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Abstract. Gandalf is a first-order resolution theorem-prover, optimized
for speed and specializing in manipulations of large clauses. In this paper
I describe GANDALF TAC, a HOL tactic that proves goals by calling Gandalf
and mirroring the resulting proofs in HOL. This call can occur over a
network, and a Gandalf server may be set up servicing multiple HOL
clients. In addition, the translation of the Gandalf proof into HOL fits
in with the LCF model and guarantees logical consistency.

1 Introduction

Gandalf [8] [9] [10] is a resolution theorem-prover for first-order classical logic
with equality. It was written in 1994 by Tanel Tammet (tammet@cs.chal-
mers.se) and won the annual CASC competitions in 1997 and 1998, beating
off competition from Spass, Setheo and Otter. Gandalf is optimized for speed,
and specialises in manipulations of large clauses.

HOL [3] [7] is a theorem-prover for higher-order logic, with a small logical
core to ensure consistency and a highly general meta-language in which to write
proof procedures.

In this paper I describe GANDALF TAC, a HOL tactic that sits between these
two provers, enabling first-order HOL goals to be proved by Gandalf. Using a
first-order prover within a higher-order logic is not new, and many ideas have
been explored here before (e.g., FAUST and HOL [6], SEDUCT and LAMBDA
[2], 3TAP and KIV [1]). However, there are two significant novelties in the work
presented here:

– The use of a completely seperate ‘off-the-shelf’ theorem-prover, treating it
as a black box.

– The systematic use of a generic plug-in interface.

There is an increasing trend for HOL tactics to perform proof-search as much
as possible outside the logic, for reasons of speed. When a proof is found, only
then is the complete verification executed in the logical core, producing the of-
ficial theorem (and incidentally validifying the correctness of the proof search).
Perhaps the first instance of a first-order prover regenerating its proof in HOL
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was the FAUST prover developed at Karlsruhe[6], and more recently John Harri-
son wrote MESON TAC [4]; a model-elimination prover for HOL that performs the
search in ML. GANDALF TAC extends this idea, completely seperating the proof
search from the logical core by sending it to an external program (which was
probably not designed with this application in mind).

GANDALF TAC is a Prosper plug-in, and as such does not purport to be a
universal proof procedure, but rather a component of an underlying proof in-
frastructure. The Prosper1 project aims to deliver the benefits of mechanised
formal analysis to system designers in industry. Essential to this goal is an open
proof architecture, allowing formal methods technology to be combined in a mod-
ular fashion. To this end the Prosper plug-in interface2 was written by Michael
Norrish, enabling developers to add specialised verification tools (like Gandalf)
to the core proof engine in a relatively uniform way. GANDALF TAC was the first
plug-in to be written, and in a small way provided a test of concept of the
Prosper frame-work.

Although it is a digression from the main point of the paper, since nothing
has been published on Prosper to date it might be appropriate to provide an
short description of the system. Fig. 1 shows an overview of the open proof
architecture, in which client applications submit requests to a Core Proof Engine
(CPE) server, which in turn might farm out subproblems to plug-in servers. The
Plug-In Interface (PII) exists on both the CPE side as an ML API, and on the
plug-in side as an internet server that spawns the desired plug-in on request.
GANDALF TAC is implemented in ML and communicates with a Gandalf wrapper
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Fig. 1. Overview of the Prosper architecture.

1 The Prosper homepage is at http://www.dcs.gla.ac.uk/prosper/.
2 The Prosper plug-in interface homepage is at http://www.cl.cam.ac.uk/users/-

mn200/prosper.
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script by passing strings to and fro. The wrapper script takes the input string,
saves it to a file, and invokes Gandalf with the filename as a command-line
parameter, passing back all output. This is illustrated in Fig. 2.

OTHER
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PLUG-IN INTERFACE PLUG-IN INTERFACE

GANDALF_TAC GANDALF_WRAP

GANDALF GANDALF INPUT FILE

CLIENT SIDE SERVER SIDE

Fig. 2. The Gandalf internet server.

2 How It Works

Briefly, GANDALF TAC takes the input goal, converts it to a normal form, writes it
in an acceptable format, sends the string to Gandalf, parses the Gandalf proof,
translates it to a HOL proof, and proves the original goal. Fig. 3 shows the
procedure in pictorial form.

We will run through each stage in turn, tracking the metamorphosis of the
goal

∀ab. ∃x. Pa ∨ Pb ⇒ Px

2.1 Initial Primitive Steps

In the first stage of processing we assume the negation of the goal:

{¬(∀ab. ∃x. Pa ∨ Pb ⇒ Px)} ` ¬(∀ab. ∃x. Pa ∨ Pb ⇒ Px)

2.2 Conversions

In this phase we convert the conclusion to Conjunctive Normal Form (CNF),
and for this we build on a standard set of HOL conversions, originally written
by John Harrison in HOL-Light [5] and ported to HOL98 by Donald Syme. In
order, the conversions we perform are:
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Fig. 3. Overview of GANDALF TAC.

1. Negation normal form.
2. Anti-prenex normal form.
3. Move existential quantifers to the outside (partial Skolemization).
4. Conjunctive normal form.

After these conversions we extract the conjuncts to give to Gandalf.
Our example becomes:

{¬(∀ab. ∃x. Pa ∨ Pb ⇒ Px)} ` ∃ab.
(∀x′. ¬(Px′)

) ∧ (
Pa ∨ Pb

)

and the relevant terms we will pass to Gandalf are:

¬(Px′)
Pa ∨ Pb

2.3 Printing

We now have our goal in a form acceptable to Gandalf, and we can write it
to a string and send it to the program. We must add a header and a footer of
control information, and we must also take care to rename all the HOL con-
stants/variables, so that constants and existentially quantified variables have
names of the form cn, and universally quantified variables have names of the
form xn. Another wrinkle is that Gandalf will not accept propositional variables
directly, so we shoehorn them in by pretending that they’re 1 place predicates
on a constant symbol not mentioned anywhere else.
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This is the input string that we send to Gandalf in our example:

%------------------------%
% hol -> gandalf formula %
%------------------------%
set(auto).
assign(max_seconds,300).
assign(print_level,30).

list(sos).

-c10(x1).

c10(c5) |
c10(c6).
end_of_list.

2.4 Calling Gandalf

We are now ready to call Gandalf with the input string, and here we use the
Prosper plug-in interface library.

By default, when GANDALF TAC is loaded a Gandalf internet server is auto-
matically started on the local machine and registered with the system. Commu-
nicating with it is simply a matter of calling routines in the plug-in interface;
in particular we can spawn a new Gandalf process, send it an input string, and
receive its output as a string.

However, the generic system is as detailed in Fig. 2. The Gandalf internet
server can be run on any machine on the network as long as its location is
registered with the plug-in interface when the client initialises. In this general
setup we can have HOL sessions on several machines all making use of the same
Gandalf server. The default is for ease of installation only.

Here is what the Gandalf server returns in our example:

Gandalf v. c-1.0c starting to prove: gandalf.26884

strategies selected:
((binary 30 #t) (binary-unit 90 #f) (hyper 30 #f)
(binary-order 15 #f) (binary-nameorder 60 #f 1 3)
(binary-nameorder 75 #f))

********* EMPTY CLAUSE DERIVED *********

timer checkpoints: c(2,0,28,2,30,28)

1 [] c10(c5) | c10(c6).
2 [] -c10(x).
3 [binary,1,2,binary_s,2] contradiction.
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Note that the variable x1 we passed in to Gandalf has disappeared, and a
new variable x has appeared. In general we can assume nothing about the names
of variables before and after the call.

2.5 Parsing

Our task is now to parse the output string into a Gandalf proof structure, ready
to be translated into the corresponding HOL proof. We first check that the string
“EMPTY CLAUSE DERIVED” occurs in the output string (or else the tactic
fails), and then cut out the proof part of the output string. The use of ML
parser combinators enabled a parser to be quickly constructed, and we put the
result into special purpose datatypes for storing proof steps, simplifications and
Gandalf terms.

Here is the result of the parse on our running example:

[(1, (Axiom(), []),
[(true, Branch(Leaf "c10", Leaf "c5")),
(true, Branch(Leaf "c10", Leaf "c6"))]),

(2, (Axiom(), []),
[(false, Branch(Leaf "c10", Leaf "x"))]),
(3, (Binary((1, 1), (2, 1)), [Binary_s(2, 1)]),
[])]

: (int * (Proofstep * Clausesimp list) * (bool * Tree) list) list

2.6 Translating

The proof translator is by far the most complicated part of GANDALF TAC. Gan-
dalf has four basic proof steps (binary resolution, hyper-resolution, factoring and
paramodulation) and four basic simplification steps (binary resolution, hyper-
resolution, factoring and demodulation). Each Gandalf proof line contains ex-
actly one proof step followed by an arbitrary number of simplification steps to
obtain a new clause (which is numbered and can be referred to in later proof
lines). The proof is logged in detail and in addition after each proof line the de-
sired clause is printed, allowing a check that the line has been correctly followed.

The problem is that even though the proofs are logged in detail, they are
occasionally not logged in enough detail to make them unambiguous. The situa-
tions in which they are ambiguous are rare, usually involving large clauses when
more than one disjunct might match a particular operation, but they occur often
enough to make it necessary to tackle the issue.

To illustrate the problem, there may be several pairs of disjuncts that it is
possible to factor, or simplifying with binary resolution may be applicable to
more than one disjunct in the clause. Gandalf also freely reorders the disjuncts
in the axioms with which it has been supplied, requiring some work to even
discover which of our own axioms it is using!3

3 In addition, my version of Gandalf had a small bug in the proof logging routine
requiring some guesswork to determine the exact literals used in the hyper-resolution
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At this point it would have been easy to contact the author of Gandalf and
ask him to put enough detail into the proofs to completely disambiguate them.
However, we decided to remain faithful to the spirit of the project by treating
Gandalf as a black-box, and looked instead for a solution within GANDALF TAC.

We implement a Prolog-style depth-first search with backtracking to follow
each line, if necessary trying all possible choices to match the Gandalf clause
with a HOL theorem. If there were many ambiguities combined with long proof
lines, this solution would be completely impractical, fortunately however am-
biguous situations occur rarely and there are usually not many possible choices,
so efficiency is not a key question. The only ambiguity that often needs to be
resolved is the matching of axioms and this is performed in ML, but all other
proof steps are performed as HOL inferences on theorems.

The final line in the Gandalf proof is a contradiction, so the corresponding
line in the HOL world is too:

{¬(∀ab. ∃x. Pa ∨ Pb ⇒ Px)} `⊥

2.7 Final Primitive Steps

After translation, we need only use the contradiction axiom in order to establish
our original goal:

` ∀ab. ∃x. Pa ∨ Pb ⇒ Px

3 Results

3.1 Performance

In Table 1 we compare the performance of GANDALF TAC with MESON TAC, using
a set of test theorems taken mostly from the set that John Harrison used to
test MESON TAC, most of which in turn are taken from the TPTP (Thousands of
Problems for Theorem Provers) archive4. In each line we give the name of the
test theorem, followed by the (real) time in seconds to prove the theorem and
the number of HOL primitive inference steps performed, for both the tactics. In
addition, after the GANDALF TAC primitive inferences, we include in brackets the
number of these inferences that were wasted due to backtracking. As can be seen
the number of wasted inferences is generally zero, but occasionally an ambiguity
turns up that requires some backtracking.

The other thing to note from Table 1 is that MESON TAC beats GANDALF TAC
in almost every case, the only exceptions lying in the hard end of both sections.
Why is this? Table 2 examines how the time is spent within both tactics. We
divide up the proof time into 3 phases:

steps. Of course this can be easily fixed by the author, but it is a good illustration
of the type of problem encountered when using an off-the shelf prover.

4 The TPTP homepage is http://wwwjessen.informatik.tu-muenchen.de/~tptp/.
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Table 1. Performance comparison of GANDALF TAC with MESON TAC.

Goal MESON TAC GANDALF TAC

Non-equality
T 0.027 31 0.034 32 (–)
P ∨ ¬P 0.075 72 2.003 108 (0)
MN bug 0.122 166 2.062 286 (0)
JH test 0.137 176 2.762 312 (0)
P50 0.159 243 1.638 441 (0)
Agatha 0.438 872 3.916 1891 (0)
ERIC 0.989 490 2.750 1268 (0)
PRV006 1 1.064 1501 41.044 8097 (109)
GRP031 2 1.267 713 8.083 3699 (251)
NUM001 1 2.090 1138 40.190 4019 (0)
COL001 2 2.150 847 39.240 2620 (0)
LOS 5.705 917 5.110 2565 (0)
GRP037 3 7.149 2151 79.370 11988 (0)
NUM021 1 7.535 1246 17.210 4352 (0)
CAT018 1 12.226 2630 61.585 13477 (0)
CAT005 1 63.849 2609 66.200 13371 (0)

Equality
x = x 0.090 54 0.041 35 (–)
P48 0.394 636 2.707 495 (0)
PRV006 1 0.648 1053 13.558 4015 (0)
NUM001 1 0.768 876 7.032 3012 (0)
P52 1.157 1122 – – (–)
P51 1.294 1079 – – (–)
GRP031 2 1.377 757 7.946 3699 (251)
GRP037 3 3.402 1466 26.844 8242 (0)
CAT018 1 7.646 1809 28.560 8611 (0)
NUM021 1 7.737 1026 10.765 3423 (0)
CAT005 1 30.514 1784 29.490 8505 (0)
COL001 2 56.948 700 4.930 1273 (0)
Agatha – – 12.626 3409 (0)

– Conv: Conversion into the required input format.
– Proof: Proof-search using native datatypes.
– Trans: Translation of the proof into HOL.

All the entries in this table are geometric means, so the first line represents
the geometric means of times for phases of GANDALF TAC to prove all the non-
equality problems in Table 1. Geometric means were chosen here so that ratios
are meaningful, and the large difference between GANDALF TAC and MESON TAC
is in the translation phase; GANDALF TAC struggles to translate proofs in time
comparable to finding them, but for MESON TAC they are completely insignificant.

Another interesting difference is in the proofs of equality formulae; MESON TAC
has a sharp peak in this entry, but there is no anologue of this for GANDALF TAC.



Integrating Gandalf and HOL 319

Table 2. Breakdown of time spent within GANDALF TAC and MESON TAC.

Conv. Proof Trans. Total

GANDALF TAC

Non-equality 1.67 5.55 2.14 11.57
Equality 4.20 5.27 7.19 17.82
Combined 2.51 5.42 3.64 13.99

MESON TAC

Non-equality 0.26 0.36 0.06 0.90
Equality 0.43 1.27 0.09 2.61
Combined 0.33 0.66 0.07 1.50

It seems likely that this is because Gandalf’s has built-in equality reasoning,
whereas equality has to be axiomatised in formulae sent to MESON TAC.

3.2 Gandalf the Plug-In

Putting aside performance issues for the moment, the project has also con-
tributed to the development of the plug-in concept. GANDALF TAC provides evi-
dence that plug-ins can coexist with the idea of an LCF logical core, and that
efficient proving does not have to mean accepting theorems on faith from an
oracle.

GANDALF TAC has also tested the plug-in interface code, which is simple to
use, enabling one to concentrate on proof issues without having to think about
system details. Once the interface becomes part of the standard HOL distribution
then any Gandalf user will be able to download the GANDALF TAC ML source and
wrapper shell script, and use Gandalf in their HOL proofs. Hopefully we will see
many more plug-ins appearing in the future.

4 Conclusion

The most important thing to draw from this project is the need for good stan-
dards. If Gandalf used a good standard for describing proofs that retained the
human-readable aspect but was completely unambiguous, then the project would
have been easier to complete and the result would be more streamlined. On the
positive side, Gandalf has a good input format that is easy to produce, and the
Plug-in interface is an example of a good development standard, taking care of
system issues and allowing the programmer to think on a more abstract level. If
either of these had been absent, then the project would have been stalled con-
siderably. A program can only be useful as a component of a larger system if the
interface is easy for machines as well as people, i.e., simple and unambiguous as
well as short and readable.

What is the future for GANDALF TAC? There are several ways in which the
performance could be improved, perhaps the most effective of which would be to
enter into correspondence with the author of Gandalf, so that completely explicit
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(perhaps even HOL-style) proofs could be emitted. Another approach would be
to reduce the number of primitive inferences performed, both the initial conver-
sion to CNF and proof translation could be improved in this way. Perhaps they
could even be performed outside the logic, minimizing the primitive inferences
to a fast verification stage once the right path had been found. There is much
scope for optimization of GANDALF TAC on the ML/HOL side, and the results
obtained suggest that such an effort might be sufficient for Gandalf’s natural
advantages of built-in equality reasoning and coding in C to allow GANDALF TAC
to overtake MESON TAC in some domains (e.g., hard problems involving equality
reasoning).

To look at another angle, GANDALF TAC is a step towards distributed theorem-
proving. It is easy to imagine several proof servers (perhaps several Gandalf
servers each with different strategies selected), and a client interface designed
to take the first proof that returned and throw the rest away. Distributing such
a CPU-intensive, one time activity as theorem-proving makes economic sense,
although there are many problems to be solved here, such as how to divide up
a problem into pieces that can be seperately solved and joined together at the
end.

Finally, one thing that was obvious while developing GANDALF TAC is that a
tool like Gandalf does not really fit in with the interactive proof style popular
at present. If Gandalf is used in a proof and takes 3 minutes to prove a subgoal,
then every time the proof is run there will be a 3 minute wait. What would
perhaps be useful is to save proofs, so that only the speedy verification is run
in the future, not the extensive search. Maybe then we would begin to see more
tools like Gandalf applied in proofs, as well as the fast tactics that currently
dominate.
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