vt cs

consts derivable :: ′a ⇒ ′b ⇒ bool (- ` - [64, 64] 50)

defs (overloaded)
fnt-valid-def: cs ` τ ≡ τ ∈ vt cs
inf-valid-def: cs ` σ ≡ ∀ i. [[σ]]i [cs> σi

Fig. 1. The definitions of concurrent system

from lemma ve-prefix : (cs ` σ) = (∀ i . cs ` [[σ]]i) that an infinite execution σ is
valid under cs iff. all of its prefixes are valid.

3 Embedding LTL

LTL (Linear Temporal Logic) is widely used for the specification and verification
of concurrent systems. A shallow embedding of LTL is given in Figure 2 to make
sure that the proof rules derived in this work are indeed for liveness properties.

LTL formulae are written as ϕ, ψ, κ etc. The type of LTL formulae is defined as
′a tlf. The expression (σ, i) |= ϕ means that LTL formula ϕ is valid at moment
i of the infinite execution σ. The operator |= is overloaded, so that σ |= ϕ can
be defined as the abbreviation of (σ, 0 ) |= ϕ.

The always operator �, eventual operator ♦, next operator �, until operator B

are defined literally.

An operator 〈-〉 is defined to lift a predicate on finite executions up to a LTL
formula. The temporal operator ↪→ is the lift of logical implication −→ up to LTL
level. For an event e, the term (|e|) is a predicate on finite executions stating that
the last happened event is e. Therefore, the expression 〈(|e|)〉 is an LTL formula
saying that event e happens at the current moment.
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types ′a tlf = (nat ⇒ ′a) ⇒ nat ⇒ bool

consts valid-under :: ′a ⇒ ′b ⇒ bool (- |= - [64, 64] 50)
defs (overloaded) pr |= ϕ ≡ let (σ, i) = pr in ϕ σ i
defs (overloaded) σ |= ϕ ≡ (σ::nat ⇒ ′a, (0::nat)) |= ϕ

�ϕ ≡ λ σ i. ∀ j. i ≤ j −→ (σ, j) |= ϕ

♦ϕ ≡ λ σ i. ∃ j. i ≤ j ∧ (σ, j) |= ϕ

�ϕ ≡ λ σ i. (σ, (Suc i)) |= ϕ

ϕ B ψ ≡ λ σ i. ∃ j. i ≤ j ∧ (σ, j) |= ψ ∧ (∀ k. i ≤ k ∧ k < j −→ (σ, k) |= ϕ)

constdefs lift-pred :: ( ′a list ⇒ bool) ⇒ ′a tlf (〈-〉 [65] 65)
〈P〉 ≡ λ σ i. P [[σ]]i

constdefs lift-imply :: ′a tlf ⇒ ′a tlf ⇒ ′a tlf (-↪→- [65, 65] 65)
ϕ ↪→ ψ ≡ λ σ i. ϕ σ i −→ ψ σ i

constdefs last-is :: ′a ⇒ ′a list ⇒ bool
last-is e τ ≡ (case τ of Nil ⇒ False | (e1#t) ⇒ e1 = e)

syntax -is-last :: ′a ⇒ ( ′a list ⇒ bool) ((|-|) [64] 1000)
translations (|e|) 
 last-is e

Fig. 2. A shallow embedding of LTL

4 The notion of parametric fairness

In this section, parametric fairness is introduced as a new notion of fairness
which suits the setting of HOL. Parametric fairness PF is defined in Figure 3
at the end of a spectrum of fairness notions, among which are the standard ones
such as weak fairness WF and strong fairness SF. The spectrum is arranged
to manifest structural resemblances and differences, so that parametric fairness
PF can be understood as a natural development from standard fairness notions,
with the help of some motivating examples.

Fairness notions are expressed as ?F cs σ, where cs is a concurrent system and
σ is an infinite execution. Each ?F is obtained from a corresponding pre-version
?Fα with extra parameters hidden by universal quantification. For example, WF
is obtained from WFα by quantifying on e, SF from SFα by quantifying on e,
USF from USFα by quantifying on P and e, etc. Among the ?F αs, EFα has
the most general form:
σ |= �♦(λ σ i . P [[σ]]i ∧ [[σ]]i [cs> E [[σ]]i) −→ σ |= �♦(λ σ i . P [[σ]]i ∧ σi = E [[σ]]i)

where [[σ]]i is the current system state. In liveness proofs, progress is made by the
happening of helpful events under corresponding help states. The P in EF α is
used to specify helpful states, and E used to specify helpful events. The meaning
of WFα is that if helpful E -events are eligible to happen under helpful P -states
infinitely often, then E -events should happen infinitely often under P -states.
Other ?Fαs can be seen as a specialization of EF α. For example, USFα is
obtained from EFα by replacing E with λ τ. e, where e is the parameter. SF α

is obtained by replacing P with λ τ. True, E with λ τ. e. Therefore, SF α has
no specific requirement on helpful states. The consequence of this is that helpful
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constdefs WFα :: ( ′a list × ′a) set ⇒ ′a ⇒ (nat ⇒ ′a) ⇒ bool
WFα cs e σ ≡ σ |= �(λ σ i. [[σ]]i [cs> e) −→ σ |= �♦(λ σ i. σi = e)

WF cs σ ≡ ∀ e. WFα cs e σ

SFα cs e σ ≡ σ |= �♦(λ σ i. [[σ]]i [cs> e) −→ σ |= �♦(λ σ i. σi = e)

SF cs σ ≡ ∀ e. SFα cs e σ

USFα :: ( ′a list × ′a) set ⇒ ( ′a list ⇒ bool) ⇒ ′a ⇒ (nat ⇒ ′a) ⇒ bool
USFα cs P e σ ≡
σ |= �♦(λ σ i. P [[σ]]i ∧ [[σ]]i [cs> e) −→ σ |= �♦(λ σ i. P [[σ]]i ∧ σi = e)

USF cs σ ≡ ∀ P e. USFα cs P e σ

EFα :: ( ′a list × ′a) set ⇒ ( ′a list ⇒ bool) ⇒ ( ′a list ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ bool
EFα cs P E σ ≡
σ |= �♦(λ σ i. P [[σ]]i ∧ [[σ]]i [cs> E [[σ]]i) −→ σ |= �♦(λ σ i. P [[σ]]i ∧ σi = E [[σ]]i)

EF cs σ ≡ ∀ P E. EFα cs P E σ

types ′a pe = ( ′a list ⇒ bool) × ( ′a list ⇒ ′a)

constdefs PF :: ( ′a list × ′a) set ⇒ ′a pe list ⇒ (nat ⇒ ′a) ⇒ bool
PF cs pel σ ≡ list-all (λ (P, E). EFα cs P E σ) pel

Fig. 3. Different notions of fairness

events do not have to happen under helpful state, even if they are enabled
infinitely often. WFα is obtained from SFα by replacing the first �♦ with �.
Based on such an observation, a strength hierarchy for the fairness notions in
Figure 3 is established by the following lemmas.

lemma ef-usf : EF cs σ =⇒ USF cs σ
lemma usf-sf : USF cs σ =⇒ SF cs σ
lemma sf-wf : SF cs σ =⇒ WF cs σ

lemma ef-pf : EF cs σ =⇒ PF cs pel σ

We propose using fairness notion stronger than the standard WF and SF, be-
cause both standard notions fail to specify that helpful events must happen
under helpful states. Liveness reasoning under WF or SF fairness assumptions
rely on the underlying concurrent system to ensure that helpful events can only
happen under the corresponding helpful states. However, this is not always the
case. The following two examples show that stronger fairness notion is needed
for the desired liveness properties to be derived. The state transition diagram
and formal definition of the first example system cs1 are shown in Figure 4 and
Figure 5.

In Figure 5, transitions e0, . . . , e4 are treated as constructors of type Evt. Con-
current system cs1 itself has type (Evt list × Evt) set and is defined inductively.
In this paper, we identify state number with function value. A state is called
‘state s’, if the value of function F on that state equals s.
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3

e2 e1

e4e3

2 1 0e0

Fig. 4. The diagram of cs1

datatype Evt = e0 | e1 | e2 | e3 | e4

consts F :: Evt list ⇒ nat
recdef F measure size

F [] = 3
F (e0 # τ) = (if (F τ = 1) then 0 else F τ)
F (e1 # τ) = (if (F τ = 2) then 1 else F τ)
F (e2 # τ) = (if (F τ = 3) then 2 else F τ)
F (e3 # τ) = (if (F τ = 2) then 3 else F τ)
F (e4 # τ) = (if (F τ = 1) then 2 else F τ)

consts cs1 :: (Evt list × Evt) set
inductive cs1 intros

r0 : F τ = 1 =⇒ (τ , e0) ∈ cs1
r1 : F τ = 2 =⇒ (τ , e1) ∈ cs1
r2 : F τ = 3 =⇒ (τ , e2) ∈ cs1
r3 : F τ = 2 =⇒ (τ , e3) ∈ cs1
r4 : F τ = 1 =⇒ (τ , e4) ∈ cs1

Fig. 5. The definition of cs1

Suppose we want to prove the liveness property that once the system gets into
state 2, it will eventually get into system 0. The property is formalized as:

[[cs1 ` σ; ?F cs σ]] =⇒ σ |= �(〈λ τ. F τ = 2 〉 ↪→ ♦ 〈λ τ. F τ = 0 〉) (1)

where, the ?F is some fairness notion. The ?F can not be WF. Consider the
execution (e2. e1. e4. e3)

ω as a counter example. The execution satisfies WF
cs1, but the conclusion of (1) does not hold on this execution, because F τ = 2
happens for infinitely many times while F τ = 0 never happens.

The ?F should at least be SF for (1) to be true. The execution (e2. e1. e4. e3)
ω

is no longer a counter example, because it does not satisfy SF cs1. Consider the
instance SFα cs1 e0 of SF cs1, event e0 is enabled for infinitely many times in
execution (e2. e1. e4. e3)

ω , but never happens. The validity of statement (1)
can be established by the following argument:

Argument 1 Assume the conclusion of (1), σ |= �(〈λ τ. F τ = 2 〉 ↪→ ♦ 〈λ τ. F τ

= 0 〉), does not hold, we are going to derive absurdity. If this is the case, the execution
σ must get into states 1, 2 and 3 for infinitely many times after reaching state 2
and never enters state 0. Therefore, there must be one state s among 1, 2 and 3,
which is entered infinitely. Suppose this s is 3, then event e2 is enabled for infinitely
many times, and according to the premise instance SF α cs1 e2 σ (an instance of the
premise SF cs1 σ in (1)), event e2 must happen for infinitely many times. Since the
happening of e2 can only lead from state 3 to state state 2, it can be derived that state
2 is entered infinitely often. In a similar way, it can be derived that state 1 is entered
infinitely often, because of the happening of event e1. And finally, it can be derived that
state 0 is entered infinitely often because of the happenings of event eo. Absurdity is
derived. The case of s = 2 and s = 1 can be treated similarly.

It is obvious from this argument that the fairness notion SF is instantiated at
helpful events, to make them happen infinitely often. However, because SF does
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not insist that the happenings of helpful event are under help states, in Argument
1, we have to resort to the definition of cs1 to show that helpful events can only
happen under their corresponding helpful states. For some concurrent systems,
such kind of arguments are not possible. As shown by the example system cs2

in Figure 6, where the helpful event e0 can happen under both state 1 and state
2, with only state 1 being the helpful state.

3

e2 e1

e4e0

2 1 0e0

Fig. 6. The diagram of cs2

consts F2 :: Evt list ⇒ nat
recdef F2 measure size

F2 [] = 3
F2 (e0 # τ) = (if (F2 τ = 1) then 0 else

if (F2 τ = 2) then 3 else F2 τ)
F2 (e1 # τ) = (if (F2 τ = 2) then 1 else F2 τ)
F2 (e2 # τ) = (if (F2 τ = 3) then 2 else F2 τ)
F2 (e4 # τ) = (if (F2 τ = 1) then 2 else F2 τ)

consts cs2 :: (Evt list × Evt) set
inductive cs2 intros

r0 : F2 τ = 1 =⇒ (τ , e0) ∈ cs2
r1 : F2 τ = 2 =⇒ (τ , e1) ∈ cs2
r2 : F2 τ = 3 =⇒ (τ , e2) ∈ cs2
r3 : F2 τ = 2 =⇒ (τ , e0) ∈ cs2
r4 : F2 τ = 1 =⇒ (τ , e4) ∈ cs2

Fig. 7. The definition of cs2

The formal definition of cs2 is given in Figure 7. The counterpart of statement
(1) in the case of cs2 is:

[[cs2 ` σ; ?F cs2 σ]] =⇒ σ |= �(〈λ τ. F 2 τ = 2 〉 ↪→ ♦ 〈λ τ. F 2 τ = 0 〉) (2)

The effort to repeat Argument 1 based on SF assumption failed. Consider the
counter example (e2. e1. e4. e0)

ω , which satisfies SF cs2. However, execution
(e2. e1. e4. e0)

ω never enters state 0, therefore, the conclusion of (2) does not
hold. The deficiency of SF allows (e2. e1. e4. e0)

ω to avoid the happening
of the helpful event e0 under the corresponding helpful state 1. The fairness
notion USF is proposed to solve this problem. The definition of USF is a literal
translation of the α-fairness, or extreme fairness, as defined in [17,2,16]1. The
validity argument for (2) under USF assumption is as the following:

1 In [17,2,16], α-fairness and extreme fairness are different. This difference disappear
in this paper because in the definition of concurrent system, we identify current
system state with its history.
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Argument 2 The structure of this argument is quite similar to Argument 1. Suppose
s = 3, so the helpful event e2 is enabled infinitely often under helpful state 3. From this
and the premise instance USFα cs (λτ. F 2 τ = 3 ) e2, it can be derived that helpful
event e2 must happen infinitely often under helpful state 3. Therefore state 2 is entered
infinitely often. From this and the premise instance USF α cs (λτ. F 2 τ = 2 ) e1, it can
be derived that state 1 is entered infinitely often. From this and the premise instance
USFα cs (λτ. F 2 τ = 1 ) e0, it can be derived that state 0 is entered infinitely often.
Absurdity is derived. The case of s = 2 and s = 1 can be treated similarly.

In addition to more derivable liveness properties, another benefit of using stronger
fairness notions is that they usually produces simpler liveness proofs. For exam-
ple, statement (1) can be proved under either of the assumptions SF and USF.
However, the proof under USF assumption is simpler, because it is not necessary
to derive that helpful event eo only happens under helpful state state 1, e1 only
under state 2, etc. For complex systems, this could be a great overhead.
Although USF is already strong enough to prove statement (2), we prefer to use
the slightly stronger fairness notions EF, because EF provides more flexibility in
liveness proof. The use of fairness constraints in liveness arguments is to instance
them at helpful events and helpful states, as shown in Argument 1 and Argument
2. The function E in EFα has the same usage as the e in SFα and USFα, it
represents a strategy to decide the helpful event based on the current system
state [[σ]]i. The use of E instead of e is more flexible, because it deals with helpful
events collectively.

However, the universal quantification on P and E in the definition of EF is
too harsh. Since the P and E in EF ’s definition are higher-order, therefore, the
universal quantification over them makes it possible for EF to be instantiated to
any higher-order constructions. The proof in Figure 8 shows that most infinite
execution σ do not satisfy EF, if the P and E in EF are instantiated to the ?P
and ?E, which are constructed from σ itself.

Parametric fairness PF is proposed to solve the problem of EF. Instead of quan-
tifying the P and E in EFα over uncountable domains, PF quantifies P and
E over pel, an explicitly given list of (P , E )-pairs, each of which specifies a
collection of helpful events together its corresponding helpful states. This is not
really a restriction in practice, because the use of EF in liveness proof always
is to instantiate the P and E in EFα to specific helpful events and states, the
definition of PF is merely to make such instantiations explicit at the level of
fairness constraint.
The definition of PF indeed solves the problem of EF. Although one can still put
the (?P , ?E ) constructed from σ into pel to exclude σ from the set of PF -fair
executions, he can do this only for finitely many infinite executions, because the
length of pel is finite. Since there are uncountably many infinite executions, the
ones excluded by any specific PF -constraints are at most countably many, most
infinite executions are still PF -fair.
One burden of using PF is that we have to put in advance the helpful (P , E )-
pairs likely to be used in liveness proof into pel, so that the EF α constraints on
these (P , E )-pairs can be extracted from the PF premises when needed.
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lemma infeasiblity-of-EF:

—

8

>

<

>

:

σi is execution σ’s choice of the event to happen at step i. The following
assumption says that along the way σ executes, it is infinitely often the case
that there are more than one event eligible to happen next. Such kind of
executions are very common, as in the cases of cs1 and cs2 above.

assumes aev: σ |= �♦(λ σ i. {e. [[σ]]i [cs> e ∧ e 6= σi} 6= {})
— We are going to show that σ does not satisfy EF.
shows ¬ EF cs σ

proof

assume ef: EF cs σ — Assume σ satisfies EF.
show False — We are going to show absurdity.
proof −

— In this proof, the following ?S, ?P and ?E are intended to be applied to [[σ]]i.
let ?S = λ τ. {e. [[σ]]|τ | [cs> e ∧ e 6= σ|τ |}

—



Since |τ | 7→ |[[σ]]i| 7→ i, ?S [[σ]]i becomes {e. [[σ]]i [cs> e ∧ e 6= σi},
which is the set of events eligible to happen at step i, not including σi.

let ?P = λ τ. ?S τ 6= {} — ?P [[σ]]i requires that ?S [[σ]]i is not empty.
let ?E = λ τ. (ε e. e ∈ ?S τ) — ?E [[σ]]i chooses one element from ?S [[σ]]i.
from ef have h: — Expand ef into rule format, and bind the result to h.

V

P E. σ |= �♦(λ σ i. P [[σ]]i ∧ [[σ]]i [cs> E [[σ]]i) =⇒
σ |= �♦(λ σ i. P [[σ]]i ∧ σi = E [[σ]]i) by (simp add:EF-def EFα-def)

—



An instance of h’s premise, with P instantiated to ?P, E instantiated to ?E,
can be proved as follows:

have σ |= �♦(λ σ i. ?P [[σ]]i ∧ [[σ]]i [cs> ?E [[σ]]i)

—
n

This is drived from assumption aev by resorting to the meaning of ?P and
?E.

— By applying h to this instance, it can be derived that:
from h [OF this] have (σ |= �♦(λ σ i. ?P [[σ]]i ∧ σi = ?E [[σ]]i)) by simp
— However, we can derive the opposite of this:
moreover have ¬ (σ |= �♦(λ σ i. ?P [[σ]]i ∧ σi = ?E [[σ]]i))

—



It is proved by resorting to the very meaning of ?P and ?E. Notice that
?E is designed deliberately to avoid returing σi, when applied to [[σ]]i.

ultimately show ?thesis by simp — Absurdity is finally derived.
qed

qed

Fig. 8. The infeasibility of EF
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Another burden of using PF is that each liveness proof may need a different pel
list. Suppose a list of liveness properties LP i σ (i ∈ {1 ..n}) have been proved
under their corresponding PF assumptions PF cs pel i σ (i ∈ {1 ..n}), obtaining
the following list of lemmas: PF cs pel i σ =⇒ LP i σ (i ∈ {1 ..n}). We have to
combine the results to obtain the conjunction of LP i σ (i ∈ {1 ..n}) in the form:

PF cs (@
i∈{1..n} pel i) σ =⇒ ∧

i ∈ {1..n} LP i σ

through the use of the following lemma:

PF-app-from : PF cs l1 σ ∧ PF cs l2 σ =⇒ PF cs (l1 @ l2 ) σ

In [2], Baier defined a class of fairness notions which subsumes standard fairness
notions WF and SF. Baier uses probabilistic transition system as the underlying
execution model of concurrent systems, where the decision of which event to
happen next is made by coin tossing. It is shown in Theorem 1 of [2] that
the probability of an execution belonging to Baier’s general fairness class is 1.
Baier’s result means that properties derived under this fairness class are true
in probabilistic sense. The PF also falls into Baier’s fairness class, because the
proof of Theorem 1 in [2] only relies on the fact that the set of liveness labels
L is countable, and the pel in PF can be regarded as such a L. However, a
formal treatment of this argument requires the formalization of measurable set
and probability theory in Isabelle, which is certainly beyond the scope of this
paper. If we believe that the execution of concurrent system is controlled by coin
tossing, then PF is a better choice than WF and SF, because it renders more
results and simpler proofs.

5 Liveness rules

In this section, proof rules for both response and reactivity properties are derived.
According to Manna[8], response properties, written in our embedding of LTL,
are of the form σ |= �(〈P〉 ↪→ ♦〈Q〉), where 〈P〉 and 〈Q〉 are past formulae
(in [8]’s term) obtained by lifting predicates on finite traces. The conclusions
of statements (1) and (2) are of this form. The form of reactivity properties
are of the form σ |= (�♦〈P〉) ↪→ (�♦〈Q〉), the informal meaning of which is:
if execution σ gets into 〈P〉-states infinitely often, σ will get into 〈Q〉-states
infinitely often as well.
The proof rule for response property is the theorem resp-rule:

[[RESP cs F E N P Q ; cs ` σ; PF cs {|F , E , N |} σ]] =⇒ σ |= �〈P〉↪→♦〈Q〉

and the proof rule for reactivity property is the theorem react-rule:

[[REACT cs F E N P Q ; cs ` σ; PF cs {|F , E , N |} σ]] =⇒ σ |= �♦〈P〉↪→�♦〈Q〉

The symbols used in these two theorems are given in Figure 9.
Let’s explain the resp-rule first. The proof of resp-rule is essentially a generaliza-
tion of Argument 2 to cope with concurrent systems with more liberally shaped
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{|F, E, 0|} = []
{|F, E, (Suc n)|} = (λ τ. F τ = Suc n, E) # {|F, E, n|}

syntax -drop :: ′a list ⇒ nat ⇒ ′a list (d-e- [64, 64] 1000)
translations dlen 
 drop n l

constdefs exp-nq ::
( ′a list ⇒ bool) ⇒ ( ′a list ⇒ bool) ⇒ ( ′a list ⇒ bool) (d-7−→¬-∗e [65, 65] 1000)
dP 7−→¬Q ∗e ≡ λ τ. (∃ i ≤ |τ |. P dτei ∧ (∀ k. 0 < k ∧ k ≤ i −→ ¬ Q dτek))

locale RESP =
fixes cs :: ( ′a list × ′a) set
and F :: ′a list ⇒ nat
and E :: ′a list ⇒ ′a
and N :: nat
and P :: ′a list ⇒ bool
and Q :: ′a list ⇒ bool
assumes mid: [[cs ` τ ; dP 7−→¬Q ∗e τ ; ¬ Q τ ]] =⇒ 0 < F τ ∧ F τ < N
and fd: [[cs ` τ ; 0 < F τ ]] =⇒ τ [cs> E τ ∧ F (E τ # τ) < F τ

locale REACT =
fixes cs :: ( ′a list × ′a) set
and F :: ′a list ⇒ nat
and E :: ′a list ⇒ ′a
and N :: nat
and P :: ′a list ⇒ bool
and Q :: ′a list ⇒ bool
assumes init: [[cs ` τ ; P τ ]] =⇒ F τ < N
assumes mid: [[cs ` τ ; F τ < N; ¬ Q τ ]] =⇒ τ [cs> E τ ∧ F (E τ # τ) < F τ

Fig. 9. Primises for response and reactivity rules
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state transition diagrams. In Argument 2, it is first shown that there is a state s
(the state 3 ), which occurs infinitely often. There is an event path leading from
state s into the desired state (the path [e0, e1, e2]), each state along the path
(state 3, 2 and 1 ) is a helpful state, with the outbound event along the path as
the corresponding helpful event (event e2 for state 3, event e1 for state 2, etc.).
Since the fairness assumption (USF α cs (λ τ. F 2 τ =3 ) e2 σ, USFα cs (λ τ.
F 2 τ =2 ) e1 σ, USFα cs (λ τ. F 2 τ =1 ) e0 σ) convers all helpful states and
helpful events along the path, infinite occurrence of state s will naturally leads
to infinite occurrences of the desired state (state 0 ).
In resp-rule, the requirements on the shape of state transition diagrams is ex-
pressed as the locale RESP. The mid assumption of RESP ensures the existence
of the state s and the fd assumption ensures the existence of a path leading
from s to the desired Q-states. The PF cs {|F , E , N |} σ premise of resp-rule
generates premise instances which covers all helpful states and helpful events
along the path from state s to the desired Q-states.
The reason that assumption mid ensures the existence of state s is explained as
follows: The set of all intermediate states after reaching P and before reaching
Q are characterized by the premises dP 7−→¬Q ∗e τ and ¬ Q τ of RESP ’s
assumption mid. The meaning of dP 7−→¬Q ∗e τ is that a P -state has been
reached earlier in τ and from that P -moment till before the head of τ , a Q-
state has never been reached (notice that τ is a list of events arranged in reverse
order of happening). The conclusion of mid requires that the function F has a
upper bound N and larger than zero when applied to intermediate states. If an
execution σ violates resp-rule, it will remain in intermediate states forever, since
assumption mid bounds the value of F, there must be a state s (0 < s ∧ s <
N ) which happens infinitely often.
The reason that assumption fd ensures the existence of a path leading from s
to the desired Q-states is as follows: Since 0< s ∧ s < N, from this, it can be
proved that the premise 0 < F τ of fd holds. The application of fd derives that
the happening of E -event at state s will lead the system into a state with lower
F -value. If this lower F -value is non-zero, then fd rule can be applied again, until
F -value reaches 0, when the execution σ finally reaches the desired Q-states.
The reason that PF cs {|F , E , N |} σ generates premise instances which covers
the path from state s to the desired Q-states can be understood by considering
the case when resp-rule is used to prove statement (2). In this case, the P is
instantiated to (λ τ. F 2 = 2 ) and Q to (λ τ. F 2 = 0 ). The F is instantiated
to F 2, and the the E can be instantiated to the following function E 2:

constdefs E 2 :: Evt list ⇒ Evt
E2 τ ≡ (if (F 2 τ = 3 ) then e2 else

if (F 2 τ = 2 ) then e1 else
if (F 2 τ = 1 ) then e0 else e0)

If N is instantiated to 3, the expression {|F , E , N |} will be instantiated to {|F 2,

E 2, 3 |}, which evaluates to

[(λ τ. F 2 τ =3 , E), (λ τ. F 2 τ =2 , E), (λ τ. F 2 τ =1 , E)]

From this, it can be derived that:
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PF cs2 {|F 2, E 2, 3 |} σ =
USFα cs (λ τ. F 2 τ =3 ) e2 σ ∧
USFα cs (λ τ. F 2 τ =2 ) e1 σ ∧
USFα cs (λ τ. F 2 τ =1 ) e0 σ

The right hand side of the above equation is just the premise instances used in
Argument 2. Generally, if the value of N equals to the longest possible path from
state s to the desired Q-states, PF cs {|F , E , N |} σ will cover the whole path.

Now, let’s explain the rule react-rule. The premise PF cs {|F , E , N |} σ still has
the same meaning as in resp-rule, and the proof of react-rule is quite similar
to the proof of resp-rule. If the infinite occurrence of P -states, the existence of
a state s and a path from state s to the desired Q-states can be derived, the
conclusion of react-rule can be derived. The assumption init of REACT ensures
the existence of state s and the assumption mid ensures the existence of a path
leading from state s to the desired Q-states.

6 Related works

Approaches for verification of concurrent systems can roughly be divided into
theorem proving and model checking. The work in this paper belongs to the
theorem proving category, which can deal with infinite state systems directly.
LTL is widely used in specification and verification of concurrent systems. Proof
systems for LTL usually are based on weak fairness WF or strong fairness SF
assumptions. As shown in this paper, these two fairness notions are not sufficient
to derive the desired property in certain cases. The parametric fairness defined
in this paper is an adaption of the α-fairness[17,2,16] to suit the setting of HOL.
PF is properly stronger than WF and SF, and, according to Baier’s work[2], PF
still has a sensible semantics based on coin tossing. The use of PF can derive
more liveness properties and usually the proofs are simpler than using WF and
SF.
Loops in state transition diagram are great obstacles for the proof of liveness
properties. To the best of our knowledge, the only LTL proof system, which
could tackle the loop problem, is given by Manna and Puneli[8]. The system is
proved to be complete. However, an attempt to use the rule F-RESP to prove
statement (1) reveals a problem. The rule F-RESP is given in Figure 10.
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Fig. 10. The F-RESP rule from [8]
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The δ in F-RESP is a measure function similar to F in resp-rule. The premises F1
and F2 require that the value of δ can never increase, no matter which transition
is made in intermediate states. For concurrent systems with loops, like cs1, we
can not see a simple way to define such a δ. A close look at the completeness proof
in [8], we find that the existence of such a δ depends on validity of the conclusion
p ⇒ ♦q itself. The rule F-RESP is a ‘logical shift’ which reduces the proof of p
⇒ ♦q to the existence of δ, which is equally difficult. For this reason, practical
LTL-based systems [9,3,7] only prove simple response properties using simplified
versions of F-RESP, and none of them can prove statement (1). We haven’t
seen any rule which can prove reactivity properties in these systems neither.
In these practical systems, complex liveness properties are usually proved using
model checking, which is confined to finite state systems. Because the premises
of resp-rule and react-rule are much more liberal than the rules presented in
[8], they are powerful enough to deal with general liveness properties for infinite
state systems with loops.

7 Conclusion

We have extended Paulson’s inductive protocol verification approach to deal
with general liveness properties. Different from model checking, this approach
is applicable to infinite state systems. We justified the use of a new notion of
fairness, parametric fairness, which is stronger than standard ones. The feasibil-
ity of our approach is shown by a companion draft paper[18], which proved the
liveness of an elevator control system.
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