Embedding Cryptol in Higher Order Logic

Joe Hurd
Computer Laboratory
Cambridge University

joe.hurd@cl.cam.ac.uk

10 March 2007

Abstract

This report surveys existing approaches to embedding Cryptol pro-
grams in higher order logic, and presents a new approach that aims to
simplify as much as possible reasoning about the embedded programs.

1 Introduction

One way to formally specify a cryptographic algorithm is to express its op-
eration in a logic. Higher order logic is an expressive specification logic that
is well-supported by verification tools, including a verifying compiler from an
executable subset of the logic to a model of the ARM instruction set.

Cryptol [2] is a domain specific language for symmetric-key cryptographic
algorithms, using a sophisticated type system to ensure consistency of the ‘bit
twiddling’ and vector operations typical of this class of program.

To reason about cryptographic algorithms it would thus be beneficial to de-
velop a method for embedding Cryptol programs into higher order logic. This
would allow programmers to implement cryptographic algorithms in a conve-
nient programming language, using a Cryptol interpreter to catch type errors
and generate prototypes for testing deeper properties. Once these checks have
passed, the algorithm can be embedded into higher order logic where it can be
formally verified to satisfy its specification.

Any such embedding must be closely scrutinized to ensure that the Cryp-
tol semantics are faithfully transferred to higher order logic. Cryptol mutually
recursive sequences are particularly challenging, because the syntax allows se-
quences to be defined where evaluating one element requires an infinite execu-
tion. Since all functions in higher order logic are total, special care must be
taken when embedding these 'nonterminating sequences’.

Naturally, the fidelity of the embedding is of primary importance, but a sec-
ondary consideration is how easy it is to prove properties of Cryptol programs
embedded in higher order logic. One useful indicator of this is the degree to
which higher order logic types are employed to represent properties of Cryptol

programs. For example, suppose a Cryptol program contained the finite se-
quences [1 1] and [1 1 1]. These have different Cryptol types (to reflect their
different lengths), but if finite sequences were embedded as lists they would end
up with the same higher order logic type. If the specification of the program
relied on the lengths of the sequences, additional proof obligations would be
generated to compensate for the type information that was lost in the embed-
ding.

Section 2 surveys existing approaches to embedding Cryptol into higher order
logics, and Section 3 presents a new embedding of a Cryptol subset that uses
finite Cartesian products to capture the Cryptol type system as precisely as
possible.

2 Related Work

The most relevant work is Li and Slind’s shallow embedding of Cryptol into
HOLA [3]. Cryptol sequences are modelled with HOL lazy lists, where the ele-
ments of the lazy lists can either be booleans or lazy lists. This allows Cryptol
sequence operations (split, join, etc.) to be defined smoothly as polymorphic
functions. Arithmetic operations are defined by converting finite subsequences
of boolean lazy lists to HOL words and using word arithmetic, and there is
syntactic sugar for sequences containing finite and infinite number ranges. The
embedding includes a definition principle for mutually recursive sequence com-
prehensions, although only supports a certain form of definition that guarantees
termination.

Matthews formalized a deep embedding of fCryptol (pronounced “femto-
Cryptol”, it being a subset of uCryptol) in the Isabelle/HOL theorem prover [4].
Separate higher order logic types are used for finite and infinite sequences of
signed bitvectors. The embedding defines a higher order logic datatype for
the abstract syntax of fCryptol, including mutually recursive (infinite) sequence
comprehensions, together with a denotational semantics for fCryptol expres-
sions and some semantics-preserving transformation rules. In the denotational
semantics nonterminating sequence expressions are assigned a default value of
the meaning type.

In mid-2006 Matthews also formalized a shallow embedding of uCryptol
into Isabelle/HOLCF: an extension of higher order logic with support for first-
class partial functions.! This makes it easy to faithfully embed nonterminating
sequence expressions in the logic, but when reasoning about embedded Cryptol
programs there are additional proof obligations that expressions terminate. The
same theory contains a shallow embedding of the ACL2 logic, and can be used to
verify the initial compilation stages of the verifying uCryptol compiler mcc [5].

1This is unpublished work.

3 Embedding a Cryptol Subset

The goal of this section is to present an embedding of Cryptol into higher order
logic that simplifies as much as possible reasoning about embedded programs.
This goal leads to two main design choices:

1. Cryptol programs are embedded as higher order logic functions; and

2. higher order logic types are used to convey as much information as possible
about the embedded programs.

Both these design choices restrict the set of possible Cryptol programs that
may be embedded. The first restricts the embedding to terminating Cryptol
programs, since functions in higher order logic are total. Although there are
several techniques for modelling partial functions in higher order logic, they all
involve more complicated reasoning than total higher order logic functions and
so this approach is rejected.

The second design choice above restricts the embedding to Cryptol programs
where the expressions in the program do not map to any higher order logic type.
For example, Section 3.1 shows how the length of a Cryptol sequence can be
encoded in its higher order logic type. Thus, any Cryptol program that works
over sequences of variable lengths cannot be embedded in higher order logic.
An example of this is the Cryptol implementation of the SHA-1 secure hash
algorithm, which produces a 160-bit digest of an arbitrary length input, and
therefore has Cryptol type [N] — [160].

3.1 Cryptol Types in Higher Order Logic

The Cryptol bit type naturally maps to higher order logic booleans, and Cryp-
tol tuples and higher order logic tuples behave in exactly the same way. The
only problematic types to embed are the types of Cryptol sequences. Cryptol
sequences can have finite or infinite length, and their length is encoded in their
Cryptol type. For example, [4] is the Cryptol type of 4-bit numbers, and [inf][4]
is the type of infinite sequences of 4-bit numbers.

The Cryptol type [inf]a of infinite sequences can be simply modelled in higher
order logic with the type

ainf=N-—a.

The Cryptol type [n]a of sequences of length n can be modelled with the higher
order logic vector type
a vector =1, — «,

where 7, is a specially created higher order logic type that contains exactly n el-
ements. It is possible to define higher order logic functions that are polymorphic
over all finite a-vectors [1].

3.2 Cryptol Sequences in Higher Order Logic

As demonstrated in the previous section, it is possible to represent the length
of a sequence as part of the higher order logic type, as it is done in Cryptol.
Moreover, functions can be polymorphic over all finite sequences, so the higher
order logic versions of the Cryptol sequence operations need only distinguish
two cases: one handling infinite sequences and one handling finite sequences.
For example, here are the two higher order logic definitions for appending a
finite sequence to the front of a finite or infinite sequence.

seq_append_finite (z : [m]a) (y : [n]a) =
FCP i. if i < m then %% i else y %% (¢ —m)

seq_append_infinite (z : [n]a) (y : [infla) =
Xi. if ¢ < n then %% i else y (i —n)

For ease of reading Cryptol syntax is used for the argument types, and the
notation FCP i. ¢(i) and v %% i is used to construct and select elements of
vectors. In practice both of these append functions can be parsed and printed
using the standard Cryptol symbol # (the parser uses the argument type to
disambiguate).

In a similar way finite and infinite higher order logic versions of the map,
drop and zip sequence operations can be defined. There is an elegant way to
define sequence comprehensions using the map and zip operators. For example,
consider the following Cryptol implementation of the Fibonacci sequence:

fib = [0 1] # [l x +y || x <= drop (1,fib) || y <- fib []

The sequence comprehension can be embedded into higher order logic as
map (A(z,y). © +y) (zip (drop 1 fib) fib) .

Using the Cryptol symbol | for zip and a new binder syntax for map, this is
parsed and pretty printed as

(seq (x,y). z +y) (drop 1 fib | fib)

which looks similar to the Cryptol syntax for sequence comprehension.

3.3 Cryptol Programs in Higher Order Logic

Cryptol programs consist of a series of sequence and function definitions, each of
which may contain nested definitions. There are two problems with embedding
this scheme into higher order logic:

1. although there are proof tools in HOL4 to assist in the definition of recur-
sive functions, they do not extend to Cryptol’s recursive sequence defini-
tions; and

2. defined constants in higher order logic exist in a global scope, so true
nested definitions cannot be made.

To overcome the first problem, the actual definition of a recursive sequence
in higher order logic is expressed in terms of its embedding as a function from N.
For example, here is the higher order logic definition of the Fibonacci sequence
from Section 3.2:

fibi = if i < 2 then V[0w; 1w] %% i else fib (i — 1) +fib (i — 2) .

This version of the recursive sequence definition can be handled by the recursive
function definition proof tool in HOL4.

Once the required sequence has been defined, the definition is proved equiv-
alent to a sequence expression closer to standard Cryptol syntax. Continuing
with the Fibonacci sequence, here is the final theorem:

F fib = V[0w; 1w] # (seq (z,y). = +y) (drop 1 fib | fib) .

The notation V[0w; 1w] is used to construct a 2-vector from a list of two words
(each of which is represented as a 32-vector of bits).

Note: This two stage approach to defining recursive sequences is just an
extension of the recursive function definition package, where a primitive non-
recursive definition is proved to satisfy the given recursion equations.

In the present work there is no attempt to overcome the second problem
mentioned at the start of this section: the global scope for constants in higher
order logic prevents true nested definitions. Nested definitions are simply \-
lifted to the top level, pending a standard HOL syntax for nested definitions
and an extension to the function definition package to handle them.

3.4 Example: TEA Encryption

This section demonstrates the higher order logic embedding on a Cryptol im-
plementation of Wheeler and Needham’s TEA (Tiny Encryption Algorithm).
Figure 1 is a verbatim copy of the uCryptol implementation of TEA on page 2
of Shields’ paper [6]. Figure 2 shows the embedding into higher order logic.

Certainly there are differences in the concrete syntax, but the structure is
identical in both implementations. The only significant change is the A-lifting
of the nested definitions tea_sums, tea_ys and tea_zs. These are defined using the
technique of Section 3.2 by mutual recursion and equivalence proof. Naturally,
since the function tea depends on these mutually recursive sequences, they must
be defined first.

4 Summary

This report has surveyed existing approaches to embedding Cryptol programs in
higher order logic, and presented a new approach that aims to simplify as much
as possible reasoning about the embedded programs, even at the cost of not
being able to handle all Cryptol programs. The ‘right embedding’ will surely
depend on the particular reasoning task to be performed, and will borrow ideas
from all approaches.

exports code;

N = 32;
W = 32;
Word = B™W;

Block = Word~2;
Key = Word~4;
Index = B™W;

delta : Word;
delta = 0x9e3779b9;

code : (Block, Key) -> Block;
code ([vO, v1], k) = [ys@@N, zs@ON] where {
rec sums : Word~inf;
sums = [0] ##
[sum + delta | sum <- sums];
and ys : Word~inf;
ys = [vO] ##
[y+((z<<4)+k@0 "~ z+sum "~ (z>>5)+k@1)
| sum <- drops{1} sums
| y <~ ys
| z <- zs 1;
and zs : Word~inf;
zs = [v1] ##
[z+((y<<4)+k@2 =~ y+sum "~ (y>>5)+k@3)
| sum <- drops{1} sums
| y <= drops{1} ys
| z <- zs 1;

Figure 1: A uCryptol implementation of TEA.

tea_N = 32

tea.W = 32

tea_-Word = B *x tea_W

tea_Block = tea_Word #x 2

tea_Key = tea_Word *x* 4

tea_Index = B ** tea_ W

tea_delta : tea_-Word = 029e3779b9w

(tea_sums v k : tea_Word inf) =

V[0w] # (seq x. = + tea_delta) (tea_sums v k)

(tea_ys v k : tea_Word inf) =
Vv %% 0] #
(seq (sum, y, z).
y+ (((z<4)+ (k%% 0)) 77 (z+ sum) 77 ((z > 5) + (k %% 1))))
(drop 1 (tea_sums v k) | tea_ys v k | tea_zs v k)
(tea_zs v k : tea_Word inf) =
Vv %% 1] #
(seq (sum, y, z).
z2+ (((y < 4) + (k%% 2)) 77 (y + sum) 77 ((y > 5) + (k %% 3))))
(drop 1 (tea_sums v k) | drop 1 (tea_ys v k) | tea_zs v k)
(tea : tea_Block x tea_-Key — tea_Block) (v, k) =
V(tea_ys v k tea_N; tea_zs v k tea_N]

Figure 2: A higher order logic embedding of TEA.

Acknowledgements

Thanks to John Matthews and Konrad Slind for helping me to understand the
features of their embeddings, and Jeff Lewis for answering my Cryptol questions.
Thanks also to Anthony Fox for reimplementing HOL4 index types to make my
embedding of finite sequences work properly, and Michael Norrish for integrating
them into the parser and pretty-printer.

References

1]

John Harrison. A HOL theory of Euclidean space. In Joe Hurd and Tom Mel-
ham, editors, 18th International Conference on Theorem Proving in Higher
Order Logics: TPHOLs 2005, volume 3603 of Lecture Notes in Computer
Science, pages 114-129, Oxford, UK, August 2005. Springer.

J. R. Lewis and B. Martin. Cryptol: high assurance, retargetable crypto
development and validation. In Military Communications Conference 20083,
volume 2, pages 820-825. IEEE, October 2003.

Guodong Li and Konrad Slind. An embedding of Cryptol in HOL-4. Un-
published draft, 2005.

John Matthews. fCryptol semantics. Available from the author on request,
January 2005.

Lee Pike, Mark Shields, and John Matthews. A verifying core for a crypto-
graphic language compiler. In Panagiotis Manolios and Matthew Wilding,
editors, Proceedings of the Sixth International Workshop on the ACL2 The-
orem Prover and its Applications, pages 1-10, Seattle, Washington, USA,
August 2006. HappyJack Books.

Mark Shields. A language for symmetric-key cryptographic algorithms and
its efficient implementation. Available from the author’s website, March
2006.

