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1 Introduction

When evaluating logic solvers, it is essential to take into account the application domain in which they
will operate. For example, a logic solver for reasoning about programs could be applied either inside a
compiler to justify the validity of optimizing transformations, or in an IDE plug-in to help developers
find bugs in their programs. Despite the similarity of the domain, these two applications lead to different
success criteria for the underlying logic solver. Soundness is essential in the compiler application, since
no optimizing transformation is permitted to change the observable behavior of the program, but sound-
ness in the bug-finding application can be traded-off if it results in a more productive false positive/false
negative rate for the human developer [1].

This invited talk will look at logic solvers through the application lens of constructing and processing
a theory library of mechanized mathematics. In fact, constructing and processing theories are two distinct
applications, and each will be considered in turn. Construction is carried out by formalizing a mathe-
matical theory using an interactive theorem prover, and logic solvers can remove much of the drudgery
by automating common reasoning tasks. At the theory library level, logic solvers can provide assistance
with theory engineering tasks such as compressing theories, managing dependencies, and constructing
new theories from reusable theory components.

2 Theory Construction

The task of formalizing mathematics in an interactive theorem prover involves breaking down proofs of
mathematical theorems into small enough steps that the theorem prover accepts them. In the case of a
theorem prover in the LCF design [2], a ‘small enough step’ is one of the primitive inference rules in the
logical kernel. This is extremely tedious for a human to do manually, but a full programming language
is provided to write logic solvers, called tactics, to help with this process. The role of the human is to
guide the proof, orchestrating little engines of proof carrying out small-scale automation.

A diverse variety of logic solvers have been implemented as tactics, including term rewriters, decision
procedures and first order provers. To investigate the success criteria imposed by this application domain,
one particular logic solver will be examined in detail: the Metis tactic. Metis [5] is an automated theorem
prover for first order logic, and has been implemented as a tactic in the HOL4 [9] and Isabelle [8]
interactive theorem provers for higher order logic.1. The steps of the Metis tactic are as follows:

1. The initial higher order logic goal is negated and converted by proof to conjunctive normal form.
Definitional conjunctive normal form is used to avoid exponential blow-up.

2. A suitable logical interface (m, t) is selected, consisting of a mapping m from higher order logic
formulas to first order clauses, and also a translation t that lifts first order refutations to higher
order logic proofs [4]. The conjuncts are mapped to first order logic clauses.

1Metis is available for download from http://gilith.com/software/metis
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3. A refutation of the clauses is found, where the search is performed using the ordered paramodula-
tion calculus [7].

4. The refutation is replayed as primitive inferences of higher order logic, completing the proof of
the initial goal.

The Metis tactic is effective on many classes of higher order logic goal, particularly those that require
a combination of deductive and equality reasoning. It automatically selects an interface for the goal, first
trying a fast one that discards type information, and then a more robust one that includes type information
in the first order clauses. A syntactic check detects whether the goal contains higher order features such
as quantification over functions, and if so an interface is selected that maps higher order logic function
application to a first order function symbol (i.e., f (x) is mapped to app( f ,x)). This automatic interface
selection makes Metis more efficient and also gives it wider coverage than might be expected of a first
order proof tactic.

The user explicitly invokes the Metis tactic, so it must respond quickly to be useful. The range of
goals that the Metis tactic can prove within a few seconds is more significant than the range that it can
prove within a few hours, even though the conventional wisdom in the first order proving community
has it that the latter is more indicative of a strong theorem prover. Also against conventional wisdom,
completeness is an important feature of a first order proof tactic, not to improve the underlying proof
engine, but rather to effectively communicate to the user the possible range of goals that the tactic can
handle. Nothing is more frustrating to a user than a tactic failing to prove an ‘easy’ goal that is supposedly
within its range.

In contrast to completeness, soundness is not an essential feature of a first order proof tactic, because
any logical inconsistencies will be detected when the refutation is replayed as primitive inferences. In-
deed, the Metis logical interfaces that discard type information are unsound and sometimes result in a
bad proof. When that occurs, the tactic simply tries again with a logical interface that preserves type
information.

Although not on the scale of a knowledge base, there are a large number of definitions and theorems
present in a typical proof context, so a logic solver implemented as a tactic must address the large theory
problem. The Metis proof tactic sidesteps this by requiring the user to supply the relevant theorems at
invocation. However, the sledgehammer tactic in Isabelle attempts this automatically by using a rele-
vance filter to choose a subset of the available theorems, and passing them to a state of the art first order
theorem prover. If a refutation is found, the theorems that it contains are passed to the Metis tactic to
(hopefully) generate a proof that can be replayed with primitive inferences. This has the added advantage
of removing the dependency on an external tool in the proof script.

3 Theory Operations

The most robust way to archive a proof of higher order logic is to expand it into primitive inferences.
Replaying such a proof does not depend on any tactics, and thus can even take place on a different system
with the ability to simulate the primitive inferences. The goal of the OpenTheory project [6] is to transfer
the benefits of package management to aid the development of logical theories2. A theory package Γ . ∆

of higher order logic consists of:

1. A set Γ of assumptions.

2. A set ∆ of theorems.

2The OpenTheory project homepage is http://gilith.com/research/opentheory
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3. A primitive inference proof that the theorems in ∆ logically derive from the assumptions in Γ.

Storing the primitive inferences that result from tactics imposes some success criteria on the output
from logical solvers implemented as tactics. Above all, the proofs should be short, since a proof format
based on primitive inference is necessarily verbose. The compressed form of the theories distributed with
the HOL Light theorem prover [3] consist of 769,138 primitive inferences stored in 18Mb. For example,
in the current distribution of HOL4, there are 1,136 successful calls to the Metis tactic, which result in
2,880,406 primitive inferences. However, 78% of these primitive inferences are spent converting the
goal to conjunctive normal form. Even though Metis implements a powerful resolution calculus, from
the perspective of storing proofs, perhaps better results would be obtained by a less powerful tableau
method that does not require normalization.

Theory libraries are a rich source of challenge problems for logic solvers. For example, one challenge
problem is to take an existing theory package and compress the proof, following the pioneering work of
Wos compressing first order logic refutations [10]. Another challenge problem is to take a theory and
prove the theorems from the assumptions without looking at the given proof. This large-scale automation
of deep mathematical proofs is extremely hard in general, but even logical solvers with limited range
could perform much useful work in a theory library. For example, suppose a theory Γ1 . ∆1 is upgraded
to Γ2 . ∆2 in the theory library. It is possible to automatically port theories that depend on the old version
to the new version if a proof can be found for the upgrade theory Γ2 ∪∆2 . ∆1.
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