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Abstract

SELinux security policies are powerful tools to implement properties
such as process confinement and least privilege. They can also be used to
support MLS policies on SELinux. However, the policies are very complex,
and creating them is a difficult and error-prone process. Furthermore, it
is not possible to state explicit constraints on an SELinux policy such as
“information flowing to the network must be encrypted”.

We present two related Domain Specific Languages (DSL) to make it
much easier to specify SELinux security policies. The first DSL is called
Lobster. Lobster allows the user to state an information flow policy at
a very high level of abstraction, and then refine the policy into lower
and lower levels until it can be translated by the Lobster compiler into
an SELinux policy. The second DSL is called Symbion. Symbion allows
the user to state policy constraints such as “information flowing to the
network must be encrypted”. Symbion and Lobster will then interface
with tools that can check that the policy satisfies the constraints.

We also present the analysis tool Shrimp, with which we are able to
analyze and find errors in the SELinux Reference Policy. Shrimp is also
the basis for our ongoing effort in reverse translating the Reference Policy
into Lobster.

Since Lobster and Symbion represent information flows and contraints
on information flows, they are more broadly applicable than to just
SELinux. We will point to some of the directions we wish to take Lobster
and Symbion beyond SELinux.
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1 Introduction

SELinux provides a powerful enforcement mechanism called type enforcement
[7, 8] that permits much finer-grained control of access to resources than the
simple DAC and user-id based mechanisms in standard Unix or Linux operating
systems. The finer grained access control permits the implementation of the
principle of least privilege. In particular, SELinux systems need not have an
all powerful root login, which is often the target of attempts to compromise the
system.

The cost of the increased granularity of access control has been a corre-
sponding increase in the complexity of the policy specification. Current type
enforcement policy specifications have tens of thousands of statements. The
size of the specifications has been cut down somewhat by a slightly higher-level
policy specification language based on the m4 macro preprocessor (and other
Unix tools). The m4 based language is called the reference policy language.
However the policy specifications are still large and complex. In addition, the
semantics of the m4-based language is uncertain. Neither of these languages
gives any assurance to the user that a higher-level policy such as “domain A is
isolated from domain B” has been correctly implemented in the low level policy
statement.

Thus we address two concerns with the current SELinux policy languages,
their complexity and the lack of facility to make explicit properties that con-
strain the policy. To address these concerns, we have designed two tightly-
coupled but independent domain-specific languages: Lobster, a language for
expressing security policies at a high level; and Symbion, an assertion language
over information flows.

Addressing the concern for complexity of the policy specification, a Lobster
specification clearly expresses a policy in terms of information flows among
nested security domains. Lobster also supports a notion of refinement, where
an overall, concise specification can be turned into more detailed specifications
in a way that ensures that the overall policy is upheld.

Addressing the concern to state explicit constraints on the policy, Symbion
allows one to make assertions about the nature of information flow in a given
system. For example, in Symbion we can express the restriction “every flow from
the Secret domain to the Internet domain goes through the Encrypt domain.”

A Lobster policy is refined a step at a time from a very high level down
to a level that is very close to the current reference policy. The highest level
Lobster domains might specify the desired information flows amongst a few
application domains. The lowest level Lobster domains correspond closely to
primitive SELinux classes such as File and Process. At each stage of refinement
more details are added to the information flows in the policy.

The Symbion constraints can be applied at any level of refinement. When
a domain is refined, the constraints on the domain must be observed by the
refinement of the domain as well. Symbion thus imposes consistency conditions
on the refinement that must be discharged as the specification is refined. Sym-
bion is being designed to permit model checking tools to automatically check
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Figure 1: Modeling an application in an SELinux system.

the consistency of refinements.
In this paper, we show how to compile Lobster policies into SELinux mod-

ules, and present early tools for analyzing the complete Reference Policy and
generating the corresponding Lobster specifications. The tools discover nested
security domains and make all implicit information flows explicit. The resulting
Lobster specifications are informing ongoing work in the design of visualization
tools for large Lobster specifications.

Lobster began as a high level language specifically for the purpose of speci-
fying SELinux policies. We have observed that the concepts of the language are
more broadly applicable that just SELinux. Thus we have separated out the few
pieces of the language that apply specifically to SELinux, so that the SELinux
version of Lobster is an instance of a more general language. Lobster and Sym-
bion are part of a generic approach that we hope to apply to larger systems,
where SELinux policies are just one piece of the puzzle. Such large systems may
consist of networks of computers running different operating systems, but also
routers, firewalls and guards. The goal is to have a single language (that we call
Nova Scotia) in which we can specify security policies for such large systems.

2 Modeling SELinux Systems

A security policy designer might view an SELinux system in terms of informa-
tion flows between security domains. For example, the application in Figure 1
receives information from a web server and sends information to a mail server;
the arrows in the diagram indicate the dominant flow of information.

Information flow can also represent privileges or capabilities, in the follow-
ing way: if subject A has the privilege to act on object B, then this can be
represented by an information flow between A and B. The dominant flow of a
write privilege would be from A to B, and conversely the dominant flow of a
read privilege would be from B to A. For another example, the init process
in Figure 1 has the privilege to start up the application, and this is represented
by an information flow from the Init domain to the Application domain.
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Figure 2: Inside the SELinux application.

allow application_t lib_t:dir { getattr search };

allow application_t ld_so_t:file { getattr read execute ioctl };

allow application_t usr_t:dir { getattr search read lock ioctl };

allow application_t syslogd_t:unix_dgram_socket sendto;

allow application_t syslogd_t:unix_stream_socket connectto;

Figure 3: Example SELinux native policy statements.

Representing privilege with information flow is a different way of viewing a
system, and this shift of viewpoint emphasizes different aspects of the system.
Viewing a system in terms of privileges makes it important to distinguish sub-
jects and objects, but from an information flow perspective there is no difference
between A having the power to write to B and B having the power to read from
A.1 Emphasizing flow makes it easier to see how information flows through a
system. Returning again to Figure 1, the policy representation makes it easy
to see that there is a flow of information from the web server to the mail server
moderated by the application.

SELinux applications are not restricted to run within a single security do-
main: separate process and resources can exist in their own security domains,
and the SELinux system is used to ensure that all interactions between them
are consistent with the security policy in force. Figure 2 shows how the exam-
ple application might be internally broken down into separate security domains,
with explicit information flows permitted between them.

Continuing with the example, suppose that a developer implements the ap-
plication and also writes an SELinux policy for it. Some example policy state-
ments are shown in Figure 3. How is it possible to check that the security
policy designer’s permitted information flows and the developer’s SELinux pol-
icy statements are consistent?

1In fact, the distinction between subjects and objects can be encoded in an information
flow view, and in Section 5.1 such an encoding is used to compile an information flow policy
to SELinux.
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One approach to solving this problem is to express the information flows in
a high level language, and to compile it down to SELinux policies. This paper
presents Lobster, a Domain Specific Language (DSL) for expressing information
flows between security domains.

In general, the SELinux policy written by the developer will contain much
more detail than the information flow view of the security policy designer. This
is the intended use of the Lobster DSL:

1. A security policy designer writes a Lobster information flow diagram for
the application.

2. A developer writes a Lobster policy for the application.

3. An automatic tool verifies that the Lobster policy (2) is a refinement of
the Lobster information flow diagram (1), in that no extra information
flows have been introduced.

4. A compiler takes the Lobster policy (2) and generates SELinux policy
statements.

3 Information Flow Graphs

In the previous section, Figures 1 and 2 presented information flows between
nested security domains in a graphical form. Such diagrams are called infor-
mation flow graphs, and these graphs are the semantic foundation of Lobster
policies. A Lobster policy is compiled into an information flow graph as an
intermediate step on the way to a native SELinux policy.
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dom1.port1 -- dom2.port1;

dom1.port2 --> dom2.port2;

dom1.port3 <--> dom2.port3;

Figure 5: Example Lobster connections.

3.1 Domains

Figure 4 shows a Lobster domain with named ports. A domain is a security
domain, and the inside can communicate with the outside only via its ports.

3.2 Ports

Ports can be declared with information flow properties:

port p1 : {direction = input, type = requests};
port p2 : {direction = bidirectional};

All information flow properties are optional: an unspecified property is
deemed to be polymorphic in its value. When specified, the direction property
is either input, output or bidirectional, and restricts the kind of connections
that can be made to the port. The type value captures the type of information
handled by the port—it has nothing to do with SELinux types.

Although direction and type are the only information flow properties pro-
vided by Lobster, the language is designed to be extensible in this regard. For
example, to compile Lobster policies to SELinux native policy, we will define
and use a position information flow property that encodes the subject/object
relationship that is central to SELinux type enforcement.

3.3 Connections

Pairs of domain ports may be connected: Figure 5 shows three examples. A con-
nection is legal between two ports if they have the same type properties, and the
different kinds of connection direction symbols add the following requirements:
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Figure 6: Lobster domains can be nested.

• dom1.port1 -- dom2.port1; adds no requirements;

• dom1.port2 --> dom2.port2; requires that dom1.port2 has an output
direction property, and dom2.port2 has an input direction property.

• dom1.port3 <--> dom2.port3; requires that the dom1.port3 has
a bidirectional direction property, and dom2.port3 has an
bidirectional direction property.

As we will see in Section 5, Lobster connections are compiled into SELinux
type and allow statements.

3.4 Nested Domains

One domain may be nested inside another; connections are permitted between
ports in the containing domain and ports in the nested domain. Figure 6 shows
an example of connections between nested domains: note that port1 is indirectly
connected via port2 to both port3a and port3b.

A domain corresponds to an SELinux type, where the name of the type
is determined by the name of the domain and the names of the containing
domains. For example, the SELinux type corresponding to the domain in Fig-
ure 4 is simply dom t, and the name of the controller domain in Figure 2 is
application controller t.

3.5 Internal Connections

It is possible to connect one port of a domain to another port of the same
domain; such a connection can occur on either the outside or the inside of
the domain. Such a connection on the inside of the domain is called an internal
connection; all other connections are regular connections. There is an important
difference between internal connections and regular connections, which is that
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internal connections are allowed to connect ports with incompatible information
flow properties.

Figure 7 shows an example information flow graph, with domains a, b, c and
d, each having ports named p, q or r, and solid arrows being regular connections
between the ports. The regular connection from a.r to a.p is an example of two
ports of the a domain being connected together, with the connection outside a.
The dotted arrow from b.p to b.q is an internal connection, connecting together
two ports of the b domain, with the connection being inside b.

3.6 Flows

A flow in G between ports d0.p0 and dn.pn is an alternating sequence of con-
nections and ports

〈l0〉 d1.p1 〈l1〉 d2.p2 · · · dn−1.pn−1 〈ln−1〉

where li is a directed connection in G from port di.pi to port di+1.pi+1, and
exactly one of li and li+1 is a connection inside the domain di+1. The latter
condition enforces correct flow through domain ports: inside the domain to
outside, or outside to inside (but not inside to inside or outside to outside).
Note that the connections in flows can be either regular connections or internal
connections, so long as the conditions are satisfied. The length of a flow is the
number of connections in the flow.

Given two ports d1.p and d2.q in G, we use the notation flows(d1.p, d2.q) for
the set of flows between d1.p and d2.q. If we want to restrict all the connections
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in the flows to be within a domain d, we use the notation flowsd(d1.p, d2.q).
Note that the flows in this restricted set cannot visit any ports of d.

In Figure 7 all of the following are flows:2

〈·〉 ∈ flows(a.q, d.p)
〈·〉 ∈ flows(b.q, a.q)

〈·〉 a.q 〈·〉 ∈ flows(b.q, d.p)
〈·〉 ∈ flows(b.p, b.q)

〈·〉 b.q 〈·〉 a.q 〈·〉 a.p 〈·〉 ∈ flows(b.p, b.p)
〈·〉 b.q 〈·〉 a.q 〈·〉 a.p 〈·〉 b.p 〈·〉 b.q 〈·〉 a.q 〈·〉 a.p 〈·〉 ∈ flows(b.p, b.p)

The last two examples demonstrate that internal connections can make loops
possible, which can lead to an infinite number of (finite) flows.

4 The Lobster Policy Language

In an information flow graph modelling a realistic SELinux system, there are
likely to be common patterns of nested domains connected together, and it
would be tedious to explicitly specify this repetition in the policy language. The
need to capture these patterns motivates the design of Lobster, where a policy
is represented as a program that, when interpreted, generates the information
flow graph. As we will see in the following subsections, Lobster policies are
written using an object oriented syntax: classes are instantiated to domains,
and connections are like method calls.

4.1 Classes

Here is a simple Lobster class with one type and one port:

class C() {
type t;

port p : {type = t};
}

The domain statement demonstrates how to instantiate the class C into a
new domain:

domain c = C();

When a class is instantiated, all the statements inside the class definition are
executed, like a class constructor function in an object oriented programming
language. If any of these statements creates new domains, they become nested
domains.

Classes can take arguments, which are passed in when instantiating the class.

class D(t) { port p : {type = t}; }
domain d = D(requests);

2The notation 〈·〉 is used to represent an unlabeled connection.
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class Process() {

port active : {position = subject};

}

class File(filenameRegex) {

port read : {direction = output, position = object};

port write : {direction = input, position = object};

}

class ExampleApp(dataFilenameRegexp) {

domain app = Process();

domain data = File(dataFilenameRegexp);

app.active <-- data.read;

app.active --> data.write;

}

domain example = ExampleApp("/tmp/example.*");

Figure 8: An example Lobster policy.

4.2 Lobster Policies to Information Flow Graphs

Lobster policies consist of a sequence of class definitions and top level domain
and connection statements. An example Lobster policy can be seen in Figure 8.

The following algorithm is used to interpret a Lobster policy and generate
an information flow graph:

1. The top level class definitions are read, and the statements within them
stored.

2. The top level domain statements are used to instantiate some classes and
create the top level domains. In this step the statements in the class
definition are interpreted to build up nested structure within the domain.

3. Finally, the top level connection statements are interpreted to connect up
the top level domains.

5 Compiling to SELinux Native Policies

This is how a Lobster policy is compiled into SELinux:

1. Interpret the Lobster policy to generate the information flow graph.

2. Check that the connections in the information flow graph are between
compatible ports.

3. Generate the SELinux type enforcements and file contexts from the infor-
mation flow graph.

11



5.1 Primitive SELinux Classes

For every SELinux class declared in the reference policy, there must be a Lobster
class of the same name. The SELinux permissions are its ports. For example,
here is an excerpt of the Lobster class corresponding to the SELinux file class:

class File(regexp) {
port read : {direction = output};
port write : {direction = input};
...

}

In addition to the ports resulting from their permissions, active classes must
have a special active port with a position information flow property indicating
its subject status:

class Process {
port active : {position = subject}
...

}

These classes would be part of a Lobster version of the SELinux policy in
force, allowing Lobster application policies to be checked in the right context.

5.2 Generating SELinux Native Policy

The connections between primitive domains define the SELinux type enforce-
ment rules. For example, consider the following Lobster policy:

domain p = Process();

domain f = File("/tmp/file");

p.active -- f.read;

The connection would generate the SELinux type enforcement:

allow p_t f_t : file read;

It is the special subject information flow property of the active port of the
Process class that tells the policy generator that the p t type should be in the
subject position and the f t type should be in the object position of the allow
rule. Exactly one of the connected ports should have the subject information
flow property.

In addition, the special regexp argument in the instantiation of the File class
would generate an SELinux file context:

/tmp/file -- gen_context(system_u:domain_r:f_t,s0)

5.3 The Lobster Compiler

The compilation of Lobster policies into SELinux native policies has been im-
plemented as a prototype compiler. For example, suppose the file example.lsr
contains the example Lobster policy in Figure 8. Running the command
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lobster example.lsr

results in the creation of the example.te output file containing the type en-
forcement statements

policy_module(example1,1.0)

type example_app_t;

type example_data_t;

allow example_app_t example_data_t:file read;

allow example_app_t example_data_t:file write;

and the example.fc output file containing the file context

/tmp/example.* -- gen_context(system_u:domain_r:example_data_t,s0)

6 The Symbion Assertion Language

Symbion is the name of a genus of aquatic animals, less than 1
2mm wide, found

living attached to the bodies of cold-water lobsters.
Symbion is the name of the assertion language for information flows in Lob-

ster policies. The idea is that flow assertions can be attached to Lobster policies;
an information flow graph is then generated from the Lobster policy, and the
possible flows are checked to make sure they conform with the assertions.

6.1 Expressivity

A Symbion assertion defines a set of acceptable flows between each pair of
ports, and for an assertion φ to hold of an information flow graph G, every
possible flow must be acceptable. Choosing the expressivity of the Symbion
language is a trade-off between making it flexible enough to succinctly write
typical information flow requirements, and making it simple enough to design
efficient algorithms to check the assertions.

As a first cut, Symbion flow predicates are extended regular expressions on
flows, where the atomic steps (a.k.a. letters of the alphabet) are predicates on
the port or connection properties. Propositional connectives (i.e., ∧, ∨, ¬ and
⇒) are permitted to connect flow predicates. Explicit start and end anchors
(i.e., ^ and $) are not used—the flow predicate must match the whole flow.

A Symbion assertion is a triple

P → Q : φ

where P and Q are predicates on the start and end ports, and φ is a Symbion
flow predicate that defines the set of acceptable flows between them. This is
what it means for this assertion to hold of an information flow graph: given any
port d.p that satisfies P and any port e.q that satisfies Q, every flow between
d.p and e.q must satisfy the flow predicate φ.
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6.2 Syntax

At present there is no concrete syntax for Symbion assertions. For the pur-
pose of showing some examples, we will use POSIX extended regular expression
syntax [2], the standard symbols and precedences for propositional connectives,
and informal descriptions of the atomic port and connection propositions. Port
propositions are enclosed in square brackets, and connection propositions are in
angle brackets.

Here are some example assertions on the information flow graph in Figure 7.

• [a.∗] → [d.∗] : false – “there is no flow from domain a to domain d” –
violated by the flow a.q 〈·〉 d.p.

• [d.∗]→ [a.∗] : false – “there is no flow from domain d to domain a” – this
assertion succeeds.

• [b.p]→ [b.p] : false – “there is no flow from port b.p to itself – violated by
the flow b.p 〈·〉 b.q 〈·〉 a.q 〈·〉 a.p 〈·〉 b.p.

• [b.p]→ [b.p] : .∗ 〈isInternal〉 .∗ – “every flow from b.p to b.p uses an internal
connection – this assertion succeeds.

Here are some examples focused on security, for hypothetical systems:

• [secret.∗]→ [internet.∗] : false – “there is no flow from the secret domain
to the internet domain”.

• [secret.∗] → [internet.∗] : .∗ [encrypt.∗] .∗ – “every flow from the secret
domain to the internet domain goes through the encrypt domain”.

7 Refinement

Section 6 defined the Symbion assertion language, and used it to check global
properties of information flow graphs. In this section we show how it can be
used to define and check refinement of information flow graphs.

7.1 Domain Specifications

A domain specification consists of

1. A finite set of domain ports (e.g., {p, q, . . .}).

2. Information flow properties for each domain port.

3. A Symbion flow predicate Lp→q for every pair of domain ports p and q.
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7.2 Verifying Domain Specifications

Suppose we have a domain d where the internal structure is known, and a
domain specification for d. It is possible to verify that the internal structure of
the domain d satisfies the domain specification by using the following algorithm:

1. Check the set of domain ports exactly matches the specification.

2. Use the internal structure of d to infer a set of information flow properties
for each port of d. Check that, for each port, the specified information
flow properties are more specific than the inferred properties.

3. For each pair of ports p and q, compute the set of flows flowsd(p, q) from p
to q through the internal structure of d. Check that the computed set of
flows satisfies the Symbion flow predicate Lp→q, as illustrated in Figure 9.

What does it mean for a domain to satisfy a domain specification? Step 1
ensures that the externally visible structure of the domain exactly matches
the specification. Step 2 ensures that port connections that are compatible
according to the domain specification are also compatible with the domain.
Finally, Step 3 ensures that there are no unspecified internal flows through the
domain between its ports.

7.3 Refinement

The previous section suggests a methodology for modeling information flow in
complex systems. The information flow can be represented as an information
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flow graph, with the high-level domains having internal structure and the low-
level domains as mere domain specifications.

One by one, the domain specifications can be elaborated as domains with
internal structure where the lowest-level domains can be domain specifications,
and the flows checked against the domain specification.

In this way, a complex system such as a computer network can be refined
to an implementation in a uniform way, with some confidence that the overall
security policy holds.

7.4 Primitive Domains

In general, it is up to the designer of the system to decide if a low-level domain
has sufficient similarity to an entity on the system to regard it as primitive, and
not to refine it any more.

In the case of an SELinux system, the domains can be refined down to
SELinux classes, such as processes, files and directories. The domain specifica-
tion of a file class is easy to define, by internally connecting the write port to
the read port. This captures the fact that a file is a passive storage mechanism,
and any data that is written to the file can later be read.

The case of a process class is more complicated. The process is an active
subject, and may read data from multiple inputs and write to multiple outputs,
without it necessarily being the case that there is an information flow from
every input to every output. For most processes, it will not matter if this worst-
case scenario is assumed; for certain security-critical processes, it may require a
formal proof that there is no information flow from one input to one output.

8 Analyzing SELinux Reference Policies using
Shrimp

Through the introduction of modular policies with separation of interface and
implementation, the Reference Policy [9] has enabled SELinux policies to be
developed and maintained in a way that scales to large Linux distributions with
hundreds of packages. The Reference Policy has had a clear impact in that it is
included in several large distributions, including Red Hat Enterprise Linux, Fe-
dora, Gentoo and Debian. As such, the Reference Policy is a success in applying
software-engineering principles to solve the problem of writing and maintaining
large security policies. In its current tool incarnation, many of the principles
behind the Reference Policy are supported only by convention and not actu-
ally machine checked. One reason for the limited automatic checks is the fact
that there is almost no analysis taking place when translating Reference Pol-
icy modules to native SELinux modules. This is due to the use of standard
text-processing tools such as m4, which are convenient for developing straight-
forward macro-expansion transformations, but fall short in providing support
for non-local analysis.
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Figure 10: Shrimp integrated into SLIDE from Tresys. The top window is the
standard SLIDE view of a policy module. The bottom part shows a Problems
tab with errors detected by Shrimp.

Particularly given the impact that the Reference Policy has, it is valuable
to have tools that could could analyze policy modules before macro expansion,
by treating the Reference Policy as a domain-specific policy language, as it was
intended. We developed the analysis tool Shrimp for this purpose. Shrimp
treats many of the low-level macros in the Reference Policy as language-level
keywords, and this allows us to mechanically check many of the rules that used
to be “by convention” and never really enforced. For example, Shrimp detects
when one module breaks the abstraction barrier and directly refers to a type in
another module. Roughly, Shrimp is to the Reference Policy what Lint [4] is to
C.

A team at Tresys lead by David Sugar has developed a plugin that integrates
Shrimp into SLIDE [13], which is an integrated development environment for
SELinux policy modules, see Figure 10. This has increased the usefulness of
Shrimp—together, Shrimp and SLIDE can not only detect policy errors but
also suggest corrections.
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Figure 11: Excerpt from documentation generated for an interface in the Ref-
erence Policy. The third column contains type information (called kind infor-
mation since “type” has a special meaning in SELinux) that has been inferred
by Shrimp. The other columns are taken from documentation provided by the
policy writer.

Based on these basic capabilities, we extended Shrimp to perform type infer-
ence on Reference Policy macros. We use the result of this analysis to produce
HTML documentation of the Reference Policy that includes inferred types of
parameters, see Figure 11.

Shrimp also infers where symbols are declared (exported) and required
(imported). An example is illustrated in Figure 12, where it has been
inferred that the template (one type of macro in the Reference Policy)
mozilla dbus chat requires a domain symbol that is formed by appending
mozilla t to its first parameter. This symbol can be declared by calling the

macro mozilla per role template, which Shrimp reflects in the origin column.
This reveals a dependency between macros, in that the dbus-chat template can
only be called after the per-role template has been called. In fact, this depen-
dency suggests that the per-role template could be seen as a method on an
object created by the dbus-chat template. Based on Shrimp, we are currently
prototyping a translation tool from Reference Policy modules into Lobster poli-
cies, and are investigating to what extent the template dependency analysis can
be used to give the generated policies more structure.

9 Use Case: Policies for Guards

Although the Lobster compiler is still under development, we have been able
to apply it in the Guardol program by Rockwell Collins. In this work, we
generate information flow policies in Lobster from guard specifications, and
then translate them into SELinux policies that confine the components of the
guard. We also see an opportunity to use Symbion assertions to state explicit
restrictions in how guard components may interact. By introducing high-level
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Figure 12: Shrimp analysis results for the template mozilla dbus chat.

information flow specifications with assertions we get additional opportunities
for both human and automatic correctness checks. We believe these checks
together help us gain assurance that guards behave according to specification.

10 Related Work

The Reference Policy [9] from Tresys raises the level above the SELinux native
policy by introducing the concept of modules that separate interface from im-
plementation of a security policy for a software package. This makes it possible
for programmers to define at an abstract level how a piece of software inter-
acts with the rest of the system by putting together a policy module that calls
interfaces in existing modules. However, the Reference Policy doesn’t directly
support the need for understanding what the information flow is among a set
of modules. Part of the problem is that the Reference Policy is not precisely
defined since it is implemented using the general-purpose macro processor m4,
which does not enforce any of the intended abstraction barriers. Another reason
is more fundamental, in that one has to look inside the implementation of every
module to figure out what information flows it entails. We describe our effort
in analyzing the Reference Policy language in Section 8.

In developing an alternative to the Reference Policy called SEng [5], Kulin-
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iewicz recognized the problem of analyzing policies that are defined in terms of
low-level macro processors. SEng is modeled closely after the Reference Pol-
icy, but eliminates the use of m4 macro definitions in favor of several language
primitives for different kinds of abstractions.

PLEASE is another language presented by Quigley as an alternative to the
Reference Policy [10], based on an object-oriented design. Security domains are
called resources, and such resources may export permissions (which resemble
methods) and extend other resources (resembling inheritance). Quigley’s work
is an indicator that an object-oriented point of view is helpful in designing
security-policy languages, and provides us with additional motivation to look
for an implicit object-oriented structure in the design of the Reference Policy.

The Polgen Specification Language (PSL) [11] is based on declarations of
components corresponding to security domains. Each component declaration
contains a list of connectors to other components. There is no way to define
what kind of access is granted to a component in its declaration—the only way
to find out is to examine all other components in the system for connectors that
refer to it.

There are a number of useful tools that can analyze SELinux policies on the
native or binary levels. These include setools, apol, Gokyo, and SLAT [14, 12,
3, 1]. It would be useful to re-render some of these analyses at the Reference
Policy level based on Shrimp.

Similar to Lobster, CDSFramework [6] uses hierarchical domains to design
SELinux policies. Differences include the distinction between resources (pas-
sive) and domains (active), and unlimited access between all entities within a
domain. Whereas Lobster is based on a general notion of security domains
and information flows, CDSFramework’s focus is on providing a higher level of
abstraction on top of the Reference Policy, and a dictionary-based translation
mechanism into Reference Policy modules. This provides an easier path to com-
piling down to working policies, but complicates the analysis of the higher level
policy language.

11 Summary

By using the domain-specific languages Lobster and Symbion, we can express
security policies based on information flows between nested security domains,
and we have shown how these can be used to specify high-level policies that can
be compiled into SELinux policies. We also introduced the analysis tool Shrimp,
which appears to be fairly unique in that it allows us to analyze the SELinux
Reference Policy language without first expanding away its macro definitions.
We hope Shrimp may become a useful tool for increasing the quality of the
Reference Policy.

We see a number of ways to bring this work forward, and we will outline
them in the next section.
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12 Future Work

Going forward, we see opportunities to further strengthen SELinux target sup-
port for Lobster and Symbion. This support is bidirectional in that we are
interested both in the generation and analysis of SELinux policies.

12.1 Targeting the SELinux Reference Policy

Currently, the Lobster compiler produces native SELinux policy modules that
cannot refer to other modules in the Reference Policy. We are investigating
compilation schemes that would allow us to better integrate with the Reference
Policy. As a first step, we would allow Lobster policies to refer to existing Refer-
ence Policy modules. Although this may simplify practical policy development,
it may not be a straightforward task since we want to avoid introducing hidden
information flows in the process. Analysing the Reference Policy with Shrimp
and reverse compiling it into Lobster may help here.

12.2 Reverse Compiling the Refererence Policy into Lob-
ster

We have initial prototypes that can reverse compile the SELinux Reference
Policy into Lobster policies. By increasing the fidelity of our reverse-compilation
method, we see opportunities not only to understand existing SELinux policies
in terms of Lobster, but also a way to better interface between new Lobster
policies and an existing SELinux platform.

12.3 Visualization and Use Cases

Another major effort is to provide visualizations of security policies from Lob-
ster. To understand large and complicated policies, we believe that good visu-
alization tools will be essential. Together with reverse-compilation tools from
SELinux and other domains, Lobster visualization tools will help users under-
stand existing, large security policies.

We plan to find more SELinux-based use cases for Lobster. Candidates can
be found in other Galois technologies like the Trusted Services Engine (TSE),
the ML-Wiki, and cross-domain RSS solutions. All of these technologies may
benefit from having high-level descriptions of their information flow properties.
Moreover, these technologies can potentially be deployed on SELinux platforms
where assurance can be gained by use of enforcing SELinux policies that we can
generate automatically.

We also plan to continue to develop the Guardol use case in Section 9 to-
gether with Rockwell Collins.
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12.4 Future work beyond the SELinux Domain

We believe the concepts of nested security domains, information flows and as-
sertions that Lobster and Symbion provide are general enough that these lan-
guages can be used to describe and analyze security policies for systems beyond
SELinux.

A particularly good fit may be Secure Virtual Platforms where some security
policies describe the interior of virtual machines, using SELinux for example, and
another policy describes the interaction between the virtual machines through
the hypervisor, using Xen Security Modules. With Lobster, we can have one
coherent description of the information flow policy for the whole platform. We
can describe each virtual machine as its own nested security domain which may
be further refined. By using separate back ends, we can compile the overall
policy down to separate SELinux policies and a hypervisor policy.

A more long-term vision is to use Lobster to explicitly capture informa-
tion flow properties in larger systems comprising of networks of computers, and
perhaps complete organizations. In this vision (called Nova Scotia, where the
world’s largest lobster was caught), we would have an open standard against
which we and others can develop backends for compiling back and forth between
Lobster and various policy and configuration languages.

Having one comprehensive language for expressing security policies for large
systems would allows us to capture and check more security properties. For
example, we would be able to express that an organization should have firewalls
on every connection between its internal network and the Internet.
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