
Predicate Subtyping with Predicate Sets

Joe Hurd�

Computer Laboratory
University of Cambridge
joe.hurd@cl.cam.ac.uk

Abstract. We show how PVS-style predicate subtyping can be simu-
lated in HOL using predicate sets, and explain how to perform subtype
checking using this model. We illustrate some applications of this to spec-
ification and verification in HOL, and also demonstrate some limits of
the approach. Finally we report on the effectiveness of a subtype checker
used as a condition prover in a contextual rewriter.

1 Introduction

HOL [4] and PVS [13] are both interactive theorem-provers extending Church’s
simple type theory [1]: in HOL with Hindley-Milner polymorphism [11]; and in
PVS with parametric theories1 and predicate subtyping [14]. In this paper we
will focus on PVS predicate subtyping, and show how it can be simulated in
HOL.

Predicate subtyping allows the creation of a new subtype corresponding to
an arbitrary predicate, where elements of the new type are also elements of the
containing type. As a simple illustration of this, the type of real division (/) in
HOL is R→ R → R, and in PVS is R → R

�=0 → R, where R is the type of real
numbers and R

�=0 is the predicate subtype of non-zero real numbers, expressed
by the predicate λx. x �= 0.

This extension of the type system allows more information to be encoded in
types, leading to benefits for specification and verification such as:

– The ability to express dependent types, for example a type for natural num-
ber subtraction that prevents the second argument from being larger than
the first argument, or a type representing lists of a fixed length in order to
model arrays.

– Greater use of types to express side-conditions of theorems, for example the
PVS rewrite rule

�PVS ∀x : R �=0. x/x = 1 (1)

In HOL this would have to be expressed

� ∀x : R. (x �= 0)⇒ (x/x = 1) (2)
� Supported by an EPSRC studentship.
1 Parametric theories allow polymorphism at the granularity of the theory (think C++

templates), whereas Hindley-Milner polymorphism operates at the granularity of the
declaration (think ML functions).

R.J. Boulton and P.B. Jackson (Eds.): TPHOLs 2001, LNCS 2152, pp. 265–280, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

266 Joe Hurd

and the extra condition must be proved each time the rule is applied.2
– More errors can be found in specifications during type-checking, giving great-
er confidence that the goal is correct before a verification is embarked upon.
Mokkedem [12] has observed this to be very effective in a large network
protocol verification performed in PVS. Many specifications are not verified
at all, and in that case the extra confidence is especially valuable.

However, there are also some costs:

– Type-checking becomes undecidable, so (potentially human) effort must be
expended to allow terms to be accepted into the system.

– Type-correctness depends on the current logical context, imposing an extra
burden on term operations to keep careful track of what can be assumed at
each subterm. In the case of users wishing to program their own tactics this
merely steepens the learning curve; for term operations in the logical kernel
faulty implementations have produced a string of soundness bugs.3

In the literature there are papers arguing for and against predicate subtyping.
Shankar [17] gives many examples of their utility, while Lamport [9] gives an
example where the costs must be paid without much benefit, in his case because
predicate subtypes cannot naturally encode the desired invariant.

In this paper we describe our efforts to gain the functionality of predicate
subtypes in HOL, without altering the logic in any way. Instead of creating a first-
class type associated with a particular predicate P , we reason with the subset
of elements that satisfy P . With this substitution, it is possible to simulate the
extra reasoning power needed to automatically prove HOL side-conditions that
would be expressed in PVS using predicate subtypes (such as the condition of
Theorem 2 above). Using the same technology, we can also perform an analogue
of predicate subtype-checking for terms, although as we shall see the HOL logic
imposes certain limitations on this.

The structure of the paper is as follows: in Section 2 we lay out the details of
our formalism and explain how to perform subtype-checking; Section 3 describes
some tools that have been built using this technology, and reports on their
effectiveness in a case study; in Section 4 we consider some fundamental logical
limits of this approach; and finally in Sections 5, 6 and 7 we conclude, examine
future prospects, and look at related work.

1.1 Notation

We use sans serif font to notate HOL constants, such as the function power op-
erator funpow, the real number function inv (multiplicative inverse or reciprocal)
2 Analogously, typed logics such as HOL and PVS enjoy this advantage over an un-

typed logic such as ZF set theory, in which the theorem � ∀n : N. n + 0 = n must
be expressed � ∀n. n ∈ N ⇒ (n + 0 = n).

3 Shankar [17] writes “these bugs stem largely from minor coding errors rather than
foundational issues or complexities”. However, the extra complexity generated by
predicate subtyping does play a part in this: there have been very few soundness
bugs found in HOL over the years.

Predicate Subtyping with Predicate Sets 267

and the list functions length and mem. This font is also used for predicate sets
such as nzreal and posreal, in contrast to types (either HOL simple types or PVS
predicate subtypes) which are written in mathematical font. Examples of simple
types are α, β (type variables), α×β (pairs), α∗ (lists), B (booleans) and R (the
real numbers); whereas R

�=0 and R
≥0 are predicate subtypes.

2 The Formalism

2.1 Subtypes

A predicate set is a function P : α → B which represents the set of elements
x : α for which P x = �. Note that P is parameterized by the type α, and
we shall use the terminology ‘α predicate set’ (or just ‘α set’) when we wish
to make this dependency explicit. Predicate sets are a standard modelling of
sets in higher-order logic, and we can define polymorphic higher-order constants
representing all the usual set operations such as ∈, ∪ and image. In addition, for
each α there exists a universe set Uα = (λx : α. �) that contains every element
of type α.4

As examples, consider the following definitions of predicate sets that we will
make use of:

nzreal = λx : R. x �= 0 (3)
posreal = λx : R. 0 < x (4)

nnegreal = λx : R. 0 ≤ x (5)
∀n : N. lenum n = λm : N. m ≤ n (6)
∀n : N. nlist n = λ l : α∗. length l = n (7)

∀ p : α→ B. list p = λ l : α∗. ∀x : α. mem x l ⇒ x ∈ p (8)
∀ p : α→ B. ∀ q : β → B.

pair p q = λx : α× β. fst x ∈ p ∧ snd x ∈ q (9)

Definitions 3–5 are straightforward, each representing the set of real numbers
that are mapped to � by the predicate on the right hand side of the definition.
Definitions 6–9 are all parameterized by various terms: in the case of lenum n by
a natural number n so that lenum n = {0, 1, . . . , n}. Definitions 7–9 are polymor-
phic too, which of course is just another way of saying they are parameterized
by types as well as terms. The set nlist n contains all α-lists having length n;
the set list p contains all α-lists satisfying the condition that each member must
lie in the parameter set p; and finally the set pair p q contains all (α × β)-pairs
(x, y) where x lies in the first parameter set p and y lies in the second parameter
set q.

4 Since the HOL logic specifies that all types are disjoint, so must be these universe
sets.

268 Joe Hurd

2.2 Subtype Constructors

The definitions of list (8) and pair (9) in the previous subsection illustrated ‘lift-
ing’: an α set is lifted to an α-list set using list, and an α set and a β set are
lifted to a (α × β) set using pair. We might thus call list and pair subtype con-
structors, and we can similarly define subtype constructors for every datatype.
The automatic generation of these constuctors might be a worthwhile addition
to the datatype package.

We can also define a subtype constructor for the function space α→ β:

∀ p : α→ B. ∀ q : β → B.

p
·→ q = λ f : α→ β. ∀x : α. x ∈ p⇒ f x ∈ q (10)

The type annotations slightly obscure this definition, without them it looks like
this: ∀ p, q. p ·→ q = λ f. ∀x ∈ p. f x ∈ q.5 Given sets p and q, f is in the set
p

·→ q iff it maps every element of p to an element of q.
We can illustrate this function subtype constructor with the following theo-

rems that follow from the definitions so far:6

� (λx : R. x2) ∈ nzreal
·→ nzreal (11)

� (λx : R. x2) ∈ UR

·→ nnegreal (12)

� ∀ f, p. f ∈ p ·→ UR (13)

� ∀ f, q. f ∈ ∅ ·→ q (14)

� ∀ f, p. f ∈ p ·→ ∅ ⇐⇒ p = ∅ (15)

There is an alternative subtype constructor for function spaces, defined like
so:

∀ p : α→ B. ∀ q : α→ β → B.

p
�→ q = λ f : α→ β. ∀x : α. x ∈ p⇒ f x ∈ q x (16)

The difference here is that q is a parameterized set, where the parameter comes
from the set p. This allows us to model dependent predicate subtypes with pred-
icate sets, such as the following subtype containing natural number subtraction:

UN

�→ (λn. lenum n
·→ lenum n)

Recall that UN is the universe set for the type N of natural numbers. We should
therefore read the above subtype as the set of functions that: given any natural
number n return a function from {0, . . . , n} to {0, . . . , n}. One last thing to note:
if the parameterized set q is of the form λx. q′ where q′ does not contain any

5 The notation ∀x ∈ p. M x is a restricted universal [18], and expands to ∀x. x ∈
p ⇒ M x. There are restricted versions of all the usual HOL quantifiers.

6 Note that
·→ associates to the right and has tighter binding than ∈, so f ∈ p

·→ q
·→ r

means the same as f ∈ (p
·→ (q

·→ r)). Also x2 here means x squared.

Predicate Subtyping with Predicate Sets 269

occurrences of the bound variable x, then p �→ q = p
·→ q′: this shows that

Definition 16 is more general than Definition 10.
PVS also has two function space subtypes, covering the dependent and non-

dependent cases. It also allows dependent products, which cannot be expressed
using our pair notation. However, analogously to �→ it would be simple to define a
dependent pair constructor dpair p q, taking a set p : α→ B and a parameterized
set q : α→ β → B.

2.3 Subtype Rules

Now that we have defined the form of subtype sets, we shall show how to derive
subtypes of a HOL term. Given a term t, we say that p is a subtype of t if we
can prove the subtype theorem � t ∈ p. This is the major difference between our
model and PVS: here subtypes are theorems, whilst in PVS subtypes are types.

Milner’s type inference algorithm [11] for simply-typed terms is structural: a
single bottom-up pass of a well-formed term suffices to establish the most general
type.7 We also use a single bottom-up pass to derive sets of subtype theorems,
though the algorithm is complicated by two factors:

– two rules to break down terms (covering function applications and λ-ab-
stractions) are no longer sufficient since we also need to keep track of logical
context;

– there is no concept of a ‘most general set of subtype theorems’,8 so instead
we perform proof search up to some fixed depth and return all the subtype
theorems that we can prove.

To keep track of logical context, we create subtype rules similar to the con-
gruence rules of a contextual rewriter. Here are some examples:

� ∀ c : B. ∀ a : α. ∀ b : α. ∀ p : α→ B.

(c ∈ UB) ∧ (c⇒ a ∈ p) ∧ (¬c⇒ b ∈ p)⇒ (if c then a else b) ∈ p (17)
� ∀ a, b : B. (b⇒ a ∈ UB) ∧ (a⇒ b ∈ UB)⇒ (a ∧ b) ∈ UB (18)
� ∀ f : α→ β. ∀ a : α. ∀ p : α→ B. ∀ q : α→ β → B.

(f ∈ p �→ q) ∧ (a ∈ p)⇒ f a ∈ q a (19)
� ∀ f : α→ β. ∀ p : (α→ β)→ B.

(∀x : α. f x ∈ p x)⇒ (λx. f x) ∈ (Uα
�→ p) (20)

These rules are rather long, but fortunately can be read easily from left to right.
For example the conditional subtype rule (17) reads: “if we can show c to be in
UB; and assuming c we can show a to be in a subtype p; and assuming ¬c we can
show b to be in the same subtype p; then the combined term if c then a else bmust
also be an element of p.” In this way we can build up logical context. Note that
7 Though not completely avoiding all difficulty: Mairson [10] has shown that the most

general simple type of a term can be exponentially large in the size of the term.
8 Theoretically we could intersect all subtypes that a term t satisfies, but then we

would just end up with {t} if the logical context was consistent, or ∅ if it was not!

270 Joe Hurd

c is trivially in the universe set UB, the only purpose of retaining this condition
is to force the subtype checker to recurse into c and check all its subterms. The
conjunction rule (18) similarly ensures that subterms are covered by the subtype
checker, while building the correct logical context.9 Also shown are the subtype
rules for function application (19) and abstraction (20), the main point to note
is that they both use the more general dependent version �→ of the subtype
constructor for function spaces.

For each constant that propagates logical information, we need a subtype rule
of the above form. Therefore the set of subtype rules used is not fixed, rather
we allow the user to add rules for new constants.

Subtype rules tell us how to derive subtypes for a term by combining the
subtypes of smaller terms, but they leave two questions unanswered: how do we
calculate the subtypes of base terms (variables and constants); and how do we
unify the (possibly higher-order) subtypes of the smaller terms, for example to
match the two occurrences of p in the antecedent of the conditional subtype rule
(17)? These questions are answered in the next two sections.

2.4 Subtypes of Constants

To calculate subtypes of a base term t : α, we maintain a dictionary of constant
subtypes.10 If the term we are focussed on is a constant that appears in the
dictionary, we return the subtype theorem listed there. If the term is a variable
or a constant that is not in the dictionary, we return the default subtype theorem
� t ∈ Uα.11

Here are some miscellaneous entries in the dictionary:

� inv ∈ (nzreal
·→ nzreal ∩ posreal

·→ posreal ∩ negreal
·→ negreal) (21)

� sqrt ∈ (nnegreal
·→ nnegreal ∩ posreal

·→ posreal) (22)

� ∀n : N. − ∈ UN

�→ (λn. lenum n
·→ lenum n) (23)

� ∀ p : α→ B. funpow ∈ (p ·→ p) ·→ UN

·→ p
·→ p (24)

� ∀ p : α→ B. [] ∈ (list p ∩ nlist 0) (25)
� ∀ p : α→ B. ∀n : N.

9 A version of the conjunction rule that does not always return the universe set UB is
as follows:

� ∀ a, b : B. ∀ p, q : B → B. (b ⇒ a ∈ p) ∧ (a ⇒ b ∈ q) ⇒ (a ∧ b) ∈ ({⊥} ∪ (p
·∧ q))

where
·∧ is a lifted version of ∧ that operates on sets of booleans instead of booleans.

However, the version we present is much simpler to work with and usually all that
is required in practice.

10 It is up to the user to add constant subtypes to the dictionary: as yet there is no
mechanism to automatically generate these for newly defined constants, though this
further work is briefly discussed in Section 6.

11 Note that when we come to use the subtypes of t later on, other subtypes may also
be deduced from the logical context.

Predicate Subtyping with Predicate Sets 271

cons ∈ p ·→ (list p ∩ nlist n) ·→ (list p ∩ nlist (suc n)) (26)
� ∀ f : α→ β. ∀ p : α→ B. ∀ q : β → B. ∀n : N.
map ∈ (p ·→ q) ·→ (list p ∩ nlist n) ·→ (list q ∩ nlist n) (27)
� ∀ p : α→ B. ∀ q : β → B. ∀n : N. (28)

zip ∈ (nlist n ∩ list p) ·→ (nlist n ∩ list q) ·→ (nlist n ∩ list (pair p q))

The universal quantification allows variables in the types of constants, and ex-
actly like ‘forall types’ in functional programming, these generate fresh variables
at every instance of the constant.

This dictionary corresponds to the constant judgement mechanism of PVS,
whereby the type-checker can be told that for the purpose of calculating type
correctness conditions, particular constants are also elements of more specific
subtypes than their principal subtype.

2.5 Subtype Judgements

Suppose we have a subtype rule that we are committed to using, and we have
recursively derived subtype theorems for the terms in the antecedent of the rule.
We must now deduce12 from these subtype theorems, aiming to find a consistent
set of subtype theorems that is matched by the antecedent of the rule.

Example 1. Suppose our term is f a (where f has simple type R → R); we are
using the function application rule (19); and we have recursively shown that
� f ∈ nzreal

·→ nzreal and � a ∈ posreal. However, in order to apply the rule we
must find instantiations of the variables p and q such that

(f ∈ p �→ q) ∧ (a ∈ p)

is a theorem. We present this goal to our prover, which performs bounded proof
search and returns some instantiations, one of which corresponds to the following
theorem:

� (f ∈ nzreal
�→ (λx. nzreal)) ∧ (a ∈ nzreal)

Now we can apply the rule to conclude that � f a ∈ (λx. nzreal) a, which can
in turn be simplified to � f a ∈ nzreal.

In this example, the prover needed to show a ∈ posreal ⇒ a ∈ nzreal. Steps
like these are achieved using subtype judgements: theorems that are manually

12 Deciding the logical context in which we should perform this deduction is quite
delicate. It is sound to use the current logical context, but not complete. A more
careful approach is to use the (possibly larger) logical context of a subterm whenever
we manipulate the subtypes of that subterm. In this way if we can deduce � 1 ∈ nzreal
and � ¬� ⇒ 0 ∈ nzreal then we will be able to deduce � (if � then 1 else 0) ∈ nzreal
using the conditional rule.

272 Joe Hurd

added to the top-level logical context, and are available for use in deriving sub-
types.13 These will be theory specific, and can be extended by the user at any
time. Examples are:

� posreal ⊂ nzreal (29)
� ∀ p, q : α→ B. p ⊂ q ⇒ list p ⊂ list q (30)

From the example we can see that a suitable prover must be: higher-order
to deal with parameterized types; able to find multiple instantiations of a goal
(‘prolog-style’); and able to perform bounded proof search. Any prover that
satisfies these criteria will be able to plug in at this point and enable subtype
derivation.

However, since there are not many provers available that can satisfy all these
requirements, we have implemented one to test our subtype derivation algo-
rithm. Robinson [15] presents an approach to higher-order proving by convert-
ing all terms to combinatory form.14 Together with translation to CNF this
conversion leaves terms in a normal form that simplifies the writing of auto-
matic proof search tools. For our application we implement a version of model
elimination (mostly following Harrison’s presentation [5], with some higher-order
extensions), since that is able to return multiple instantiations of goals and we
can use a simple depth-bound to limit the search. More powerful normalization
means that it can compete with the HOL first-order prover MESON_TAC on some
first-order problems, and results on higher-order problems are basic but promis-
ing. It is under active development, and a paper will soon be available describing
its operation in more detail.

2.6 Subtype Derivation Algorithm

To summarize this section, we present the complete algorithm to derive subtypes
of a term.

Inputs: A term t having simple type α; a logical context C initialized with
a set of assumptions and the current subtype judgements; a set R of subtype
rules; and a dictionary D of constant subtypes.

Outputs: A set P of subtype theorems.

1. If t is a variable, return [� t ∈ Uα].
2. If t is a constant, look in the dictionary D to see if there is an entry (t, p).
If so, return [� t ∈ p], otherwise return [� t ∈ Uα].

3. Otherwise find a subtype rule in R matching t.15 The rule will have the form

� ∀v.

 ∧

1≤i≤n

∀vi. ai[vi]⇒ ti[vi] ∈ pi[vi,v]

⇒ t ∈ p[v] (31)

13 The name ‘subtype judgements’ was borrowed from PVS, which contains results
used for exactly the same purpose.

14 Many thanks to John Harrison for drawing my attention to this paper.
15 If there is more than one rule that matches, return the rule that was most recently

added to R: this is almost always the most specific rule too.

Predicate Subtyping with Predicate Sets 273

4. For each 1 ≤ i ≤ n, create the logical context Ci by adding the assumption
ai[vi] to C and recursively apply the algorithm using Ci to ti to find a set
of subtypes

Pi = {� ti[vi] ∈ pi0[vi], . . . , � ti[vi] ∈ pini [vi]}

5. Find consistent sets of subtypes by calling the following search function with
counter i← 1 and instantiation σ ← id.
(a) If i > n then return σ.
(b) Using the subtype theorems in Pi and the logical context Ci, use the

higher-order prover to find theorems of the form � ti[vi] ∈ σ(pi[vi,v]).
(c) For each theorem returned, let σi be the returned instantiation. Recur-

sively call the depth-first search function with counter i ← i + 1 and
instantiation σ ← (σi ◦ σ).

6. Each instantiation σ returned by depth-first search corresponds to a special-
ization of the subtype rule (31) for which we have proven the antecedent.
We may thus deduce the consequent by modus ponens, and we add this to
the result set P of subtype theorems.

3 Applications

3.1 Predicate Set Prover

An obvious application for the subtype derivation algorithm is to prove set mem-
bership goals. Supposing the current goal is t ∈ p, we can derive a set P of
subtype theorems for t, and then invoke the higher-order prover once again with
the top-level context and the set P to tackle the goal directly.

Example 2. To illustrate the two steps, consider the goal 3 ∈ nzreal.16 Subtypes
are derived for the term 3 (of type R), and the following list of subtype theorems
are returned:

[� 3 ∈ K posreal 3, � 3 ∈ K nnegreal 3]

(where K = λx. λ y. x). Next these two theorems are passed to the higher-order
prover along with the top-level logical context containing type-judgements, and
it quickly proves the goal � 3 ∈ nzreal.

We package up the predicate set prover into a HOL tactic, which calls the
prover with the current subgoal as argument: if successful the resulting theorem
will match the subgoal and can be dispatched. We can prove some interesting
goals with this tactic:

� map inv (cons (−1) (map sqrt [3, 1])) ∈ list nzreal

� (λx ∈ negreal. funpow inv n x) ∈ negreal
·→ negreal

16 This is not quite as trivial as it looks, since the real number ‘3’ in HOL is really the
complex term real of num (numeral (bit1 (bit1 0))).

274 Joe Hurd

One optimization that is effective even with this basic tactic is to maintain a
cache of the subtypes that have already been derived for HOL constants.17 For
example, the innocuous-looking term ‘3’ used in the above example is actually
composed of 4 nested function applications! Rederiving subtypes for constants
is unnecessary and inefficient.

Another optimization arises naturally from certain subtype rules, such as the
conjunction rule (18), repeated here:

∀ a, b : B. (b⇒ a ∈ UB) ∧ (a⇒ b ∈ UB)⇒ (a ∧ b) ∈ UB

The set UB is the universe set UB of booleans, so we can immediately prove
� b ⇒ a ∈ UB and � a ⇒ b ∈ UB without recursing into the structure of the
subterms a and b. Note that if we were deriving subtypes in order to check the
term for subtype correctness then we would be obliged to carry out this recursion
step to check a and b, but if our goal is proving set membership then we can
safely skip this.

3.2 Proving Conditions During Rewriting

We can use the predicate set prover as a condition prover in a contextual rewriter,
and there are several reasons why it is useful to integrate these tools:

– There is a trend to incorporate tools into contextual rewriters because of the
automatic subterm traversal and context accumulation. The logical context
built up by the contextual rewriter is easily transferred to the predicate
set prover, and the subterm traversal allows us to attempt a proof of all
occurrences of t ∈ p in the goal term.18

– Many rewrites have side conditions that can be expressed very naturally
using restricted quantifiers, and these generate goals for the predicate set
prover when the rewrite is applied.

– Subtype judgements, rules and constants can be stored with the simplifi-
cation set of a theory, thus reducing the administration burden of theory-
specific rules.

Here are some miscellaneous rewrite rules that make use of subtype condi-
tions:

� ∀x ∈ nzreal. x/x = 1 (32)
� ∀n. ∀m ∈ lenum n. m+ (n−m) = n (33)
� ∀n ∈ nznum. n mod n = 0 (34)
� ∀ s ∈ finite. ∀ f ∈ injection s. |image f s| = |s| (35)
� ∀G ∈ group. ∀ g ∈ set G. idG ∗G g = g (36)
� ∀G ∈ group. ∀ g, h ∈ set G. (g ∗G h = h) = (g = idG) (37)

17 Here ‘constant’ means any term having no free variables.
18 When subtype derivation is applied to a subterm it accumulates context in much the

same way as a contextual rewriter. However, despite this similarity, the two tools
are orthogonal and are best implemented separately: we tried both approaches.

Predicate Subtyping with Predicate Sets 275

Using rule 32, a term like 5/5 = 3/3 is straightforwardly rewritten to �.
An effective optimization for this tool is to make adding assumptions into the

subtype logical context a lazy operation. This delays their conversion to combi-
natory form and CNF normalization until the predicate set prover is invoked on
a goal, which might not happen at all.

The last two examples above come from a body of computational number
theory that we have recently formalized [6], which provided a test of the utility
of our predicate set prover as a condition prover in a contextual rewriter. The
properties that were targeted in the development were group membership (e.g.,
g ∗G h ∈ set G), simple natural number inequalities (e.g., 0 < n or 1 < mn) and
nonemptiness properties of lists and sets (e.g., s �= ∅).

In theory, the architecture laid out in the previous section can establish much
more exotic properties than these, but the predicate subtype prover was found
to be most useful and robust on these relatively simple properties that come up
again and again during conditional rewriting. These properties naturally propa-
gate upwards through a term, being preserved by most of the basic operations,
and in such situations the predicate set prover can be relied upon to show the
desired condition (albeit sometimes rather slowly). This tool lent itself to more ef-
ficient development of the required theories, particularly the group theory where
almost every theorem has one or more group membership side-conditions.

If the predicate set prover had not been available, it would have been possible
to use a first-order prover to show most of the side-conditions, but there are three
reasons why this is a less attractive proposition: firstly it would have required
effort to find the right ‘property propagation’ theorems needed for the each goal;
secondly the explicit invocations would have led to more complicated tactics; and
thirdly some of the goals that can be proved using our specialized tool would
simply have been out of range of a more general first-order prover.

3.3 Debugging Specifications

How can we use our algorithm for deriving subtypes to find errors in a specifica-
tion? We do this by invoking the algorithm on the specification, and generating
an exception whenever the algorithm would return an empty set of subtypes for
a subterm.

Consider the following family of specifications:

(inv x) ∗ x = 1 (38)
x ∈ nzreal⇒ (inv x) ∗ x = 1 (39)

inv x ∈ nzreal⇒ (inv x) ∗ x = 1 (40)

inv ∈ UR

·→ nzreal⇒ (inv x) ∗ x = 1 (41)

inv ∈ UR

·→ UR ⇒ (inv x) ∗ x = 1 (42)

The subtype checker will generate an exception for specification 38, complaining
that it could not derive a type for the subterm inv x. Why does it say this?
The exception is raised because the algorithm could not find a consistent set
of subtypes for the subterms inv and x, when using the subtype rule (19) for

276 Joe Hurd

function application. And this we see to be true, because without any additional
knowledge of x we cannot show it to be in any of the sets nzreal, posreal or
negreal that the subtype (21) of the constant inv demands.

Specification 39 shows the right solution: add a guard to stop x from taking
the illegal value of 0. And this solves the problem, the subtype checker can now
derive a subtype of nzreal for the subterm inv x (and a subtype of UB for the
whole term).

This is how we would expect the subtype checker to be used in practice. A
specification is entered and subtype checked, the errors are corrected by adding
the necessary guards, and only then is verification started. This could potentially
save much wasted effort and act as a valuable teaching tool.

Specifications 40–42 represent various attempts to subvert the subtype
checker. Specification 40 is a silly attempt: now the inv x in the antecedent
fails to subtype check! However, even if the antecedent were added unchecked
to the logical context, the consequent would still not subtype check: an extra
subtype for inv x does not help at all in the search to find consistent subtypes for
inv and x using the rule for function application. Specification 41 steps up a level
in the arms race by assuming a subtype for inv, and now this term does subtype
check since the higher-order prover just needs to show that x ∈ UR: a triviality.
However, we may take consolation in the fact that this antecedent is unprovable.
Finally Specification 42 is the most worrying attack: the term subtype checks,
and we can use Theorem 13 to prove the condition.

4 Logical Limits

The final example of the previous section showed how to subvert the subtype
checker that we implement. Unfortunately, this is not just an inadequacy of
the subtype checker, but rather an inescapable consequence of reasoning with
predicate sets in the HOL logic. Since HOL is a logic of total functions, given
any function f : α→ β we can prove the theorem

� f ∈ Uα
·→ Uβ (43)

since this just expands to � ∀x. x ∈ Uα ⇒ f x ∈ Uβ , which is true by the
definition of the universal set Uβ .

This means that enforceable predicate subtyping using predicate sets cannot
exist as a layer on top of the existing HOL kernel, since Theorem 43 is true even
for restricted constants (such as inv), and can be used by the subtype checker to
allow the application of such constants to any argument.

Example 3. Even if the user is not trying to subvert the system, it might happen
accidentally. If we are subtype checking the following specification

P ⇒ Q (inv 0)

then when we subtype check the consequent Q (inv 0) we add the antecedent
P to the logical context, and it might transpire that P somehow causes the

Predicate Subtyping with Predicate Sets 277

higher-order prover to deduce inv ∈ UR

·→ UR,19 which then allows Q (inv 0) to
be successfully subtype checked.

PVS is also a logic of total functions, but the ability to make a first-class type
of non-zero reals means that if inv is declared to have type R

�=0 → R then the
type-system can stop the function from being ‘lifted’ to a larger type. Essentially
the PVS logic implements a logic of partial functions, but by insisting that a type
is available for every function’s domain can avoid all questions of definedness.

5 Conclusion

We have shown how predicate subtyping can be modelled in HOL using predi-
cate sets, explained how to perform subtype checking using our framework, and
illustrated some applications of this to specification and verification in HOL.

It is helpful to divide the benefits of predicate subtyping into two categories:
negative features, which consist of spotting and disallowing type-incorrect terms;
and positive features, which consist of allowing properties to be (more quickly)
deduced that help prove theorems.

In this paper we have shown that we can gain many of the positive benefits
of predicate subtyping,20 and in some ways we can even do better: our system
does not only calculate with principal subtypes but rather with any subtype that
the term can be shown to satisfy using the rules. This was shown to provide an
effective proof procedure on a body of formalized mathematics.

In our experience the model is also quite robust when used for the negative
features of predicate subtyping, and finds most typical errors that predicate
subtyping is designed to prevent. Unfortunately, we have shown that in certain
situations it can be subverted, and so we cannot claim to match the PVS level of
type safety. However, it is worth remarking that specifications that are provable
must possess this level of type safety,21 so a guarantee is most valuable if the
specification will never be verified. If verification is our goal, then any debugging
that can be performed in advance will speed up the process, but an absolute
guarantee is not necessary. In conclusion, predicate subtyping using predicate
sets should be seen as an extra box of tools to aid verification.

6 Further Work

On the basis of our case study, we can seek to improve the predicate set prover
by making it faster and more robust on simple and ubiquitous subtypes. One
obvious approach to this would be to improve the underlying higher-order prover.
19 After all, it is a theorem!
20 Although almost certainly the performance using our model is worse than genuine

predicate subtyping: keeping subtypes with the terms so they never have to be
derived must provide a boost. We also experimented with this kind of architecture,
but dropped it in favour of the system presented in the current paper to simplify
the design and increase interoperability with existing tools.

21 That is, if restricted constants are underspecified outside their domain.

278 Joe Hurd

In particular the handling of equality and reasoning with total orders could be
much more effective; perhaps we could interface to a linear decision procedure
to speed up the latter.

Another, more speculative, line of research would be to use subtype checking
to perform subtype inference of new constants. If it could be made to work this
would be extremely useful: currently for each constant which we would like to
add to the constant subtype dictionary, we must specify and prove a result of
the form of Theorems 21–28. The idea is to initially enter the type of the new
constant c as c ∈ p where p is a variable; during subtype checking we collect
constraints on p; and finally at the top-level we try to solve these constraints:
the solutions being subtypes for c.

7 Related Work

The model of predicate subtyping using predicate sets builds upon Wong’s [18]
restricted quantifier library in HOL88, and the exact details of the predicate sub-
typing in our model attempts to follow the PVS architecture. For the full details
of the semantics and implementation of subtyping in PVS, refer to Owre [14].

Previous work in this area has been done by Jones [7], who built a tool in
HOL to specify the subtype of constants and subtype check terms with respect
to the subtypes. Given a term t, the tool sets up HOL goals that, if proved, would
correspond to the term being subtype-correct. The user is then free to use these
extra theorems during verification. Our model extends Jones’ by the introduc-
tion of subtype rules for generating type-correctness conditions, the higher-order
prover to automatically prove conditions, and the integration of the tool into a
rewriter to aid interactive proof.

A comparison of HOL and PVS was made by Gordon [3], from the perspec-
tives of logic, automatic proof and usability. Our work is only relevant to part
of this comparison, and enthusiastically takes up some of the suggestions for
modelling PVS-style constructs in HOL.

ACL2 uses guards [8] to stop functions from being applied outside their
domain; these generate proof obligations when new functions are defined in terms
of guarded functions. When the proof obligations have been satisfied the new
function is given a ‘gold’ status, and can be safely executed without causing run-
time type errors. This is very similar to the way PVS type-checks terms before
admitting them into the system.

Saaltink [16] has also implemented a system of guard formulas in Z/EVES,
which both aids formal Z proofs and has found some errors in Z specifications.
The Z logic allows terms to be ‘undefined’, but the system of guard formulas
imposed will flag the situations that can result in undefinedness, allowing clas-
sical reasoning on the partial logic. Since Z is based on set theory, this use of
guards does not suffer from the logical limitations we outlined in Section 4, and
can provide strong guarantees about a checked specification. However, whereas
our subtype rules propagate all available logical information around the term,
Saaltink chooses a “left-to-right system of interpretation” that is not complete,
but works well in most practical situations and simplifies guard conditions.

Predicate Subtyping with Predicate Sets 279

Finally, there has been a huge amount of work on subtyping and polymor-
phism in various λ-calculi, used to model object-orientated programming lan-
guages. Some concepts from this field are related to our work, in particular the
notion of intersection types corresponds to finding multiple subtypes of a term.
Campognoni’s thesis [2] provides a good introduction to this area.

Acknowledgements

My Ph.D. supervisor, Mike Gordon, got me started on this topic and helped
bring the project to a successful conclusion. I had many valuable conversations
about predicate subtyping with Judita Preiss, Konrad Slind and Michael Nor-
rish, and their comments on this paper (particularly Konrad’s keen eye) helped
remove many potential misunderstandings. John Harrison gave me help with
implementing the higher-order prover, and Ken Larsen should be credited as the
local ML guru. Finally, the comments of the TPHOLs referees improved this
paper tremendously.

References

1. Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

2. Adriana B. Compagnoni. Higher-Order Subtyping with Intersection Types. PhD
thesis, Catholic University, Nigmegen, January 1995.

3. M. J. C. Gordon. Notes on PVS from a HOL perspective. Available from the
University of Cambridge Computer Laboratory web server.

4. M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving
environment for higher order logic). Cambridge University Press, 1993.

5. John Harrison. Optimizing proof search in model elimination. In M. A. McRobbie
and J. K. Slaney, editors, 13th International Conference on Automated Deduction,
volume 1104 of Lecture Notes in Computer Science, pages 313–327, New Brunswick,
NJ, 1996. Springer-Verlag.

6. Joe Hurd. Verification of the Miller-Rabin probabilistic primality test. Submitted
as a Category B paper to TPHOLs 2001, May 2001.

7. Michael D. Jones. Restricted types for HOL. In TPHOLs 1997 Category B papers,
1997.

8. Matt Kaufmann and J. S. Moore. Industrial strength theorem prover for a logic
based on Common Lisp. IEEE Transactions on Software Engineering, 23(4):203–
213, April 1997.

9. Leslie Lamport and Lawrence C. Paulson. Should your specification language be
typed? ACM Transactions on Programming Languages and Systems, 21(3):502–
526, May 1999.

10. Harry G. Mairson. Deciding ML typability is complete for deterministic exponen-
tial time. In Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, pages 382–401. ACM SIGACT and SIG-
PLAN, ACM Press, 1990.

11. R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, December 1978.

280 Joe Hurd

12. Abdel Mokkedem and Tim Leonard. Formal verification of the Alpha 21364 net-
work protocol. In Mark Aagaard and John Harrison, editors, Theorem Proving in
Higher Order Logics: 13th International Conference, TPHOLs 2000, volume 1869
of Lecture Notes in Computer Science, pages 443–461, Portland, OR, August 2000.
Springer-Verlag.

13. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Sys-
tem Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1999.

14. Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report
SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA,
August 1997.

15. J. A. Robinson. A note on mechanizing higher order logic. Machine Intelligence,
5:121–135, 1970.

16. Mark Saaltink. Domain checking Z specifications. In C. Michael Holloway and
Kelly J. Hayhurst, editors, LFM’ 97: Fourth NASA Langley Formal Methods Work-
shop, pages 185–192, Hampton, VA, September 1997.

17. Natarajan Shankar and Sam Owre. Principles and pragmatics of subtyping in
PVS. In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent Trends in Algebraic
Development Techniques, WADT ’99, volume 1827 of Lecture Notes in Computer
Science, pages 37–52, Toulouse, France, September 1999. Springer-Verlag.

18. Wai Wong. The HOL res quan library. HOL88 documentation.

	Introduction
	Notation

	The Formalism
	Subtypes
	Subtype Constructors
	Subtype Rules
	Subtypes of Constants
	Subtype Judgements
	Subtype Derivation Algorithm

	Applications
	Predicate Set Prover
	Proving Conditions During Rewriting
	Debugging Specifications

	Logical Limits
	Conclusion
	Further Work
	Related Work

