
Proof Pearl: The Termination Analysis of
Terminator

Joe Hurd?

Computing Laboratory
Oxford University

joe.hurd@comlab.ox.ac.uk

Abstract. Terminator is a static analysis tool developed by Microsoft
Research for proving termination of Windows device drivers written in
C. This proof pearl describes a formalization in higher order logic of
the program analysis employed by Terminator, and verifies that if the
analysis succeeds then program termination logically follows.

1 Introduction

Terminator [2] is a static analysis tool developed by Microsoft Research to
prove termination of Windows device drivers written in C. The device drivers
are typically thousands or tens of thousands of lines of code running at the
privilege level of the kernel, and an infinite loop will cause the computer to
freeze.

Terminator works by modifying the program to reduce the termination
problem into a safety property. Given a program location l and a finite set
of well-founded relations R1, . . . , Rn on program states at location l (l-states),
Terminator inserts the statement

already_saved_state := false;

at the beginning of the program, and the statements

if (already_saved_state) {
if ¬(R1 state saved_state ∨ · · · ∨ Rn state saved_state) {

error("possible non-termination");

}
}
else if (*) {

saved_state := state;

already_saved_state := true;

}

just before the program location l. A static analysis tool is run on this modified
program to verify that there is no execution trace leading to the error statement.
In the case of Terminator, this verification step is performed by the SLAM
? Supported by a Junior Research Fellowship at Magdalen College, Oxford.



2

static analysis tool [1], also developed by Microsoft Research. Since the statement
if (*) is interpreted as demonic non-deterministic choice, the error statement
being unreachable guarantees that between the ith and jth time that program
location l is reached, the l-state goes down in at least one of the well-founded
relations R1, . . . , Rn.

If for every program location there exists a set of well-founded relations that
allow this modification and check to succeed, then it is possible to conclude
that the program must always terminate [6]. It is this logical step that is for-
mally verified in the remainder of this paper. Section 2 presents a higher order
logic formalization of programs and termination; Section 3 adds to the model
the information generated by a successful Terminator analysis; and Section 4
formally verifies that it is sufficient to guarantee program termination. Finally
Section 5 extends the model to verify two optimizations that are implemented
in the Terminator tool. The HOL4 theorem prover [3] was used for this proof
pearl, and all the theorems presented have been mechanically checked.1

Although irrelevant for the correctness proof, it is interesting to see how Ter-
minator automatically constructs the well-founded relations R1, . . . , Rn. The
SLAM tool called by Terminator works by Counter-Example Guided Abstrac-
tion and Refinement (CEGAR), and thus in the case that the property is false
provides a concrete execution trace leading to an error statement. Terminator
starts with no relations,2 repeatedly runs SLAM to generate error traces, and
each time adds a well-founded relation that would rule it out. The well-founded
relations are heuristically generated by an external tool called RankFinder [5].
The hope is that eventually enough well-founded relations are chosen that the
error statement can be proven to be unreachable.

2 Formalizing Termination

Programs are formalized in higher order logic as nondeterministic state machines
equipped with a function mapping states to program locations (this captures the
intuition that the program counter is part of the state):

(’state,’location) program ≡
<| states : ’state → bool; location : ’state → ’location;

initial : ’state → bool; transition : ’state → ’state → bool |> .

Note that the ’state and ’location can be any higher order logic types, and in
particular the states set can be infinite.

The set of all program locations is simply the range of the location function:

locations p ≡ image p.location p.states .

1 The proof script can be downloaded from http://www.gilith.com/research/

papers/terminatorScript.sml.
2 Note that for program locations that are executed at most once, SLAM will be able

to prove the error statement is unreachable even when there are no relations.



3

Well-formed programs must be closed w.r.t. their set of states, and their set
of program locations must be finite:3

programs ≡
{ p : (’state,’location) program |

finite (locations p) ∧ p.initial ⊆ p.states ∧
∀s, s′. p.transition s s′ ⇒ s ∈ p.states ∧ s′ ∈ p.states } .

A sufficient condition for a program p being terminating is that the p.transition
relation is well-founded. However, this is too strong, and excludes terminating
programs that have unreachable loops in their transition relation. Instead a no-
tion of program execution traces is introduced:

traces p ≡ { t : ’state lazy list | t0 ∈ p.initial ∧ ∀ti, ti+1 ∈ t. p.transition ti ti+1 } .

The type α lazy list of possibly infinite lists is already defined in the HOL4 the-
orem prover; this work only required some extra constants to support syntactic
constructs such as the above universal quantification over adjacent elements of
the list. Now a program can be defined to terminate if it has no infinite execution
traces:

terminates p ≡ ∀t ∈ traces p. finite t .

3 The Terminator Program Analysis

The previous section presented a simple formalization of programs and defined a
termination predicate on them. This section completes the formalization of the
main verification goal by defining what it means for a Terminator program
analysis to succeed.

At a particular location l of a program p, the result of a successful Termi-
nator analysis (as described in the Introduction) is formalized in higher order
logic as

terminator property at location p l ≡
∃R, n.

(∀k ∈ {0, . . . , n− 1}. well founded (R k)) ∧
∀t ∈ traces p. ∀xi < xj ∈ trace at location p l t.

∃k ∈ {0, . . . , n− 1}. R k xj xi ,

where trace at location p l t filters the execution trace t leaving only the states
corresponding to the location l:

trace at location p l t ≡ filter (λs. p.location s = l) t .

3 The infinite non-terminating program skip; skip; skip; · · · visits each program location
precisely once and thus the Terminator analysis trivially succeeds.



4

The Terminator analysis for a whole program succeeds if it succeeds at
every location:

terminator property p ≡ ∀l ∈ locations p. terminator property at location p l .

4 Verifying Terminator

At this point the formalization is complete, and the correctness statement for
the Terminator analysis can be expressed as

∀p ∈ programs. terminator property p ⇒ terminates p .

How to prove this verification goal? The first step is to fix a program location l,
and prove that no trace can visit l infinitely often.

The proof is easiest to explain by contradiction: suppose a program trace
is filtered to give in an infinite list of l-states x0, x1, x2, . . .. The Terminator
analysis results in well-founded relations R0, . . . , Rn−1 such that for every i < j
there exists 0 ≤ k < n satisfying Rk xj xi.

The proof proceeds by induction on n. If n = 0 then the contradiction is
immediate because there is no well-founded relation available to compare x0

and x1. For n > 0 construct an undirected graph G = (V,E) with vertex set
V = N and edge relation

E i j = i < j ∧Rn−1 xj xi .

The next step is formalize a result of Ramsey Theory [4] that every infinite graph
has an infinite subgraph that is either complete (i.e., every vertex is connected
to every other) or empty (i.e., there are no edges).4 Here is the higher order logic
theorem:

` ∀V, E. infinite V ⇒
∃M ⊆ V. infinite M ∧

((∀i, j ∈ M. i < j ⇒ E i j) ∨ (∀i, j ∈ M. i < j ⇒ ¬E i j)) .

What do the two cases mean for the graph G? If the infinite subgraph G′ =
(M,E) is complete, then the subsequence of vertices in M is an Rn−1 infinite
descending sequence: a contradiction since Rn−1 is a well-founded relation. If
instead G′ is empty, then the relation Rn−1 is never used and the problem
reduces to n − 1 well-founded relations: the contradiction is provided by the
inductive hypothesis. The final theorem is

` ∀p ∈ programs. ∀l ∈ locations p.

terminator property at location p l ⇒
∀t ∈ traces p. finite (trace at location p l t) .

4 Formalizing Ramsey Theory in higher order logic is not novel; perhaps the earliest
example is Harrison’s HOL88 theory in 1994, now ported to HOL Light.



5

The final step of the verification is to deduce that if no program location is
visited infinitely often then there are no infinite program traces:

` ∀p ∈ programs. terminator property p ⇒ terminates p .

Note that this relies on well-formed programs having a finite set of locations.

5 Optimizations

The previous section formally verified the core Terminator program analysis,
but the real tool also implements a number of optimizations to speed up the
termination proof. In this section the verification is extended to include two of
the most significant ones.

The first optimization occurs when there is only one relation that has been
found (so far) at a program location l. Instead of the general program modifi-
cation, Terminator simply modifies the program to compare each l-state with
the previous l-state, by inserting

already_saved_state := false;

at the beginning of the program, and

if (already_saved_state && ¬R state saved_state) {
error("possible non-termination");

}
saved_state := state;

already_saved_state := true;

just before location l. The definition of a successful Terminator program anal-
ysis at location l must therefore be weakened to

terminator property at location p l ≡
(∃R.

well founded R ∧
∀t ∈ traces p. ∀xi, xi+1 ∈ trace at location p l t. R xi+1 xi) ∨

[. . . old definition of terminator property at location p l. . . ] .

The second optimization that Terminator implements is to skip the anal-
ysis for all but a cut set of program locations:

cut sets p ≡
{L | L ⊆ locations p ∧

∀t ∈ traces p. infinite t ⇒ ∃l ∈ L. infinite (trace at location p l t)} .

Intuitively, a set of program locations is a cut set if every infinite trace visits
the cut set infinitely often. This is a semantic property, and in general is hard
to prove.5 In practice, Terminator chooses a cut set to include all locations at
the start of loops and functions that are called (mutually) recursively.
5 Indeed, if the program is terminating, all location sets are cut sets!



6

Taking both these optimizations into account, the result of a successful Ter-
minator program analysis is captured by the following augmented definition:

terminator property p ≡
∃C ∈ cut sets p. ∀l ∈ C. terminator property at location p l .

And the same correctness theorem is still true, requiring only modest changes
to the proofs.

6 Summary

This proof pearl presented a formal verification of the termination analysis of the
Terminator static analysis tool. The correctness result is not obvious (at least
to the author), and the proof is an interesting application of Ramsey Theory.
Naturally, the mechanized proof uses the same concepts as the original published
proof [6], but was made more self-contained to simplify both formalization and
presentation. The HOL4 proof script is 500 lines long (including the Ramsey
Theory lemmas), and took two days to get the formalization right and then
another two days to complete the verification.

The verification of the Terminator optimizations in Section 5 represents
a first step toward a verified practical tool, but that is a long way off. An in-
teresting next step would be a deep embedding of structured programs, so that
the Terminator program modification and cut set generation could be incor-
porated into the verification, as well as optimizations such as ignoring program
traces that leave and come back into the current loop.

Acknowledgements

Byron Cook provided the initial stimulus for this work, and it was greatly im-
proved in discussions with both him and Andreas Podelski. Comments from the
anonymous TPHOLs referees greatly improved the paper.

References

1. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
In Proceedings of the EuroSys 2006 Conference, pages 73–85, April 2006.

2. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond
safety. In Thomas Ball and Robert B. Jones, editors, Proceedings of the 18th In-
ternational Conference on Computer Aided Verification (CAV 2006), volume 4144
of Lecture Notes in Computer Science, pages 415–418, Seattle, WA, USA, August
2006. Springer.

3. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A theorem-
proving environment for higher order logic). Cambridge University Press, 1993.

4. Bruce M. Landman and Aaron Robertson. Ramsey Theory on the Integers. Amer-
ican Mathematical Society, February 2004.



7

5. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of
linear ranking functions. In Bernhard Steffen and Giorgio Levi, editors, Proceedings
of the 5th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2004), volume 2937 of Lecture Notes in Computer Science,
pages 239–251. Springer, January 2004.

6. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In 19th IEEE
Symposium on Logic in Computer Science (LICS 2004), pages 32–41, July 2004.


