
Congruence Classes with Logic
Variables

JOE HURD, Computer Laboratory, University of Cambridge, UK.
E-mail: joe.hurd@cl.cam.ac.uk

Abstract

We are improving equality reasoning in automatic theorem-provers, and congruence classes provide
an efficient storage mechanism for terms, as well as the congruence closure decision procedure. We
describe the technical steps involved in integrating logic variables with congruence classes, and present
an algorithm that can be proved to find all matches between classes (modulo certain equalities). An
application of this algorithm makes possible a percolation algorithm for undirected rewriting in
minimal space; this is described and an implementation in hol98 is examined in some detail. 1

Keywords: Congruence Closure, Equality Reasoning

1 Introduction

There has been a long-standing difficulty in theorem-proving of blending together
deduction steps (such as Modus-Ponens or specialization) with equality steps (Leibniz’
rule of substituting equals for equals). On the equality side, there are useful rewriters
in most interactive theorem-provers: these are able to call decision procedures and
perform ‘simplifying’ deductive steps. On the deduction side, there are powerful
resolution theorem-provers such as Gandalf [14]: these include special deductive rules
for handling equality but still this is where they are weak in practice.

We are interested in combining these two worlds, and in this paper we present a
method to improve the handling of equality in deductive provers, using congruence
classes. To motivate this work, consider the following example from group theory
that a deductive prover would find difficult to handle:

{∀x y z. [(x ∗ y) ∗ z = x ∗ (y ∗ z)] ∧ [e ∗ x = x] ∧ [i(x) ∗ x = e]}
⇒ {∀x. x ∗ i(x) = e}

Here the antecedent is enough to axiomatize the group operation (∗), identity (e) and
inverse (i), and the consequent is the right inverse group law. Here is a proof in the
form of a chain of equalities [3]:

e = i(x ∗ i(x)) ∗ (x ∗ i(x))
= i(x ∗ i(x)) ∗ (x ∗ (e ∗ i(x)))
= i(x ∗ i(x)) ∗ (x ∗ ((i(x) ∗ x) ∗ i(x)))
= i(x ∗ i(x)) ∗ ((x ∗ (i(x) ∗ x)) ∗ i(x))
= i(x ∗ i(x)) ∗ (((x ∗ i(x)) ∗ x) ∗ i(x))

1Joe Hurd was supported by an EPSRC studentship

53L. J. of the IGPL, Vol. 9 No. 1, pp. 53–67 2001 c©Oxford University Press

54 Congruence Classes with Logic Variables

= i(x ∗ i(x)) ∗ ((x ∗ i(x)) ∗ (x ∗ i(x)))
= (i(x ∗ i(x)) ∗ (x ∗ i(x))) ∗ (x ∗ i(x))
= e ∗ (x ∗ i(x))
= x ∗ i(x)

The problem is that the chain is long, and to find the proof a deductive prover would
have to generate a very large number of terms using the given equalities. Note that
this example would also pose a problem for a basic rewriter because the rewrite set
requires completion to solve the problem.

Using congruence classes to store a set of terms maximizes subterm sharing and
performs the congruence closure decision procedure, thus reducing the memory and
time requirements of the deductive prover. There is however an incompatibility that
needs addressing: deductive proving relies on logic variables that can be instantiated
to arbitrary terms during the proof search, while congruence classes treat all variables
in the terms as constants (and hence congruence closure does also).

The contribution made in this paper is an exploration of some of the ramifications
of using congruence classes to store terms with logic variables, and a demonstration of
how the underlying data structure may be exploited to find all possible term matches
modulo certain equalities. An immediate application of this is a percolation algo-
rithm that performs undirected rewriting on congruence classes; we also describe this
and characterize what it can and cannot prove. As a secondary contribution, the
algorithms presented in this paper have all been implemented in the hol98 theorem-
prover, and some preliminary results with the percolation algorithm are examined.

The structure of the paper is as follows: Section 2 defines a set of congruence classes
with the basic operations, Section 3 is on matching: we precisely define the problem,
present the match-finding algorithm and prove that it always terminates with all
matches. We describe the percolation algorithm in Section 4, and in Section 5 we
briefly examine the functionality and performance of the HOL implementation. We
draw some conclusions from the work in Section 6, and finally in Section 7 relate our
approach to others. Appendix A contains the details of the HOL implementation.

1.1 Notation

Terms in HOL are either constants, variables, function applications app(t1, t2) of
terms to terms, or lambda abstractions lambda(v, t) of variables from terms.

2 Congruence Classes

2.1 Introduction

A congruence class set is a data structure that allows a set of terms to maximize the
sharing of their subterms (and hence stores them in the minimum possible space).
This property provides the basis of the congruence closure decision procedure [1] for
the theory E in which the only interpreted function symbols are = and 6=.

We define a congruence class to be a set of terms and a representative, so we can
write a set of classes like this:

2. CONGRUENCE CLASSES 55

{ rep1 { elt(1,1), elt(1,2), . . . , elt(1,m1) },
rep2 { elt(2,1), elt(2,2), . . . , elt(2,m2) },
. . .
repn { elt(n,1), elt(n,2), . . . , elt(n,mn) } }

This class set C has n classes; we write Ci for the ith class, which here has mi

elements. The set of elements of a class can never be empty; the representative is
always an element. We also insist that there is a distinguished true class containing
> and a false class containing ⊥. One more piece of notation: given an element elt
in class C with representative rep, we will sometimes write class(elt) for C and [elt]
for rep.

2.2 Normal Form

A term t is in normal form with respect to a congruence class set C if t is an element
of a class in C, and all the proper subterms of t are representatives of classes in C. A
congruence class set is in normal form if all its elements are in normal form.

In practice it is convenient to keep the class set C in normal form at all times.
This is not a burden; the empty class set is already in normal form, and we add an
arbitrary term t to C by the following procedure:

1. We may assume by recursion on the term structure that the immediate subterms
of t are equal to terms in normal form.

2. Thus since the immediate subterms are equal to elements of C we may rewrite
them to be their class representatives, to get t′.

3. If t′ is an element of C then we are done, otherwise we add the new class t′{t′}.

This procedure adds t to the class set C, and as a side effect produces the theorem
t = t′ where t′ is in normal form.

Henceforth we will assume that congruence class sets are always in normal form,
unless we explicitly state otherwise.

2.3 Congruence Closure

We define a close operation on a class set C: whenever two classes Ci and Cj in C
have an element in common, then merge the two classes using the following algorithm:

1. First choose rep to be the smaller2 term of repi and repj.3

2. Replace Ci and Cj in C with a new class C with representative rep and which
contains all of the elements of Ci and Cj .

3. Finally we must rewrite all occurrences (in proper subterms) of repi and repj

within C to rep.

So far the effect of this operation is the same as the standard congruence closure
decision procedure, but we also need two more features in our close operation:
2Smaller here means fewer nodes in the term tree.

3Unfortunately, this is not quite enough to make our matching algorithm complete. In addition, for every logic

variable X in rep that is not in both repi and repj , we must instantiate X in rep to an arbitrary value. This will

always be possible, since if X is in repi but not repj , say, since the classes contain a common element we must

have that ∀ x. repi[x/X] = repj , so repi[arb/X] = repj and ∀x. repi[x/X] = repi[arb/X].

56 Congruence Classes with Logic Variables

• Look for terms of the form A = B in the true class, where A is not the same term
as B, and merge the classes with representatives A and B.

• Look for terms of the form A = A in all classes except the true class, and merge
all the classes where we find such terms with the true class.

We now present a small example of congruence closure in action:4

1. Start with a minimal set of classes:
{ > { > },

⊥ { ⊥ } }
2. Add the fact f(f(f(a))) = a to the true class:

{ > { >, a = a },
⊥ { ⊥ },
f { f },
a { a, f(f(f(a))) },
f(a) { f(a) },
f(f(a)) { f(f(a)) } }

3. Now when we add the fact f(f(f(f(f(a))))) = a, we get a neat collapse:
{ > { >, a = a },

⊥ { ⊥ },
f { f },
a { a, f(a) } }

This happens because from f(f(f(f(f(a))))) = a and f(f(f(a))) we can deduce
that f(f(a)) = a, and then this and f(f(f(a))) = a together imply that f(a) = a.

There is nothing novel so far; the congruence closure decision procedure has already
been implemented in HOL by Boulton [5] using term graphs, as part of his implemen-
tation of the Nelson-Oppen combination of decision procedures [12, 13]. We preferred
the current data structure because it seemed easier to integrate logic variables and
perform our matching algorithm on HOL terms, where we could use the standard
HOL functions for operating on them. However, the underlying closure algorithm
(using Union/Find) is the same in both cases, and both implementations perform a
fully expansive proof.5.

2.4 Terms with Logic Variables

We assume that our terms contain logic variables from a set V . To avoid confusion
between the two types of variable, we will always write logic variables in upper case
and normal ‘HOL’ variables in lower case. Thus the term f(X) contains a logic
variable but the term f(x) does not.

We store terms in a congruence class set treating logic variables as normal variables.
This has the effect that t1 and t2 will be in the same congruence class if and only if
for every variable instantiation σ we have σt1 = σt2.

We are now in a position to define equality modulo C for a class set C, which
we write =C. If t1 =C t2, then t1 can be transformed to t2 by a sequence of rewriting

4The same example is also in the appendix with more implementational details.

5A fully expansive proof is one that completely reduces to the primitive axioms and rules of inferences of the logic

3. MATCHING ALGORITHM 57

operations which always replace an element of C with another element in the same
class, treating logic variables as constants.

To illustrate this central definition, if we have a class in C containing both X and
X + 0, then we can certainly say that X =C X + 0 and 7 + ((X + 0) + 0)=C 7 + X ,
but not that 5 + 0=C 5 or that Y + 0=C Y .

We also define t ∈C Ci to mean t=C repi.
Note that =C is an equivalence relation, and if C is closed then for all t there will

be at most one Ci such that t ∈C Ci.

3 Matching Algorithm

Suppose we have a congruence class set C that is closed and in normal form. The
precise version of the matching problem that we would like to solve is: given classes
Ci and Cj , what variable instantiations σ allow Ci to match to Cj? A particularly
important example of this problem for deductive proving occurs when Ci contains the
goal term and Cj is the true class, when the question is equivalent to asking what
instantiations of variables in the goal term make it true. First we define these terms,
and then present a solution.

3.1 Definitions

We define a variable instantiation σ : V → T to be a function from logic variables
to terms (which may themselves contain logic variables). Given a term t ∈ T , we
write σt to mean the instantiation of variables in t according to σ.

For a congruence class set C containing classes Ci and Cj , we say that σ allows
Ci to match to Cj if

∃ ti tj . ti ∈C Ci ∧ tj ∈C Cj ∧ σti = tj

We define a function χ : V × C → P(V → T) from variable-class pairs to sets of
variable instantiations

χ(X, C) = {σ : V → T | σ(X) ∈C C}

and let φ be
φ(S) =

⋂
(X,C)∈S

χ(X, C)

So φ(S) is the set of all functions from V to T that, for every (X, C) pair in S, map
variable X to a term ‘provably in C’. We call sets of variable-class pairs substitu-
tions.

3.2 The Algorithm

The reason that we defined the function φ in the previous subsection is that for every
pair (Ci, Cj) of classes the algorithm we present finds substitutions S such that every
variable instantiation in φ(S) allows Ci to match to Cj . Let match(Ci, Cj) be the
current set of substitutions between (Ci, Cj).

We initialize each match(Ci, Cj) as follows:

58 Congruence Classes with Logic Variables

1. First set match(Ci, Cj) = {}.

2. If repi and repj have different HOL types, then finish.

3. For every logic variable X with class(X) = Ci, add {(X, Cj)}.

4. If i = j then add {(X, class(X)) | X a logic variable in repi}.

And now we inductively build up match, terminating when it is no longer possible
to add anything new to any match(Ci, Cj):

• Given an element in class Cj of the form lambda(v, repb) and a substitution S ∈
match(CB , Cb); if there exists an element lambda(v, repB) in some class Ci then
add S to match(Ci, Cj).

• Given an element in class Cj of the form app(repf , repa), and substitutions S ∈
match(CF , Cf) and S′ ∈ match(CA, Ca); if both

– S and S′ are compatible, (i.e., for every variable X there is at most one element
in S ∪ S′ of the form (X, C)).

– there exists an element app(repF , repA) in some class Ci

then add S ∪ S′ to match(Ci, Cj).

Note that here we are using the fact that C is in normal form.
We will illustrate the algorithm on an example. Unfortunately, all real-life examples

are too large to represent, so the example will necessarily have to be rather artificial.
We invent an ‘if-and-only-if’ operator, f , which returns true exactly when its two
boolean arguments are equal. The example shows what matches occur on the term
f > (f > >).6

1. Here is the result of adding the fact f X X and the term f > (f > >) to a minimal
class set:
{ > { >, f X X },

⊥ { ⊥ },
f { f },
X { X },
f X { f X },
f > { f > },
f > > { f > > },
f > (f > >) { f > (f > >) } }

2. The initial matches are easy to calculate, every class matches itself, and the
boolean logic variable X matches all the boolean classes:

6In this section we use curried notation for function application, because our underlying method uses only lambda

and app to construct terms.

3. MATCHING ALGORITHM 59

match(>, >) = {{}}
match(⊥, ⊥) = {{}}
match(f, f) = {{}}

match(X, X) = {{(X, X)}}
match(f X, f X) = {{(X, X)}}
match(f >, f >) = {{}}

match(f > >, f > >) = {{}}
match(f > (f > >), f > (f > >)) = {{}}

match(X, >) = {{(X, >)}}
match(X, ⊥) = {{(X, ⊥)}}

match(X, f > >) = {{(X, f > >)}}
match(X, f > (f > >)) = {{(X, f > (f > >))}}

All other match sets are empty.

3. After one inductive step, we gain the following extra match:
match(f X, f >) = {{(X, >)}}

This comes from the application inductive step, using the compatible substitutions
{} and {(X,>)}, contained in match(f, f) and match(X,>) respectively.

4. After two inductive steps, we gain the following extra match:
match(>, f > >) = {{(X, >)}}

Again from the application inductive step: this uses the substitution from the pre-
vious step, and the compatible substitution {(X,>)} contained in match(X,>).
Since f X X has representative >, this is how the match appears. Notice that
there are no matches from > to f > (f > >), because the relevant substitutions
are incompatible.

5. The algorithm now terminates, because no more substitutions can be added to
any match set. All the match sets are returned to the calling application.

We will return to this example in Section 4, to show how the percolation algorithm
makes use of the returned match sets.

There are two significant optimizations that can be made to the theoretical algo-
rithm. Firstly, we do not add a substitution S that is less general than a match S′

that we already have (i.e., φ(S) ⊆ φ(S′)), though the algorithm above adds anything
that is different. This costs nothing and promotes faster convergence.

Secondly, we divide the inductive stage into passes, so that on pass n + 1 we
add matches that arise from the result of pass n. This allows us to optimize by
considering only the matches that were new at pass n, instead of every match. This
is most significant for the application inductive step, where if there are m new and
M old matches at pass n, it only has to consider 2mM + m2 combinations instead of
(m + M)2.

3.3 Proofs

We will prove three theorems about the algorithm: firstly, it terminates on all inputs;
secondly, a soundness result that every match that it finds is valid; thirdly, a com-
pleteness result that every possible match is found. The purpose of these theorems is

60 Congruence Classes with Logic Variables

to show that the theoretical algorithm is logically sound7 and also to provide some
useful information on the scope of the ideas. They can be used in proving facts about
procedures that make use of the Matching Algorithm: we will see in Section 4 that
the Percolation Algorithm relies on the termination and completeness results.

Theorem 3.1 (Termination) The matching algorithm terminates on all inputs.

Proof. Let c be the number of classes in C, and let v be the number of logic variables
in C. Note that the algorithm does not create any new classes or logic variables, so c
and v are fixed.

The number of variable-class pairs that may arise in the matching algorithm is
bounded above by vc, and so the number of possible sets of variable-class pairs, i.e.,
substitutions, is bounded above by 2vc.

Define the termination measure to be the sum of the number of substitutions in all
the match sets. Since there are c2 match sets, this is bounded above by c22vc.

The algorithm terminates when it cannot add any new substitutions to any match
set, so the termination measure must increase on every inductive step. But it is
bounded above, so the algorithm must terminate.

Lemma 3.2 For all substitutions S and S′, we have that φ(S ∪ S′) = φ(S) ∩ φ(S′).

Proof.

φ(S ∪ S′) =
⋂

(X,C)∈S∪S′
χ(X, C)

=

 ⋂

(X,C)∈S

χ(X, C)

 ∩

 ⋂

(X,C)∈S′
χ(X, C)

= φ(S) ∩ φ(S′)

Theorem 3.3 (Soundness) For every substitution S ∈ match(Ci, Cj), for every
variable instantiation σ ∈ φ(S), we have that σ allows Ci to match to Cj .

Proof. We proceed by structural induction on match, and assume that we have just
added substitution S to match(Ci, Cj), and that σ ∈ φ(S).

Firstly suppose S is one of the initial substitutions; for step 3 it is clear from the
definitions that X ∈C Ci and σ(X) ∈C Cj , similarly for step 4 we have that repi ∈C Ci

and σrepi ∈C Ci.
Now consider the lambda inductive step. By the induction hypothesis there must

exist tB ∈C CB and tb ∈C Cb with σtB = tb, so therefore we have that lambda(v, tB) ∈C
Ci, lambda(v, tb) ∈C Cj and σlambda(v, tB) = lambda(v, tb).

Finally consider the application inductive step. There must exist classes CF , Cf ,
CA and Ca such that app(repF , repA) is an element in Ci and app(repf , repa) is
an element in Cj . In addition, there must exist compatible substitutions Sf ∈
match(CF , Cf) and Sa ∈ match(CA, Ca) such that S = Sf ∪Sa, and so by Lemma 3.2
7Though in hol98, the design of the theorem-prover forces all inferences to be expressed as combinations of primitive

inferences and these are checked by the logical kernel, so in this environment we are protected against proving false

theorems.

3. MATCHING ALGORITHM 61

we know σ ∈ φ(Sf) and σ ∈ φ(Sa). Now we may apply the induction hypothesis to
get tF ∈C CF , tf ∈C Cf , tA ∈C CA, ta ∈C Ca with σtF = tf and σtA = ta. Therefore
we have that app(tF , tA) ∈C Ci, app(tf , ta) ∈C Cj , and σ app(tF , tA) = app(tf , ta), as
required.

Lemma 3.4 For every class Ci, all the logic variables in repi are also in every element
of Ci.

Proof. This is true when the class initializes, and the case when two classes merge
is taken care of in the footnote to Subsection 2.3.

Lemma 3.5 For every t ∈C C, there is an element x in C such that one of the
following holds:

• t is a logic variable, constant or normal variable and t = x.
• t = lambda(v, tb), x = lambda(v, repb) and tb ∈C Cb.
• t = app(tf , ta), x = app(repf , repa), tf ∈C Cf and ta ∈C Ca.

Proof. Consider a counter-example t with minimal term depth. t=C rep, so consider
the first time we meet an element x in C in the rewriting chain between t and rep.
If x is a logic variable, constant or normal variable then we must have that t = x
because there can be no previous step in the chain. If x is a lambda or application
term, then it must always have been so, and now we can appeal to the minimality of
t to show that the proper subterms must satisfy the necessary conditions.

Theorem 3.6 (Completeness) For every variable instantiation σ that allows Ci to
match to Cj , there exists a substitution S ∈ match(Ci, Cj) such that σ ∈ φ(S).

Proof. Assume the result is false and pick a counterexample σ. There must exist
ti ∈C Ci and tj ∈C Cj with σti = tj , and we may assume that the term depth of ti is
minimal over all counterexamples. Using Lemma 3.5 we perform a case split on ti:

Suppose ti is a logic variable X . Then we will have that σ ∈ φ({(X, Cj)}), and
since the HOL type of ti is the same as the HOL type of σti this substitution was
added to the set in step 3 of the initialization. Contradiction.

Suppose ti is a constant or normal variable. Then ti = tj , and since C is closed we
have that Ci = Cj . By Lemma 3.4 the representative of Ci contains no logic variables
at all, and so the set {} was added to match(Ci, Ci) in step 4 of the initialization.
φ({}) contains every variable instantiation, so certainly contains σ. Contradiction.

Suppose ti = lambda(v, tB), so tj = lambda(v, tb), and we must have classes
such that tB ∈C CB and tb ∈C Cb. Since σtB = tb and tB has strictly smaller
term depth than ti (by the normal form property), we must have a substitution
S ∈ match(CB, Cb) such that σ ∈ φ(S). Therefore S must have been added to
match(Ci, Cj) in the lambda inductive step. Contradiction.

Finally suppose ti = app(tF , tA), so tj = app(tf , ta), and we must have classes such
that tF ∈C CF , tA ∈C CA, tf ∈C Cf and ta ∈C Ca. Since σtF = tf and tF has strictly
smaller term depth than ti, we must have a substitution S ∈ match(CF , Cf) such
that σ ∈ φ(S). Similarly we must have S′ ∈ match(CA, Ca) such that σ ∈ φ(S′). By
Lemma 3.2 we have that φ(S) ∩ φ(S′) = φ(S ∪ S′), so σ ∈ φ(S ∪ S′), and hence S
and S′ are compatible. This implies that S ∪ S′ was added to match(Ci, Cj) in the
application inductive step. Contradiction.

62 Congruence Classes with Logic Variables

4 Percolation Algorithm

The Percolation Algorithm performs undirected rewriting on the congruence classes,
and is an easy application of the Matching Algorithm. Here is how it works:

1. Perform the Matching Algorithm.
2. For every substitution S in match(Ci, Cj) and for every element t in Ci, create

the element t′ by applying the substitution S to t, and add t′ to Cj . This step is
illustrated in Figure 1.

3. Perform a close operation.

This is one iteration of the percolation algorithm. There is no hope here of always
reaching a fixed-point after many iterations; this would allow us to decide the word
problem for the equalities in C, which is undecidable [3]. In general our algorithm
is a semi-decision procedure for the word problem, and in particular cases where a
fixed-point is reached it is a full decision procedure.

Returning to the example used in Section 3 to illustrate the matching algorithm,
suppose the percolation algorithm had performed step 1 and been returned the match
sets we created in the example. In step 2 it would be able to make exactly one addition:
adding > to the class with representative f > >. After the close operation in step 3,
this is how the classes look:

{ > { >, f X X , f > > },
⊥ { ⊥ },
f { f },
X { X },
f X { f X },
f > { f > } }

In practice we give each element a level number, and we define the level of a
substitution S in match(Ci, Cj) to be the maximum level of: the element in Cj that
was matched; and the substitutions used to create S. When we add new elements
to Cj we give them the level of the match plus one. Now if we insist that the level
of all elements added is less than some maximum then we can run the percolation
algorithm until a fixed-point is reached, since now it is guaranteed to exist. This

SSS

t

t′

Ci

Cj

Fig. 1. One Step of the Percolation Algorithm.

5. RESULTS 63

method of allocating level numbers was chosen so that we can give our rewrite rules
(like X +Y = Y +X) an initially high level number, which will then stop them being
rewritten like everything else!

5 Results

The examples we chose to test the program are listed in Table 1, and the results for
these examples are detailed in Table 2. The Percolation Algorithm is not the most
efficient way to prove the test theorems, and gets bogged down when the maximum
level is set above about 4 (depending on which rewriting theorems are used). The
first example is a triviality that is impossible for standard congruence closure [3]; the
second example (from the introduction) derives the right inverse law from the group
axioms; the other examples depend on the usual arithmetic rewrites and are designed
to show what happens in such a rich theory. We give each example in Table 1 a
number which is used in Table 2, and also show the minimum level necessary to prove
the result. The columns in Table 2 in order are: example number, iteration number,
number of classes, number of elements, number of matches, time to find the matches,
time to add the new elements (assimilation), time to perform congruence closure, and
total time spent on the iteration. We measured the number of elements and classes
before each iteration. At the end of all the iterations we write in bold the total time
spent in each phase.8 Note that the standard first order prover in HOL, MESON_TAC,
proves examples 1, 3 and 4 in under 2 seconds, but can’t prove the others at all (at
least, not in any reasonable time).

The first thing that can be noticed from Table 2 is that the times to perform the
three phases are of the same order: no one phase relatively dominates or vanishes.
The second thing is that there is an awfully large number of matches for even small
maximum levels, bringing in a correspondingly large number of new classes and ele-
ments. The congruence closure phase can reduce the size of the class set by a factor
of 10 after an assimilation, and if we weren’t using congruence classes this reduction
in space would not be possible. However, despite this saving, undirected rewriting
causes a subterm explosion; all congruence classes can really do is postpone the point
beyond which we lose control.

6 Conclusions

We have described the technical steps involved in integrating logic variables with
congruence classes, and presented an algorithm to discover matches between classes.
This problem is analogous to the problem of finding the shortest path between two
points on a weighted graph: in both cases the solution algorithm computes seemingly
more than is required. Dijkstra’s Algorithm [7] solves the shortest path problem but
must compute the shortest path from the source point to every other point; and
the matching algorithm presented here computes all matches between every pair of
classes.

This ‘side-effect’ is exploited in the Percolation Algorithm: finding every match

8All times are in seconds, using version Taupo 2 of hol98 running on an Intel Pentium III 600MHz. The memory

use for the examples is less than 10Mb, and garbage collection accounts for about 10% of the matching time, 5% of

the assimilation time, and 20% of the closing time.

64 Congruence Classes with Logic Variables

is exactly what we want for undirected rewriting, and congruence classes provide
an efficient storage mechanism. However, the results show that it is not efficient
enough to stem the tide in theories such as arithmetic with large sets of equalities,
and it cannot compete with a rewriter when there exists a directed rewrite set. This
suggests a natural compromise: for all equalities that make up such a rewrite set, let
the rewriter work and feed the resulting simplifications to the congruence classes, we
can then run the Percolation Algorithm on these and the rest of the equalities.

This further integration will form the basis of future work, as well as the original aim
of building a deductive proof procedure on top of the congruence classes. Unification
is frequently used in deductive proof search, and perhaps there exists a unification
algorithm on classes analogous to the matching algorithm presented in this paper.
We have briefly investigated this, and the problem seems to be more difficult: at the
separation of variables phase we may have to create new classes to accommodate the
new variables, so even our termination proof fails in the new context. There are also
some improvements to be made to the current congruence class component, including
allowing type variables to match (which will be useful in polymorphic theories), and
allowing higher-order matching by including conversions on the underlying lambda
calculus. This could perhaps work in a similar way to the Percolation Algorithm,
looking for terms of the form app(lambda(v, Ci), Cj), and then producing a new term
by replacing all occurrences of v in Ci with Cj .

7 Related Work

McAllester [11] has also used congruence classes for storing terms, in order to per-
form rewriting in non-confluent theories. The application is different but the theory
is very similar, since it is motivated by the same goal of reducing the space needed to
store terms. One notable difference is that McAllester uses context-free grammars to
represent the current state of the congruence classes, whereas we use an ad-hoc repre-
sentation. However, in higher-order logic this doesn’t really matter, because there are
only two term constructors. Another difference is that in our system the equations for
rewriting come from the congruence classes, whereas in McAllester’s setup they are
prescribed in advance. This is in keeping with our respective applications, McAllester
is seeking to improve rewriting performance, and we want to improve the handling of
equality in deductive proof procedures.

Apart from this, the most frequent use of congruence classes has been in the heart of
the Nelson-Oppen combination of decision procedures [12, 13], which uses congruence
closure to propagate the equalities generated by the component decision procedures.
Since traditional congruence closure treats term variables as constants, most of the
work in equality reasoning has concentrated on rewriting. There is much theory on
this (see Baader & Nipkow [3] for a comprehensive overview), and many systems
(powerful simplifiers exist in many theorem provers, including HOL9, Isabelle10 and
PVS11; and the OBJ family of languages is based on rewriting logic [8]).

There have been many attempts to integrate equality reasoning with deductive
proving, with varying degrees of sophistication. The first-order prover Gandalf [14]

9http://www.ftp.cl.cam.ac.uk/ftp/hvg/hol98/

10http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/

11http://www.csl.sri.com/sri-csl-pvs.html

7. RELATED WORK 65

includes paramodulation as a basic proof step, as do many others, while Harrison’s
implementation in HOL of Model Elimination [9] axiomatizes equality and relies on
deductive proof alone. A comparison of the two [10] suggests that paramodulation
is more effective than pure deduction. In this paper we have argued that even more
infrastructure would improve performance again.

On the more general note of interleaving equality and deductive steps, we observe
that Boyer and Moore [6] have argued for (and implemented) a tight integration of
decision procedures and provers; Armando and Ranise’s reconstruction [2] separated
the sharing of data but preserved the mutual recursion; and Zammit [15] made use
of rewriting interleaved with deductive proof steps by generalizing proof rules with
simplifiers.

Acknowledgements

I had many fruitful discussions with Konrad Slind, and my supervisor, Mike Gordon,
while engaging on this research. Donald Syme and Michael Norrish also gave me a
helping hand to produce the work. The comments of the anonymous referees of the
TPHOLs conference and the Journal of the IGPL improved the paper enormously.

References

[1] Wilhelm Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the Foun-
dations of Mathematics. North-Holland, Amsterdam, 1954.

[2] A. Armando and S. Ranise. From integrated reasoning specialists to “plug-and-play” reasoning
components. In Proc. of the 2nd Intl. Workshop on First Order Theorem Proving (FTP ’98),
volume 1476 of Lecture Notes in Computer Science, pages 42–54. Springer, 1998.

[3] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[4] Richard J. Boulton. Lazy techniques for fully expansive theorem proving. Formal Methods in
System Design, 3(1/2):25–47, August 1993.

[5] Richard J. Boulton. Combining decision procedures in the HOL system. In E. T. Schubert, P. J.
Windley, and J. Alves-Foss, editors, Proceedings of the 8th International Workshop on Higher
Order Logic Theorem Proving and Its Applications, volume 971 of Lecture Notes in Computer
Science, pages 75–89, Aspen Grove, UT, USA, September 1995. Springer-Verlag.

[6] Robert S. Boyer and J Strother Moore. Integrating decision procedures into heuristic theorem
provers: A case study of linear arithmetic. Machine Intelligence, 11:83–124, 1988.

[7] Thomas H. Cormen, Charles Eric Leiserson, and Ronald L. Rivest. Introduction to Algorithms.

MIT Press/McGraw-Hill, Cambridge, Massachusetts, 1990.

[8] J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT Press, Cam-
bridge, Mass., 1st edition, 1996.

[9] John Harrison. Optimizing proof search in model elimination. In M. A. McRobbie and J. K.
Slaney, editors, 13th International Conference on Automated Deduction, volume 1104 of Lecture
Notes in Computer Science, pages 313–327, New Brunswick, NJ, 1996. Springer-Verlag.

[10] Joe Hurd. Integrating Gandalf and HOL. In Theorem Proving in Higher Order Logics, 12th
International Conference, TPHOLs ’99, volume 1690 of Lecture Notes in Computer Science,
pages 311–321. Springer, September 1999.

[11] David McAllester. Grammar rewriting. In Deepak Kapur, editor, Automated Deduction, CADE-
11: 11th International Conference on Automated Deduction, Saratoga Springs, NY, USA, June
15–18, 1992: Proceedings, number 607 in Lecture Notes in Artificial Intelligence, pages 124–138.
Springer-Verlag, 1992.

[12] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–257, October 1979.

66 Congruence Classes with Logic Variables

[13] Greg Nelson and Derek C. Oppen. Fast decision procedures bases on congruence closure. Journal
of the Association for Computing Machinery, 27(2):356–364, April 1980.

[14] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204, April 1997.

[15] Vincent Zammit. On the Readability of Machine Checkable Formal Proofs. PhD thesis, Univer-
sity of Kent at Canterbury, March 1999.

A HOL Implementation

A.1 Notation

Terms in HOL are either constants, variables, function applications of terms to terms (app(t1, t2)), or
lambda abstractions (lambda(v, t)). Thus 5 + 3 is really app($+ 5, 3), which in turn is app(app($+,
5), 3). Note that infix operators gain the prefix $ when they are not in their usual infix position.

The HOL constants T and F represent the logical true and false. We use HOL variables called
lv0, lv1, lv2, . . . to denote logic variables.

HOL theorems can be created only using primitive inferences, and are printed in the form
[..] |- f lv3 = lv3. The |- represents the logical ` to mean syntactic derivability of the con-
clusion on the right from the assumptions on the left. [..] represents two assumptions, which by
default HOL does not show explicitly.

There is a fixed set of HOL primitive inferences, and some that are relevant to this paper are:
ASSUME, REFL, SYM, TRANS, and MK_COMB.
• ASSUME takes a term t and returns the theorem t ` t.

• REFL takes a term t and returns the theorem ` t = t.

• SYM takes a theorem of the form Γ ` t1 = t2 and returns the theorem Γ ` t2 = t1.

• TRANS takes two theorems of the form Γ ` t1 = t2 and ∆ ` t2 = t3, and returns the theorem
Γ ∪∆ ` t1 = t3.

• MK_COMB takes two theorems of the form Γ ` f1 = f2 and ∆ ` a1 = a2, and returns the theorem
Γ ∪∆ ` app(f1, a1) = app(f2, a2).

A.2 Congruence Classes

To implement congruence classes in HOL we define the following ML datatypes:

datatype elt = Elt of term * thm;

datatype class = Class of term * elt list;

Note firstly that type1 * type2 is the way ML represents a cartesian product type. The term in
the class type is the class representative; within elt the term is the class element and the thm is the
equality theorem ‘the element is equal to the class representative’. The reason we include the term
separately when it is always the left hand side of the theorem is to speed up access.

To give a feeling for the set-up, we give a simple example. Here is the initial class set to which we
will be adding terms:

- classes_null;

> val it =

[Class(T, [Elt(T, [] |- T = T)]),

Class(F, [Elt(F, [] |- F = F)])]

: class list

Now we are going to add a fact to the class set using introduce_fact, a function which adds the
conclusion of the theorem to the class set (involving a conversion to normal form), then performs a
close with the information that the fact should be in the true class.

- val cs = introduce_fact (ASSUME ‘f (f (f lv3)) = (lv3:’a)‘) classes_null;

> val cs =

[Class(lv3, [Elt(lv3, |- lv3 = lv3),

Elt(f (f (f lv3)), [.] |- f (f (f lv3)) = lv3)]),

A. HOL IMPLEMENTATION 67

Class(f lv3, [Elt(f lv3, |- f lv3 = f lv3)]),

Class(f (f lv3), [Elt(f (f lv3), |- f (f lv3) = f (f lv3))]),

Class(f, [Elt(f, |- f = f)]),

Class($=, [Elt($=, |- $= = $=)]),

Class(T, [Elt(lv3 = lv3, [.] |- (lv3 = lv3) = T),

Elt(T, |- T = T)]),

Class($= lv3, [Elt($= lv3, [.] |- $= lv3 = $= lv3)]),

Class(F, [Elt(F, |- F = F)])]

: class list

Note that we have precisely one logic variable (lv3); the others are normal variables. We now add
another fact which produces the following collapse:

- val cs’ = introduce_fact (ASSUME ‘f (f (f (f (f lv3)))) = (lv3:’a)‘) cs;

> val cs’ =

[Class(lv3, [Elt(lv3, |- lv3 = lv3),

Elt(f lv3, [..] |- f lv3 = lv3)]),

Class(T, [Elt(lv3 = lv3, [.] |- (lv3 = lv3) = T),

Elt(T, |- T = T)]),

Class($=, [Elt($=, |- $= = $=)]),

Class(f, [Elt(f, |- f = f)]),

Class($= lv3, [Elt($= lv3, [.] |- $= lv3 = $= lv3)]),

Class(F, [Elt(F, |- F = F)])]

: class list

Finally we add a new term to the class set:

add_term ‘f (f (f (f (lv3:’a))))‘ cs’;

> val it =

([..] |- f (f (f (f lv3))) = lv3,

[Class(lv3,

...same classes as last time...

Class(F, [Elt(F, |- F = F)])])

: Thm.thm * class list

Notice the theorem that we get back in addition to the new class set, which tells us the normal
form.

A.3 Matching Algorithm

In our implementation, we combine all the match(Ci, Cj) sets for each class Cj , and define a match

datatype to store the substitutions:

datatype match = Match of (term * (int * term) list) * (thm * thm);

The first term is repi, and the (int * term) list represents a substitution (logic variables are
numbered, and the term is the class representative). Finally the first theorem is of the form t = repi

and the second is t′ = repj , where if we apply the substitution to t we will get t′. We need this to
prove to HOL that the substitution is really valid.

Initializing the match sets is easily implemented, and we will briefly comment on the method
for the application inductive step, as illustrated in Figure 2. We assume there are compatible
substitutions S taking F to f and S′ taking A to a. We have the term app([F], [A])12 in class Ci

and term app([f], [a]) in class Cj , and want to construct the application match. The two theorems
we need are of the form t = [app([F], [A])] and t′ = [app([f], [a])], for any t and t′ such that the
substitution S ∪ S′ takes t to t′. If we choose t = app(F, A) and t′ = app(f, a), then the required
two theorems can be created like this:

Et = TRANS (MK_COMB (EF , EA)) Ei

E′
t = TRANS (MK_COMB (Ef , Ea)) Ej

Note that we are using HOL theorems at every stage, which may result in a bottleneck in the
logical kernel. Boulton [4] provides a lazy-theorem approach to avoid such problems if they arise.

Received 8 June 2000. Revised 9 August 2000
12Recall that [X] is the notation for the class representative of the term X.

68 Congruence Classes with Logic Variables

S∪S′ S∪S′

S

S

SS S′S′

E

Ei

Ej

EF

Ef

EA

Ea

F

f

A

a

[F]

[f]

[A]

[a]

X

X

X [X]

Y

Y

app([F], [A])

app([f], [a])

[app([F], [A])]

[app([f], [a])]

E is the equality theorem: X = [X]

X matches to Y using substitution S

A term equal to X matches to a term equal to Y (using substitution S)

Fig. 2. Matching through an application.

Example Level Theorem
1 1 (∀x. f(f(x)) = g(x)) ⇒ (f(g(a)) = g(f(a)))
2 2 (∀x y z. ((x ∗ y) ∗ z = x ∗ (y ∗ z)) ∧ (e ∗ x = x)

∧ (i(x) ∗ x = e)) ⇒ (x ∗ i(x) = e)
3 1 abc = cba
4 2 abcd = dcba
5 2 abcde = edcba
6 3 (a + 1)(a + 1) = aa + a + a + 1

Table 1. Examples Chosen to Test the Percolation Algorithm.

A. HOL IMPLEMENTATION 69

Ex It #C #E #M Match Assim. Close Total

1 1 17 21 26 0.003 0.005 0.007 0.015
2 15 22 24 0.004 0.005 - 0.009

0.007 0.010 0.007 0.024

2 1 28 36 46 0.008 0.011 0.012 0.031
2 28 40 126 0.040 0.125 0.069 0.234
3 67 101 754 0.738 1.034 0.121 1.893
4 85 134 857 1.308 1.283 0.079 2.670
5 76 122 994 1.962 1.138 0.088 3.188
6 77 129 951 1.738 1.242 0.068 3.048
7 80 145 857 1.578 1.179 - 2.757

7.372 6.012 0.437 13.821

3 1 51 70 109 0.027 0.054 0.075 0.156
2 59 98 118 0.035 0.054 - 0.089

0.062 0.108 0.075 0.245

4 1 56 75 143 0.033 0.083 0.108 0.224
2 76 129 1047 0.499 1.348 2.633 4.480
3 189 401 1168 0.826 1.169 - 1.995

1.358 2.600 2.741 6.699

5 1 61 80 177 0.045 0.126 0.161 0.332

2 89 154 1413 0.665 2.053 6.289 9.007
3 188 477 1562 1.074 1.976 - 3.050

1.784 4.155 6.450 12.389

6 1 53 72 131 0.033 0.092 0.076 0.201
2 69 114 770 0.399 1.034 0.957 2.390
3 83 179 3507 5.929 8.950 10.914 25.793
4 96 228 2609 5.617 4.995 0.607 11.219
5 200 406 2501 5.403 6.837 - 12.240

17.381 21.908 12.554 51.843

Table 2. Detailed Profiles of the Percolation Algorithm on the Examples.

