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Abstract. We present a probabilistic version of the while loop, in the
context of our mechanised framework for verifying probabilistic pro-
grams. The while loop preserves useful program properties of measurabil-
ity and independence, provided a certain condition is met. This condition
is naturally interpreted as “from every starting state, the while loop will
terminate with probability 1”, and we compare it to other probabilis-
tic termination conditions in the literature. For illustration, we verify
in HOL two example probabilistic algorithms that necessarily rely on
probabilistic termination: an algorithm to sample the Bernoulli(p) dis-
tribution using coin-flips; and the symmetric simple random walk.

1 Introduction

Probabilistic algorithms are used in many areas, from discrete mathematics to
physics. There are many examples of simple probabilistic algorithms that cannot
be matched in performance (or sometimes even complexity) by deterministic
alternatives [12]. It is our goal to specify and verify probabilistic algorithms in
a theorem-prover. Formal verification is particularly attractive for probabilistic
algorithms, because black-box testing is limited to statistical error reports of the
form: “With confidence 90%, the algorithm is broken.” Additionally, even small
probabilistic algorithms can be difficult to implement correctly. A whole new
class of errors becomes possible and one has to be mathematically sophisticated
to avoid them.

In Section 2 we show how probabilistic algorithms can be specified and ver-
ified in the HOL1 theorem prover2 [2], by thinking of them as deterministic
functions having access to an infinite sequence of coin-flips. This approach is
general enough to verify many probabilistic algorithms in HOL (including the
Miller-Rabin primality test [5]), but (in its raw form) it is limited to algorithms
that are guaranteed to terminate.

Example 1. A sampling algorithm simulates a probability distribution ρ by gen-
erating on demand a value x with probability ρ(x). In this spirit, an algorithm

� Supported by EPSRC project GR/R27105/01.
1 As will be seen, higher-order logic is essential for our approach, since many of our

results rely on quantification over predicates and functions.
2 hol98 is available from http://www.cl.cam.ac.uk/Research/HVG/FTP/ .
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to sample the Geometric(1
2 ) distribution will return the natural number n with

probability (1
2 )

n+1. A simple way to implement this is to return the index of the
first coin-flip in the sequence that is ‘heads’. However, this is not guaranteed to
terminate on every possible input sequences of coin-flips, the counter-example
being the ‘all-tails’ sequence.3 However, the algorithm does satisfies probabilis-
tic termination, meaning that the probability that it terminates is 1 (“in all
practical situations it must terminate”).

In fact, there is a large class of probabilistic algorithms that cannot be defined
without using probabilistic termination. In Section 3 we present our approach
to overcoming this limitation: a probabilistic version of the ‘while’ loop that
slots into our HOL framework and supports probabilistic termination. If a cer-
tain probabilistic termination condition is satisfied, then an algorithm defined
in terms of a probabilistic while loop automatically satisfies useful properties
of measurability and independence. In Section 4 we examine the relationship
between our probabilistic termination condition and others in the literature.

In Sections 5 and 6 we use probabilistic termination to define two algorithms
in HOL. The first uses coin-flips to sample from the Bernoulli(p) distribution,
where p can be any real number between 0 and 1. The second is the symmetric
simple random walk, a classic example from probability theory that requires a
subtle termination argument to even define.

The contributions of this paper are as follows:

– an overview of our formal framework for verifying probabilistic programs in
the HOL theorem prover;

– the formal definition of a probabilistic while loop, preserving compositional
properties of measurability and independence;

– a comparison of our naturally occurring probabilistic termination condition
with others in the literature;

– the verification in HOL of two probabilistic algorithms requiring probabilistic
termination: an algorithm to sample the Bernoulli(p) distribution using coin-
flips; and the symmetric simple random walk.

2 Verifying Probabilistic Algorithms in HOL

In this section we provide an overview of our framework for verifying probabilistic
algorithms in HOL. Although novel this is not the main focus of this paper, and
so the section is necessarily brief. For the complete explanation please refer to
my Ph.D. thesis [6].

2.1 Modelling Probabilistic Programs in HOL

Probabilistic algorithms can be modelled in HOL by thinking of them as deter-
ministic algorithms with access to an infinite sequence of coin-flips. The infinite
3 For a literary example of a coin that always lands on the same side, see the beginning

of the Tom Stoppard play: Rosencrantz & Guildenstern Are Dead.
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sequence of coin flips is modelled by an element of the type B
∞ of infinite boolean

sequences, and serves as an ‘oracle’. The oracle provides an inexhaustible source
of values ‘heads’ and ‘tails’, encoded by � and ⊥. Every time a coin is flipped,
the random result of the coin flip is popped and consumed from the oracle. A
probabilistic algorithm takes, besides the usual parameters, another oracle pa-
rameter from which it may pop the random values it needs. In addition to its
result, it returns the rest of the oracle for consumption by someone else.

A simple example of a probabilistic algorithm is a random variable. Consider
the random variable V ranging over values of type α, which we represent in HOL
by the function

v : B
∞ → α× B

∞

Since random variables do not take any parameters, the only parameter of v is
the oracle: an element of the type B

∞ of infinite boolean sequences. It returns
the value of the random variable (an element of type α) and the rest of the oracle
(another element of B

∞).

Example 2. If shd and stl are the sequence equivalents of the list operations
‘head’ and ‘tail’, then the function

� bit = λs. (if shd s then 1 else 0, stl s) (1)

models a Bernoulli(1
2 ) random variable that returns 1 with probability 1

2 , and 0
with probability 1

2 . For example,

bit (�,⊥,�,⊥, . . .) = (1, (⊥,�,⊥, . . .))
shows the result of applying bit to one particular infinite boolean sequence.

It is possible to combine random variables by ‘passing around’ the sequence
of coin-flips.

Example 3. We define a bin n function that combines several applications of bit
to calculate the number of ‘heads’ in the first n flips.

� bin 0 s = (0, s) ∧ (2)

∀n. bin (suc n) s = let (x, s′)← bin n s in
(
let (y, s′′)← bit s′ in (x + y, s′′)

)

The HOL function bin n models a Binomial(n, 1
2 ) random variable.

Concentrating on an infinite sequence of coin-flips as the only source of ran-
domness for our programs is a boon to formalisation in HOL, since only one
probability space needs to be formalised in the logic. It also has a practical
significance, since we can extract our HOL implementations of probabilistic pro-
grams to ML, and execute them on a sequence of high quality random bits from
the operating system. These random bits are derived from system noise, and are
so designed that a sequence of them should have the same probability distribu-
tion as a sequence of coin-flips. An example of this extraction process is given
in Section 6 for the random walk, and a more detailed examination of the issues
can be found in a previous case study of the Miller-Rabin primality test [5].
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2.2 Monadic Operator Notation

The above representation is also used in Haskell4 and other pure functional
languages to write probabilistic programs [13,9]. In fact, these programs live
in the more general state-transforming monad: in this case the state that is
transformed is the sequence of coin-flips. The following monadic operators can be
used to reduce notational clutter when combining state-transforming programs.

Definition 1. The state-transformer monadic operators unit and bind.

� ∀ a, s. unit a s = (a, s)
� ∀ f, g, s. bind f g s = let (x, s′)← f(s) in g x s′

The unit operator is used to lift values to the monad, and bind is the monadic
analogue of function application.

Example 4. Our bin n function can now be defined more concisely:

� bin 0 = unit 0 ∧ (3)
∀n. bin (suc n) = bind (bin n) (λx. bind bit (λ y. unit (x+ y)))

Observe that the sequence of coin-flips is never referred to directly, instead the
unit and bind operators pass it around behind the scenes.

2.3 Formalised Probability Theory

By formalising some mathematical measure theory in HOL, it is possible to
define a probability function

P : P(B∞)→ R

from sets of sequences to real numbers between 0 and 1.
Since the Banach-Tarski paradox prevents us from assigning a well-defined

probability to every set of sequences, it is helpful to think of P as a partial
function. The domain of P is the set

E : P(P(B∞))

of events of the probability.5 Our current version of formalised measure theory
is powerful enough that any practically occurring set of sequences is an event.
Specifically, we define P and E using Carathéodory’s Extension Theorem, which
ensures that E is a σ-algebra: closed under complements and countable unions.

Once we have formally defined P and E in HOL, we can derive the usual laws
of probability from their definitions. One such law is the following, which says
that the probability of two disjoint events is the sum of their probabilities:

� ∀A,B. A ∈ E ∧B ∈ E ∧A ∩B = ∅ ⇒ P(A ∪B) = P(A) + P(B)

4 http://www.haskell.org.
5 Of course, P must be a total function in HOL, but the values of P outside E are

never logically significant.

http://www.haskell.org
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Example 5. Our formalised probability theory allows us to prove results such as

� ∀n, r. P {s | fst (bin n s) = r} =
(
n

r

) (
1
2

)n (4)

making explicit the Binomial(n, 1
2 ) probability distribution of the bin n function.

The fst function selects the first component of a pair, in this case the N from
N× B

∞. The proof proceeds by induction on n, followed by a case split on the
first coin-flip in the sequence (a probability weight of 1

2 is assigned to each case).
At this point the goal may be massaged (using real analysis and the laws of
probability) to match the inductive hypothesis.

2.4 Probabilistic Quantifiers

In probability textbooks, it is common to find many theorems with the qualifier
‘almost surely’, ‘with probability 1’ or just ‘w.p. 1’. Intuitively, this means that
the set of points for which the theorem is true has probability 1 (which proba-
bility space is usually clear from context). We can define probabilistic versions
of the ∀ and ∃ quantifiers that make this notation precise.6

Definition 2. Probabilistic Quantifiers

� ∀φ. (∀∗s. φ(s)) = {s | φ(s)} ∈ E ∧ P {s | φ(s)} = 1
� ∀φ. (∃∗s. φ(s)) = {s | φ(s)} ∈ E ∧ P {s | φ(s)} �= 0

Observe that these quantifiers come specialised to the probability space (E ,P)
of infinite sequences of coin-flips: this cuts down on notational clutter.

2.5 Measurability and Independence

Recall that we model probabilistic programs with HOL functions of type

B
∞ → α× B

∞

However, not all functions f of this HOL type correspond to reasonable proba-
bilistic programs. Some are not measurable, and hence a set of sequences

S = {s | P (fst (f(s)))}
that satisfy some property P of the result is not an event of the probability (i.e.,
S /∈ E). Alternatively, f might not be independent, and hence it may use some
coin-flips to compute a result and also return those ‘used’ coin-flips, like this:

broken bit = λ s. (fst (bit s), s)

We therefore introduce a property indep called strong function independence.
If f ∈ indep, then f will be both measurable and independent. All reasonable
probabilistic programs satisfy strong function independence, and the extra prop-
erties are a great aid to verification.
6 We pronounce ∀∗ as “probably” and ∃∗ as “possibly”.
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Definition 3. Strong Function Independence

� indep =
{f |
(fst ◦ f) ∈ measurable E U ∧ (snd ◦ f) ∈ measurable E E ∧
countable (range (fst ◦ f)) ∧ ∃C. is prefix cover f C}

In Definition 3 we give the HOL definition of indep. Strongly independent
functions must be measurable, and satisfy a compositional form of independence
that is enforced by their range being countable and having a ‘prefix cover’ of
probability 1.

Strong function independence fits in neatly with the monadic operator nota-
tion we introduced earlier, as the following theorem shows.

Theorem 1. Strong Function Independence is Compositional

� ∀ a. unit a ∈ indep

� ∀ f, g. f ∈ indep ∧ (∀ a. g(a) ∈ indep)⇒ bind f g ∈ indep

� ∀ f, g. f ∈ indep ∧ g ∈ indep⇒ coin flip f g ∈ indep

Proof (sketch). The proof of each statement begins by expanding the definition of
indep. The measurability conditions are proved by lifting results from the under-
lying algebra to E, and the countability condition is easily established. Finally,
in each case the required prefix cover is explicitly constructed.

The coin flip operator flips a coin to decide whether to execute f or g, and
is defined as

� coin flip f g = λ s. (if shd s then f else g) (stl s) (5)

The compositional nature of strong function independence means that it will
be satisfied by any probabilistic program that accesses the underlying sequence
of coin-flips using only the operators {unit, bind, coin flip}.

3 Probabilistic While Loop

In the previous section we laid out our verification framework for probabilistic
programs, emphasising the monadic operator style which ensures that strong
function independence holds. The programs have access to a source of random-
ness in the form of an infinite sequence of coin-flips, and this allows us to easily
extract programs and execute them. As we saw with the example program bin n
that sampled from the Binomial(n, 1

2 ) distribution, it is no problem to define
probabilistic programs using well-founded recursion.

However, well-founded recursion is limited to probabilistic programs that
compute a finite number of values, each having a probability of the form m/2n.7

7 This follows from the fact that any well-founded function of type B
∞ → α×B

∞ can
only read a finite number of booleans from the input sequence.
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Example 6. The limitations of well-founded recursion prevent the definition of
the following probabilistic programs:

– an algorithm to sample the Uniform(3) distribution (the probability of each
result is 1/3, which cannot be expressed in the form m/2n);

– and an algorithm to sample the Geometric(1
2 ) distribution (there are an

infinite number of possible results).

In this section we go further, and show how to define probabilistic programs
that are not strictly well-founded, but terminate with probability 1. Every prob-
abilistic program in the literature falls into this enlarged definition, and so (in
principle, at least) can be modelled in HOL.

3.1 Definition of the Probabilistic While Loop

We aim to define a probabilistic version of the while loop, where the body

b : α→ B
∞ → α× B

∞

of the while loop probabilistically advances a state of type α, and the condition

c : α→ B

is a deterministic state predicate.
We first define a bounded version of the probabilistic while loop with a cut-off

parameter n: if the condition is still true after n iterations, the loop terminates
anyway.

Definition 4. Bounded Probabilistic While Loop

� ∀ c, b, n, a.
while cut c b 0 a = unit a ∧
while cut c b (suc n) a = if c(a) then bind (b(a)) (while cut c b n) else unit a

The bounded version of probabilistic while does not employ probabilistic
recursion. Rather it uses standard recursion on the cut-off parameter n, and
consequently many useful properties follow by induction on n.

We now use while cut to make a ‘raw definition’ of an unbounded probabilistic
while loop.

Definition 5. Probabilistic While Loop

� ∀ c, b, a, s.
while c b a s =
if ∃n. ¬c(fst (while cut c b n a s)) then

while cut c b (minimal (λn. ¬c(fst (while cut c b n a s)))) a s

else arb

where arb is an arbitrary fixed value, and minimal φ is specified to be the smallest
natural number n satisfying φ(n).
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3.2 Characterisation of the Probabilistic While Loop

There are two characterising theorems that we would like to prove about proba-
bilistic while loops. The first demonstrates that it executes as we might expect:
check the condition, if true then perform an iteration and repeat, if false then
halt and return the current state. Note the bind and unit in the theorem: this is
a probabilistic while loop, not a standard one!

Theorem 2. Iterating the Probabilistic While Loop

� ∀ c, b, a. while c b a = if c(a) then bind (b(a)) (while c b) else unit a

Proof. For a given c, b, a, s, if there is some number of iterations of b (starting in
state a with sequence s) that would lead to the condition c becoming false, then
while performs the minimum number of iterations that are necessary for this to
occur, otherwise it returns arb. The proof now splits into the following cases:

– The condition eventually becomes false:
• The condition is false to start with: in this case the minimum number of

iterations for the condition to become false will be zero.
• The condition is not false to start with: in this case the minimum number

of iterations for the condition to become false will be greater than zero,
and so we can safely perform an iteration and then ask the question
again.

– The condition will always be true: therefore, after performing one iteration
the condition will still always be true. So both LHS and RHS are equal to
arb.

Note that up to this point, the definitions and theorems have not mentioned
the underlying state, and so generalise to any state-transforming while loop. The
second theorem that we would like to prove is specific to probabilistic while loops,
and states that while preserves strong function independence. This allows us to
add while to our set of monadic operators for safely constructing probabilistic
programs. However, for while c b to satisfy strong function independence, the
following ‘termination’ condition is placed on b and c.8

Definition 6. Probabilistic Termination Condition

� ∀ c, b. while terminates c b = ∀ a. ∀∗s. ∃n. ¬c(fst (while cut c b n a s))

This extra condition says that for every state a, there is an event of probabil-
ity 1 that leads to the termination of the probabilistic while loop. This additional
condition ensures that probabilistic while loops preserve strong function inde-
pendence.

Theorem 3. Probabilistic While Loops Preserve Strong Function Independence

� ∀ c, b. (∀ a. b(a) ∈ indep) ∧ while terminates c b⇒ ∀ a. while c b a ∈ indep

8 The ∀∗ in the definition is a probabilistic universal quantifier (see Section 2.4).
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Proof (sketch). Countability of range and measurability follow easily from the
strong function independence of b(a), for every a. The prefix cover is again ex-
plicitly constructed, by stitching together the prefix covers of b(a) for all reachable
states a that terminate the while loop (i.e., that satisfy ¬c(a)).

At this point the definition of a probabilistic while loop is finished. We export
Theorems 2 and 3 and Definition 6, and these totally characterise the while
operator: users never need to work with (or even see) the raw definition.

Finally, no formal definition of a new while loop would be complete without
a Hoare-style while rule, and the following can be proved from the characterising
theorems.

Theorem 4. Probabilistic While Rule

� ∀φ, c, b, a.
(∀ a. b(a) ∈ indep) ∧ while terminates c b ∧
φ(a) ∧ (∀ a. ∀∗ s. φ(a) ∧ c(a)⇒ φ(fst (b a s))) ⇒
∀∗s. φ(fst (while c b a s))

“For a well-behaved probabilistic while loop, if a property is true of the initial
state and with probability 1 is preserved by each iteration, then with probability 1
the property will be true of the final state.”

4 Probabilistic Termination Conditions

In the previous section we saw that a probabilistic termination condition was
needed to prove that a probabilistic while loop satisfied strong function inde-
pendence. In this section we take a closer look at this condition, in the context
of related work on termination.

Let us begin by observing that our termination condition while terminates c b
is both necessary and sufficient for each while c b a to terminate on a set of
probability 1. Therefore, the other termination conditions we survey are either
equivalent to ours or logically imply it.

In the context of probabilistic concurrent systems, the following 0-1 law was
proved by Hart, Sharir, and Pnueli [3]:9

Let process P be defined over a state space S, and suppose that from every
state in some subset S′ of S the probability of P ’s eventual escape from S′ is
at least p, for some fixed 0 < p.

Then P ’s escape from S′ is certain, occurring with probability 1.

Identifying P with while c b and S′ with the set of states a for which c(a)
holds, we can formulate the 0-1 law as an equivalent condition for probabilistic
termination:
9 This paraphrasing comes from Morgan [10].
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Theorem 5. The 0-1 Law of Probabilistic Termination

� ∀ c, b.
(∀ a. b(a) ∈ indep) ⇒
(while terminates c b ⇐⇒
∃ p. 0 < p ∧ ∀ a. p ≤ P {s | ∃n. ¬c(fst (while cut c b n a s))})

This interesting result implies that over the whole state space, the infimum
of all the termination probabilities is either 0 or 1, it cannot lie properly in
between. An example of its use for proving probabilistic termination will be seen
in our verification of a sampling algorithm for the Bernoulli(p) distribution.

Hart, Sharir, and Pnueli [3] also established a sufficient condition for proba-
bilistic termination called the probabilistic variant rule. We can formalise this as
a sufficient condition for termination of our probabilistic while loops; the proof
is relatively easy from the 0-1 law.

Theorem 6. The Probabilistic Variant Condition

� ∀ c, b.
(∀ a. b(a) ∈ indep) ∧
(∃ f,N, p.

0 < p ∧
∀ a. c(a) ⇒ f(a) < N ∧ p ≤ P {s | f(fst (b a s)) < f(a)}) ⇒

while terminates c b

As its name suggests, the probabilistic variant condition is a probabilistic
analogue of the variant method used to prove termination of deterministic while
loops. If we can assign to each state a a natural number measure from a finite
set, and if each iteration of the loop has probability at least p of decreasing the
measure, then probabilistic termination is assured. In addition, when {a | c(a)}
is finite, the probabilistic variant condition has been shown to be necessary as
well as sufficient.

5 Example: Sampling the Bernoulli(p) Distribution

The Bernoulli(p) distribution is over the boolean values {�,⊥}, and models a
test where � is picked with probability p and ⊥ with probability 1 − p. Our
sequence of coin-flips can be considered as sampling a Bernoulli(1

2 ) distribution,
and the present goal is to use these to produce samples from a Bernoulli(p)
distribution, where p is any real number between 0 and 1.

The sampling algorithm we use is based on the following simple idea. Suppose
the binary expansion of p is 0.p0p1p2 · · ·; consider the coin-flips of the sequence s
as forming a binary expansion 0.s0s1s2 · · ·.10 In this way s can also be regarded
10 We can conveniently ignore the fact that some numbers have two binary expansions

(e.g., 1
2

= 0.1000 · · · = 0.0111 · · ·), since the set of these ‘dyadic rationals’ is countable
and therefore has probability 0.
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as a real number between 0 and 1. Since the ‘number’ s is uniformly distributed
between 0 and 1, we (informally) have

Probability(s < p =
{�
⊥

}
) =

{
p
1− p

}

Therefore, an algorithm that evaluates the comparison s < p will be sampling
from the Bernoulli(p) distribution, and this comparison can easily be decided by
looking at the binary expansions. The matter is further simplified since we can
ignore awkward cases (such as s = p) that occur with probability 0.

Definition 7. A Sampling Algorithm for the Bernoulli(p) Distribution

� ∀ p.
bern iter p =
if p < 1

2 then coin flip (unit (inr ⊥)) (unit (inl (2p)))
else coin flip (unit (inl (2p− 1))) (unit (inr �))

� ∀ p. bernoulli p = bind (while is inl (bern iter ◦ outl) (inl p)) (unit ◦ outr)

To make the sampling algorithm fit into a probabilistic while loop, the def-
inition makes heavy use of the HOL sum type α + β, which has constructors
inl, inr, destructors outl, outr and predicates is inl, is inr. However, the intent of
the probabilistic while loop is simply to evaluate s < p by iteration on the bits
of s:

– if shd s = ⊥ and 1
2 ≤ p, then return �;

– if shd s = � and p < 1
2 , then return ⊥;

– if shd s = ⊥ and p < 1
2 , then repeat with s := stl s and p := 2p;

– if shd s = � and 1
2 ≤ p, then repeat with s := stl s and p := 2p− 1.

This method of evaluation has two important properties: firstly, it is obviously
correct since the scaling operations on p just have the effect of removing its
leading bit; secondly, probabilistic termination holds, since every iteration has
a probability 1

2 of terminating the loop. Indeed, Hart’s 0-1 law of termination
(Theorem 5) provides a convenient method of showing probabilistic termination:

� while terminates is inl (bern iter ◦ outl) (6)

From this follows strong function independence

� ∀ p. bernoulli p ∈ indep (7)

and we can then prove that bernoulli satisfies an alternative definition:

� ∀ p. (8)
bernoulli p =
if p < 1

2 then coin flip (unit ⊥) (bernoulli (2p))
else coin flip (bernoulli (2p− 1)) (unit �)
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This definition of bernoulli is more readable, closer to the intuitive version, and
easier to use in proofs. We use this to prove the correctness theorem:

� ∀ p. 0 ≤ p ∧ p ≤ 1⇒ P {s | bernoulli p s} = p (9)

The proof of this is quite simple, once the right idea is found. The idea is to
show that the probability gets within (1

2 )
n of p, for an arbitrary natural number

n. As can be shown by induction, this will occur after n iterations.
It is perhaps surprising that the uncountable set {bernoulli p | 0 ≤ p ≤ 1} of

programs are all distinct, even though each one examines only a finite number
of bits (with probability 1).

6 Example: The Symmetric Simple Random Walk

The (1-dimensional) symmetric simple random walk is a probabilistic process
with a compelling intuitive interpretation. A drunk starts at point n (the pub)
and is trying to get to point 0 (home). Unfortunately, every step he makes
from point i is equally likely to take him to point i + 1 as it is to take him
to point i− 1. The following program simulates the drunk’s passage home, and
upon arrival returns the total number of steps taken.

Definition 8. A Simulation of the Symmetric Simple Random Walk

� ∀n. lurch n = coin flip (unit (n+ 1)) (unit (n− 1))
� ∀ f, b, a, k. cost f b (a, k) = bind (b(a)) (λa′. unit (a′, f(k)))
� ∀n, k.

walk n k =
bind (while (λ (n, ). 0 < n) (cost suc lurch) (n, k)) (λ ( , k). unit k)

Theorem 7. The Random Walk Terminates with Probability 1

� ∀n, k. while terminates (λ (n, ). 0 < n) (cost suc lurch)

Proof. Let πi,j be the probability that starting at point i, the drunk will eventually
reach point j.

We first formalise the two lemmas πp+i,p = πi,0 and πi,0 = πi
1,0. Therefore,

if with probability 1 the drunk eventually gets home from a pub at point 1, with
probability 1 he will eventually get home from a pub at any point.

By examining a single iteration of the random walk we have

π1,0 = 1
2π2,0 + 1

2 = 1
2π

2
1,0 +

1
2

which rewrites to
(π1,0 − 1)2 = 0

and therefore
π1,0 = 1
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Once probabilistic termination is established, strong independence easily fol-
lows:

� ∀n, k. walk n k ∈ indep (10)

At this point, we may formulate the definition of walk in a more natural way:

� ∀n, k. (11)
walk n k =
if n = 0 then unit k else

coin flip (walk (n+1) (k+1)) (walk (n−1) (k+1))

We have now finished the hard work of defining the random walk as a prob-
abilistically terminating program. To demonstrate that once defined it is just as
easy to reason about as any of our probabilistic programs, we prove the following
basic property of the random walk:11

� ∀n, k. ∀∗s. even (fst (walk n k s)) = even (n+ k) (12)

For a pub at point 1001, the drunk must get home eventually, but he will take
an odd number of steps to do so!

It is possible to extract this probabilistic program to ML, and repeatedly
simulate it using high-quality random bits from the operating system. Here is a
typical sequence of results from random walks starting at level 1:

57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, . . .

As can be seen, the number of steps that are required for the random walk to
hit zero is usually less than 100. But sometimes, the number can be much larger.
Continuing the above sequence of simulations, the 34th simulation sets a new
record of 2645 steps, and the next record-breakers are the 135th simulation with
603787 steps and the 664th simulation with 1605511 steps. Such large records
early on are understandable, since the theoretical expected number of steps for
the random walk is actually infinite!

In case it is difficult to see how an algorithm could have infinite expected
running time but terminate with probability 1, consider an algorithm where the
probability of termination after n steps is 6

π2n2 . The probability of termination
is then ∑

n

6
π2n2

=
6
π2

∑
n

1
n2

=
6
π2
· π

2

6
= 1

and the expected running time is

∑
n

n
6

π2n2
=

6
π2

∑
n

1
n
=∞

11 Note the use of the probabilistic universal quantifier ∀∗s. This allows us to ignore
the set of sequences that cause the drunk to walk forever, since it has probability 0.
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7 Conclusions

In this paper we have described how probabilistic programs can be verified in
the HOL theorem prover, and then shown how programs that terminate with
probability 1 can be defined in the model. Finally, we applied the technology to
verify two example programs that necessarily rely on probabilistic termination.
In principle, our HOL framework is powerful enough to verify any probabilis-
tic program that terminates with probability 1. However, the labour-intensive
nature of theorem proving means that it is only practical to verify particularly
important probabilistic algorithms.

Fixing a sequence of coin-flips as the primitive source of randomness creates
a distinction between probabilistic programs that are guaranteed to terminate
on every possible sequence of coin-flips, and programs that terminate on a set
of sequences having probability 1. Probabilistic programs that are guaranteed
to terminate can place an upper bound on the number of random bits they will
require for a computation, but programs defined using probabilistic termination
may consume an unbounded number of bits. In application areas where random
bits are expensive to generate, or where tight bounds are required on execu-
tion time, probabilistic termination must be viewed with a certain amount of
suspicion.

There is also a logical distinction between guaranteed termination and prob-
abilistic termination. Typically, a program p defined using probabilistic termi-
nation generally has properties that are quantified by ∀∗ instead of the stronger
∀. This is because ‘all bets are off’ on the set of sequences where p doesn’t ter-
minate, and so universal quantification over all sequences usually results in an
unprovable property. In our verification of the Miller-Rabin primality test [5],
we deliberately avoided using probabilistic termination to get stronger theorems,
and the added power meant that we were able to implement a ‘composite prover’
for natural numbers.

In our random walk example, the proof of probabilistic termination is quite
subtle. The random walk is therefore not likely to fit into a standard scheme
of programs satisfying probabilistic termination. For this reason it is important
that the definition of probabilistic programs in our formal framework is not tied
to any particular program scheme. Instead, we can define an arbitrary prob-
abilistic program, then prove it satisfies probabilistic termination, and finally
go on to verify it. In the future, it may be useful to define program schemes
that automatically satisfy probabilistic termination: these can be implemented
by reduction to our current method followed by an automatic termination proof.
However, it is important to retain the general method, or unusual programs such
as the random walk could not be modelled.

Finally, in both the Bernoulli(p) and random walk examples, we defined a
function in terms of probabilistic while loops and then went to great pains to
prove that it was equivalent to a simpler version using straightforward recursion.
It might reasonably be asked why we don’t directly support recursive definitions
of probabilistic programs, and the answer is that it’s harder to extract the prob-
abilistic termination condition. One possible approach to this, building on the
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present work, would be to reduce the definition to a probabilistic while loop and
then read off the termination condition from that.

8 Related Work

The semantics of probabilistic programs was first tackled by Kozen [8], and
developed by Jones [7], He et al. [4] and Morgan et al. [11]. This line of research
extends the predicate transformer idea of [1] in which programs are regarded
as functions: they take a set of desired end results to the set of initial states
from which the program is guaranteed to produce one of these final states. With
the addition of probabilistic choice, the ‘sets of states’ must be generalised to
functions from states to the real interval [0, 1].

Jones defines a Hoare-style logic for total correctness, in which termination
with probability 1 is covered by using upper continuous functions as pre- and
post-conditions. In this model there is no distinction between guaranteed termi-
nation and probabilistic termination. The verification of a sampling algorithm
for the Geometric(1

2 ) distribution provides an instructive proof of probabilistic
termination, but (from the perspective of mechanisation) the method appears
to be more complicated than the approach presented in this paper. Also in the
context of probabilistic predicate transformers, Morgan [10] explicitly looks at
“proof rules for probabilistic loops”, applying the probabilistic variant condi-
tion of Hart, Sharir, and Pnueli [3] to verify a probabilistic self-stabilisation
algorithm.

Our semantics of probabilistic programs is very different from the predicate
transformer framework. Being concerned with mechanisation, our aim was to
minimise the amount of necessary formalisation. This led to a simple view of
probabilistic programs in terms of a sequence of coin-flips, and this bears no
obvious correspondence to the predicate transformer view. Proofs in the two
settings plainly use the same high-level arguments, but soon diverge to match
the low-level details of the semantics. However, it may be that our ‘shallow
embedding’ of probabilistic programs as HOL functions is obscuring similarities.
An interesting direction for future work would be to formalise the syntax of a
simple while language including a probabilistic choice operator, and then derive
the rules of the predicate transformer semantics in terms of our own.
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