
Verifying Relative Error Bounds using Symbolic
Simulation

Jesse Bingham and Joe Leslie-Hurd

Intel Corporation, Hillsboro, U.S.A
jesse.d.bingham@intel.com

joe.leslie-hurd@intel.com

Abstract. In this paper we consider the problem of formally verifying
hardware that is specified to compute reciprocal, reciprocal square root,
and power-of-two functions on floating point numbers to within a given
relative error. Such specifications differ from the common case in which
any given input is specified to have exactly one correct output. Our ap-
proach is based on symbolic simulation with binary decision diagrams,
and involves two distinct steps. First, we prove a lemma that reduces
the relative error specification to several inequalities that involve rea-
soning about natural numbers only. The most complex of these inequal-
ities asserts that the product of several naturals is less-than/greater-
than another natural. Second, we invoke one of several customized al-
gorithms that decides the inequality, without performing the expensive
symbolic multiplications directly. We demonstrate the effectiveness of
our approach on a next-generation IntelR© processor design and report
encouraging time and space metrics for these proofs.

1 Introduction

Formal verification of hardware data path designs is by now standard practice
for many design organizations, see e.g. [8, 16, 12, 17]. Typically the specifications
for such circuits are functional, meaning that there is exactly one correct output
for any given input. In principle, verification can be carried out by writing an
executable specification and checking that for all inputs, the output of the design
is equal to that of the specification. Symbolic simulation allows one to verify this
for all inputs in one fell swoop.1

In this paper, we consider designs with specifications that are not functional
since a given input can correctly produce any one of a multitude of possible
outputs. These specifications only require that the design result approximates
the true mathematical result, in the sense that the relative error is less than
some bound. Note that this is distinct from many functional specifications that
allow approximate results via rounding; in that case the rounding is precisely
defined so that there is still exactly one correct answer.

1 Although for some operations, one must employ case splitting and/or decomposition
due to exponential blow up.

We consider three unary operations in this work: reciprocal (RCP), reciprocal
square root (RSQRT), and power-of-two (EXP2). The first two take one IEEE
floating point number as input, while power-of-two takes a fixed-point number;
all three produce one IEEE floating point number as output. The common thread
in verifying these three operations is summarized by the following two elements:

1. Express the relative error specification as two inequalities, each of the form

B <>

n∏
i=1

Mi (1)

where <> is either < or >, along with some simpler conditions also involving
only integer reasoning. Here B and M1, . . . ,Mn are positive integers that
are specific to the operation under consideration, and each have tractable
symbolic representations. The equivalence of these inequalities to the desired
relative error bounds are stated and proven as meta-theorems in this paper.

2. Use one of several custom algorithms for deciding the inequalities (1).
These algorithms are optimized for efficient symbolic computation; though
M1, . . . ,Mn have tractable representations, the product typically does not,
so directly computing the product and checking the inequality can be
prohibitively expensive. The other conditions involving integers are simple
enough that they don’t require any specially optimized algorithms to decide
symbolically.

The general technique of reducing problems involving floating point numbers
to problems involving integers is well-known, and for example has been used
to find test vectors for floating point units where the outputs are very close to
rounding boundaries [11]. The chief novelty of this paper is the specific recipes
for reducing the relative error specifications of three families of floating point
operations—RCP, RSQRT and EXP2—to a form that can be proved by symbolic
computation techniques.

The primary contribution of the paper presents these novel reductions and
demonstrates how they can be integrated with standard symbolic simulation
tools for RTL. This facilitates formal verification of relative error bounds for our
three instruction classes on a next-generation Intel R© processor. This is the first
verification approach for relative error bounds that uses symbolic simulation
instead of theorem proving, which offers the advantage of providing counter-
examples whenever the verification fails, shortening debugging time. A secondary
contribution of this paper is the technique for verifying the relative error bounds
of the EXP2 floating point operation, which computes an approximation to 2x

for an input x. We present a recipe for verifying bounds of this transcendental
function using symbolic arithmetic operations.

The rest of the paper is organized as follows. Background notions and nota-
tions are given in Sect. 2. The lemmas that reduce the relative error specifications
to integer reasoning are give in Sect. 3. Sect. 4 presents the three symbolic deci-
sion procedures for (1). Our case study results, paper summary, and a discussion
of related work correspond to Sects. 5, 6, and 7, respectively.

2 Background

2.1 Relative Error

Let B, N, Z, and R represent the set of booleans {0, 1}, naturals {0, 1, 2, . . .},
integers, and reals, respectively. For any x ∈ R, we use the usual floor and ceiling
operations that map x ∈ R to Z: bxc is the maximum integer n such that n ≤ x
and dxe is the minimum integer n such that n ≥ x. We also define 〈x〉 = x−bxc,
i.e. 〈x〉 is the “fractional” part of x.

Let y and y∗ be reals; here y can be thought of as a mathematically precise
result, whereas y∗ is an approximation of y. For real ε > 0, we say that y∗

approximates y with relative error ε if∣∣∣∣y∗ − yy

∣∣∣∣ < ε

For a natural p ≥ 2, we use the notation y∗ ≈p y to assert that y∗ approximates
y with relative error 2−p. We make the assumption that p ≥ 2, and hence the
relative error is at most 1

4 , to rule out some pathological cases in our proofs.2 In
this paper we will be interested in establishing

∀x. h(x) ≈p f(x)

where h(x) is the output of a hardware design given input x, and f is the
mathematical function that the hardware is designed to approximate.

2.2 Floating Point Numbers

A floating point number [5], or simply float, is a triple (s, e,m) where s ∈ {−1, 1}
is called the sign, e ∈ Z is called the exponent, and m ∈ N is called the mantissa.3

The mantissa must satisfy a range constraint 2` ≤ m < 2`+1 where ` ∈ N is a
constant called the mantissa fraction length.4 In this paper we will deal with
single precision and double precision floats, which have ` = 23 and ` = 52,
respectively. If x is a floating point number, we write s(x), e(x), and m(x) for
the sign, exponent, and mantissa of x, respectively. The real number represented
by x is defined to be

s(x)m(x)2e(x)−`

and in a minor abuse of notation we will use x and the represented real inter-
changeably.

2 The relative errors used in our hardware verification case studies have p ∈
{11, 14, 23, 28}.

3 Here we abstract slightly away from bit-level floating point encodings, e.g. as defined
in IEEE Standard 754 [7].

4 In practice e also satisfies a range constraint emin ≤ e ≤ emax , where emin and
emax are maximal and minimal exponents. However, the results in this paper do not
depend on exponent range constraints and so we omit them.

2.3 Symbolic Simulation

Let V be a finite set of boolean-valued variables. An assignment (to V) is a func-
tion α : V → B. For any set S (which we’ll call the base type), a function of type
(V → B)→ S is called a symbolic S; if S is unspecified we will simply refer to this
as a symbolic object. Thus a symbolic S is a function that takes an assignment
and produces an element of the base type S. In this paper we will be interested
in symbolic booleans (a.k.a boolean functions), symbolic integers/naturals, and
symbolic floats. To represent and manipulate boolean functions we will use the
well-known binary decision diagram (BDD) [2] data structure. One can then
represent a symbolic integer b using a finite list of boolean functions bn, . . . , b0
and twos-complement encoding; i.e. for an assignment α,

b(α) = −bn(α)2n + bn−1(α)2n−1 + · · ·+ b0(α)20

Once equipped with symbolic integers, we can represent symbolic floats as
(s, e,m), where s is a boolean function indicating the sign, and e and m are
symbolic integers. Furthermore, any function involving the various base types of
interest can be extended to take and return symbolic objects. In code, this typi-
cally involves simply replacing primitive operations with symbolic variants. One
fundamental operation that we will use symbolically is if-then-else, explained as
follows. Let Xi and Xe be symbolic objects having the same base type, and let
c be a boolean function. Then we define

ite(c,Xi, Xe) = λα. if c(α) then Xi(α) else Xe(α)

For the rest of the paper, we assume availability of symbolic variants of other
fundamental operations, such as addition, subtraction, multiplication, exponen-
tiation, and constants, and will not notationally distinguish the symbolic from
the non-symbolic operations.

Symbolic simulation is a well-known approach wherein symbolic objects are
propagated through the primitives of a hardware (or software) design [4]. In this
paper we employ BDD-based symbolic simulation, e.g. [15]. Here, a hardware de-
scription language representation of the design is compiled down to a gate-level
implementation, which operates on wires carrying boolean values. Roughly, sym-
bolic simulation involves associating to each input wire a unique boolean variable
from V (represented by a BDD), and then propagating the symbolic booleans
through the gates according to the gate’s function. Symbolic simulation proper
completes when the resulting BDDs on the output wires of interest have been
computed. These output BDDs are then fed into a specification-checking phase
that either proves correctness or returns a counter-example in the form of an
assignment to V . In the framework in which we did our work, the specification
refers to inputs and output being naturals, integers, or floats; i.e. the BDDs seen
by the symbolic simulator are packaged into symbolic objects before evaluat-
ing the specification. Hence, even though symbolic simulation works on a “bit-
blasted”, gate-level representation, we can meaningfully construct a specification
that relates the input float to the output float (or other type, as appropriate).

3 Bounded Product Reduction

In this section we present the meta-theorems needed to reduce the relative error
verification problem for RCP (Sect. 3.1), RSQRT (Sect. 3.2), and EXP2 (Sect. 3.3) to
integer inequalities. Note that the theorem (and proof) for the first two are quite
similar, though sufficiently different as to warrant separate theorems, whereas
the reduction for EXP2 is somewhat more elaborate. Though the reduction for
RSQRT involves reasoning about irrational numbers, these can be eliminated by
squaring; however the irrationality of EXP2 cannot be disposed of in such an easy
manner and requires more sophisticated techniques.

3.1 Reciprocal

Suppose we wish to establish y ≈p 1/x, where x and y are floating point numbers.
To reduce the problem to purely integer reasoning, we invoke the following key
lemma.

Lemma 1 (Reduction for RCP).
Let x and y be floating point numbers. Then we have y ≈p 1/x if and only if

all of the following three conditions hold:

(i) s(x) = s(y)

(ii) e(x) + e(y) ∈ {−2,−1, 0}
(iii) 22`+2 − 22`+2−p < m(x)m(y)2e(x)+e(y)+2 < 22`+2 + 22`+2−p

Proof. We have

y ≈p 1/x
⇔ |xy − 1| < 2−p

⇔
∣∣(s(x)m(x)2e(x)−`

) (
s(y)m(y)2e(y)−`

)
− 1
∣∣ < 2−p

⇔
∣∣s(x)s(y)m(x)m(y)2−2`2e(x)+e(y) − 1

∣∣ < 2−p

⇔ 1− 2−p < s(x)s(y)m(x)m(y)2−2`2e(x)+e(y) < 1 + 2−p

⇔ 22`+2(1− 2−p) < s(x)s(y)m(x)m(y)2e(x)+e(y)+2 < 22`+2(1 + 2−p)

which is equivalent to

22`+2 − 22`+2−p < s(x)s(y)m(x)m(y)2e(x)+e(y)+2 < 22`+2 + 22`+2−p (2)

Since 22`+2 − 22`+2−p is positive, we must have s(x) = s(y). Thus, since
s(x)s(y) = 1, the above is equivalent to Condition (iii) of the lemma
statement. Also, from the definition of floating point number, we have
22` ≤ m(x)m(y) < 22`+2. If e(x) + e(y) ≤ −3, then

m(x)m(y)2e(x)+e(y)+2 ≤ m(x)m(y)/2 < 22`+1 ≤ 22`+2 − 22`+2−p

(since p is a positive integer), contradicting the lower bound of (2). Similarly, if
e(x) + e(y) ≥ 1, then

m(x)m(y)2e(x)+e(y)+2 ≥ m(x)m(y)23 > 22`+3 > 22`+2 + 22`+2−p

which violates the upper bound of (2). ut

Conditions (i) and (ii) of Lemma 1 clearly only involve integers; furthermore,
assuming p ≤ 2` + 2, so too does (iii).5 Hence, we have reduced y ≈p 1/x to
two instances of (1) with n = 2, where M1 = m(x)2e(x)+e(y)+2 and M2 = m(y),
and the bound B = 22`+2(1− 2−p) (resp. B = 22`+2(1 + 2−p)) in the first (resp.
second) instance. Note that we choose to multiply m(x) by 2e(x)+e(y)+2 to create
M1, rather than have n = 3. The BDD complexity introduced by multiplying
m(x) by 2e(x)+e(y)+2 is relatively insignificant, since under condition (ii) the
latter ranges over just {1, 2, 4}.

3.2 Reciprocal Square Root

Reciprocal square root involves a similar derivation as reciprocal, except we can
disregard the sign, since the operation is only defined on non-negative floats.

Lemma 2 (Reduction for RSQRT). Let x and y be positive floating point num-
bers. Then we have y ≈p 1/

√
x if and only if both of the following conditions

hold:

(i) −3 ≤ e(x) + 2e(y) ≤ 0

(ii) 23`+3 − 23`+4−p + 23`+3−2p < m(x)m(y)22e(x)+2e(y)+3

< 23`+3 + 23`+4−p + 23`+3−2p

Proof. We have

y ≈p 1/
√
x

⇔ |y
√
x− 1| < 2−p

⇔ −2−p < y
√
x− 1 < 2−p

⇔ 1− 2−p < y
√
x < 1 + 2−p

⇔ (1− 2−p)2 < xy2 < (1 + 2−p)2

⇔ (1− 2−p)2 <
(
m(x)2e(x)−`

) (
m(y)2e(y)−`

)2
< (1 + 2−p)2

⇔ (1− 2−p)2 < m(x)m(y)22e(x)+2e(y)−3` < (1 + 2−p)2

⇔ 23`+3(1− 2−p)2 < m(x)m(y)22e(x)+2e(y)+3 < 23`+3(1 + 2−p)2

⇔ 23`+3 − 23`+4−p + 23`+3−2p < m(x)m(y)22e(x)+2e(y)+3

< 23`+3 + 23`+4−p + 23`+3−2p

Note that since p ≥ 2, we have 23`+2 < 23`+3 − 23`+4−p + 23`+3−2p and 23`+3 +
23`+4−p+23`+3−2p < 23`+4, and from the definition of floating point number, we
have 23` ≤ m(x)m(y)2 < 23`+3. If e(x)+2e(y) ≤ −4, the we get the contradiction

23`+2 < m(x)m(y)22e(x)+2e(y)+3 ≤ m(x)m(y)22−1 < 23`+2

If e(x) + 2e(y) ≥ 1, then we get the contradiction

23`+4 > m(x)m(y)22e(x)+2e(y)+3 ≥ m(x)m(y)224 ≥ 23`+4

ut
5 In all our hardware verification case studies we have p ≤ 2`+ 2, however if this does

not hold, one need only multiply all three quantities by 2p−2`−2 to obtain integers.

3.3 Power-of-Two

In this section, we consider relative error bounds for an instruction EXP2 that
takes an input x and returns an approximation of 2x. Unlike the preceding
instructions, EXP2 does not take a floating point number as input, but rather a
fixed point number. A fixed point number with precision q is a real number x such
that x2q ∈ Z. Though EXP2 takes a fixed point number as input, it produces a
floating point number as output.

Lemma 3. Let x be a fixed point number with precision q and let y be a positive
floating point number, and let p ≥ 2 be an integer. Then we have y ≈p 2x if and
only if both of the following conditions hold:

(i) e(y)− bxc ∈ {−1, 0, 1}
(ii) 2〈x〉2`(2p − 1) < m(y)2p+e(y)−bxc < 2〈x〉2`(2p + 1)

Proof. Letting d = e(y)− bxc, we have

y ≈p 2x

⇔ |y2−x − 1| < 2−p

⇔
∣∣m(y)2e(y)−`−bxc−〈x〉 − 1

∣∣ < 2−p

⇔
∣∣m(y)2−`2−〈x〉2d − 1

∣∣ < 2−p

⇔ 1− 2p < m(y)2−`2−〈x〉2d < 1 + 2−p

⇔ 2〈x〉2`(2p − 1) < m(y)2p+d < 2〈x〉2`(2p + 1)

Since 0 ≤ 〈x〉 < 1, we have 1
2 < 2−〈x〉 ≤ 1; we also have 1 ≤ m(y)2−` < 2. Thus,

1
2 < m(y)2−`2−〈x〉 < 2

and therefore if 2d ≤ 1
4 or 4 ≤ 2d, the left-hand side of the inequality becomes

strictly greater than 1
2 , and thus the inequality cannot hold since the right-hand

side is less than or equal to 1
2 . Thus d ∈ {−1, 0, 1}. ut

All quantities involved in the inequalities (ii) above are integers, except the
value 2〈x〉, which in general is an irrational in [1, 2). Hence we cannot hope to
simply scale all values by some power of two to make an equi-satisfiable integer
inequality, as was done in Lemmas 1 and 2. However, if we are equipped with a
means of computing

⌊
2k2〈x〉

⌋
and

⌈
2k2〈x〉

⌉
precisely, for any k ∈ N, we can still

obtain an equivalent computable inequality. This is afforded by the following
lemma.

Lemma 4. Let r be a real and m and n be naturals. Then rm < n (resp.
n < rm) if and only if there exists some natural k such that

⌈
r2k
⌉
m < n2k

(resp. n2k <
⌊
r2k
⌋
m)

Proof. The ⇐ direction is easy. For the ⇒ direction, suppose rm < n. Then
rm + q = n for some real q > 0, and thus r + q/m = n/m. Choose k such that
2−k < q/m. Then n = rm + q > rm + m2−k, and thus n2k > r2km + m =
(r2k + 1)m >

⌈
r2k
⌉
m. The respective statement is proven analogously. ut

We now exploit Lemma 4 to create a “computable” version of Lemma 3:

Lemma 5. Let x be a fixed point number with precision q, let y be a positive
floating point number, and let p > 0 be an integer. Then we have y ≈p 2x if and
only if e(y)− bxc ∈ {−1, 0, 1} and there exists natural k such that⌈

2k+〈x〉
⌉

2`(2p − 1) < m(y)2k+p+e(y)−bxc <
⌊
2k+〈x〉

⌋
2`(2p + 1) (3)

Proof. Follows from Lemmas 3 and 4 ut

Although the condition (3) from Lemma 5 only involves integers, it still re-
quires a means of symbolically computing

⌈
2k+〈x〉

⌉
and

⌊
2k+〈x〉

⌋
. Such computa-

tions are possible, however we chose to merely compute upper- and lower-bounds,
respectively, on these two quantities. We now elaborate on this scheme.

Observe that since x is a fixed-point number with precision q, we have that
〈x〉 =

∑q
i=1 xi2

−i, where xi ∈ B, and hence

2k+〈x〉 = 2k
q∏
i=1

2xi2
−i

Now let us suppose we have a pair of functions sqrt2L, sqrt2U : N × N → N
such that for all n, i ∈ N we have sqrt2L(n, i) ≤ 2n+2−i ≤ sqrt2U (n, i). Here we
may think of n as a bit-precision used to approximate the 2ith-root of 2. Taking
k = nq and replacing the exponent xi with an ite operator yields⌊

2nq+〈x〉
⌋
≥
∏q
i=1 ite(xi, sqrt2L(n, i), 2n)⌈

2nq+〈x〉
⌉
≤
∏q
i=1 ite(xi, sqrt2U (n, i), 2n)

(4)

The introduction of the ceiling and floor operators on the LHSs of (4) are justified
since the RHSs are naturals. Condition (3) is hence implied by

2`(2p − 1)
∏q
i=1 ite(xi, sqrt2U (n, i), 2n) < m(y)2k+p+e(y)−bxc

2`(2p + 1)
∏q
i=1 ite(xi, sqrt2L(n, i), 2n) > m(y)2k+p+e(y)−bxc

(5)

We have obtained adequate functions for sqrt2L and sqrt2U via some straightfor-
ward modifications of a pre-existing function that performs (floor of) square-root
on symbolic naturals. Therefore, when verifying EXP2, we need only decide in-
equalities of the form (5), with the “precision” parameter n selected large enough
for the verification to succeed.

4 Deciding Symbolic Product Inequalities

Section 3 showed how the relative error specification for RCP, RSQRT, and EXP2

can be reduced to two inequalities of the form (1): B <>
∏n
i=1Mi, where <>

is either < or > and each Mi ∈ N. In this section we describe three algorithms
for deciding symbolic inequalities of this form. Technically, these algorithms

return the symbolic boolean characterizing the space of assignments for which
the inequality holds; verification is successful iff this is the constant function
True. Let us abbreviate

∏n
i=1Mi by Π, and let us refer to our problem as <-

bounding (resp. >-bounding) when <> is < (resp. >).

A common feature of the three algorithms is that all involve a loop that
iteratively computes closer and closer approximations a0, a1, . . . of Π. When <-
bounding, this sequence is such that for all i, ai ≤ ai+1 ≤ Π; thus if we reach an
i such that B < ai, we have proven B < Π. The analogous statement with all
inequalities reversed holds for >-bounding. Let sat i denote the symbolic boolean
B <> ai. Assuming it exists, let v ∈ N be minimal such that satv = True.
Clearly, after iteration v the algorithm can safely return True. Furthermore, if
av 6= Π, we have proven the bound without computing Π exactly. This early
termination saves significant time and space, since v can be much smaller than
the total number of iterations the algorithm would otherwise execute, and the
BDD sizes in the representation of av are much smaller than that of Π.

Since the sequence a0, a1, . . . is monotonic, so too is sat0, sat1, . . ., in the
sense that sat i ⇒ sat i+1 for all i. Let u ∈ N be minimal such that satu 6= False.
Typically, u is somewhat smaller than v, which implies there are iterations i
wherein False 6= sat i 6= True (i.e., sat i is a non-constant boolean function). This
reveals a certain redundancy in these later iterations; even though we have com-
pleted the proof for the space sat i, we continue to do computationally complex
operations to go from ai to ai+1, which implicitly involve all assignments. We
hence investigated the use of an optimization called sat-space restriction (SSR),
in which, at the end of the ith iteration, we replace ai with ite(sat i, 0, ai). SSR
thus zeros out the approximations ai in the space wherein the bound is already
established. Our intuition suggests that SSR might be an impactful optimiza-
tion, but its efficacy is an empirical question. Experiments have confirmed that
it is indeed useful. For instance, for single precision RCP with p = 28 and using
the algorithm of Sect. 4.3, computing the relative error specification took 8,771
and 7,038 seconds when SSR was off and on respectively, giving a 20% runtime
improvement.6

The SSR optimization also improves the robustness of our symbolic prod-
uct algorithms in the presence of hardware bugs, which can cause many more
iterations of the Π-approximating loop. SSR ensures that the extra iterations
only perform symbolic computations within the space of the buggy inputs. As an
extreme example, if this space contains a single input vector, then the extra iter-
ations will involve BDDs that are either constants or the minterm corresponding
to the buggy input, and hence are immune to blow-up.

An orthogonal optimization to SSR is truncation (Tr), which involves trun-
cating a certain number of lower order “bits” from each ai. For a natural
t and symbolic natural a, define truncLt(a) = 2t ba2−tc and truncU t(a) =
2t(ba2−tc + 1). Clearly truncLt(a) ≤ a ≤ truncU t(a); and we may safely ap-
ply truncL (resp. truncU) when <-bounding (resp. >-bounding). Truncating
can be useful, since the lower order t BDDs in intermediate computations might

6 These results were averaged over 3 runs

introduce significant complexity, while negligibly contributing to the magnitude
of the value.

We now present the three algorithms we use for deciding (1).

4.1 Brute Force

This algorithm does full symbolic multiplications, but can apply Tr on inter-
mediate results. In terms of the above characterization, the approximation se-
quence is degenerate and has just the single element a0 = bn, where b0 = 1
and bi+1 = b′iMi and b′i is either truncLt(bi) or truncU t(bi) for <-bounding
or >-bounding, respectively. We then simply symbolically evaluate and return
B <> bn. We call this brute force since the individual multiplications b′iMi are
done with an off-the-shelf symbolic multiplication algorithm that is oblivious to
the fact that we only wish to bound the final product. This is not the case for
the next two algorithms, wherein multiplication is aware of B and <>.

4.2 Partial Product Summation

The partial product summation is only used when n = 2; we will write x and y for
M1 and M2, respectively. Let yi be the the ith “bit” of the symbolic natural y, i.e.
y =

∑r
i=1 yi2

i where r is selected to be large enough to accommodate all values
in y’s range. The approximations a0, a1, . . . are based on the “partial product”
expansion xy =

∑r
j=0 yjx2j . In particular, ai involves summing the first i + 1

terms of this expansion, and replacing the remaining terms by a (symbolically
simpler) natural φi.

ai = φi +

r∑
j=r−i

yjx2j

When <-bounding, we simply use φi = 0; while for >-bounding, φi = x2r−i.7

Fig. 1 depicts the algorithmic expression of the >-bounding partial product
summation. The approximation ai is computed on line 6; this is separate from
acc, which is simply the sum of the first i + 1 term of the partial product
summation. Line 7 updates the sat space, handling the final iteration (wherein
acc = xy, but is typically not reached) with a special case. Lines 8-10 check
for and do early termination, which invariably happens in our case studies that
use this algorithm. Lines 11 and 12 are the optional Tr and SSR optimizations,
respectively.

4.3 Polynomial Expansion

Though this approach can be generalized for any n, we only use it for RCP and
RSQRT, and hence n ∈ {2, 3}. Here we explain the n = 3 case and denote our
three multiplicands by x, y, and z. Let us fix a natural b ≥ 1, and assume that

7 One can safely tighten this slightly to x(2r−i − 1), but we used x2r−i since its
representation as a symbolic natural is not more complex than that of x.

1: function PP Bound Upper(B, x, y)
2: acc := 0
3: sat := false
4: for i := 0 upto r do
5: acc := acc + ite(yr−i, x2r−i, 0)
6: a := acc + x2r−i

7: sat := sat ∨ ite(i = r,B > acc, B ≥ a)
8: if sat = True then
9: return True

10: end if
11: acc := truncU t(acc)
12: acc := ite(sat , 0, acc)
13: end for
14: return sat
15: end function

Fig. 1: The partial product summation algorithm (>-bounding)

each of x, y, and z is representable using rb bits; i.e. each of the three symbolic
naturals is in the range [0, 2rb). Let us express x as x =

∑r
j=0 xjd

j , where d = 2b

and each xi is a symbolic natural with range {0, . . . , d − 1}. Note that in the
symbolic natural representation discussed in Sect. 2.3, obtaining the xi’s from x
is trivial, since each xi is represented by a “bit slice” of x. We express y and z
similarly, respectively yielding yr, . . . , y0 and zr, . . . , z0. Our approach is based
on the identity xyz =

∑
h,j,k xhyjzkd

h+j+k, where the sum ranges over all

triples (h, j, k) ∈ {0, . . . , r}3.
Let τ0, τ1, . . . be a total ordering of the triples {0, . . . , r}3, and let Ti = {τj :

j ≤ i}. For <-bounds, we form ai by simply summing the terms corresponding to
the triples of Ti, which clearly is a lower bound, since each term is nonnegative.

ai =
∑

(h,j,k)∈Ti

xhyjzkd
h+j+k ≤ xyz (6)

For >-bounds, the analogous ai is somewhat more involved:

ai =
(
dr+1 − 1

)3 − ∑
(h,j,k)∈Ti

(
(d− 1)3 − xhyjzk

)
dh+j+k (7)

≥
(
dr+1 − 1

)3 −∑
h,j,k

(
(d− 1)3 − xhyjzk

)
dh+j+k

=
∑
h,j,k

(d− 1)3dh+j+k −
∑
h,j,k

((d− 1)3 − xhyjzk)dh+j+k

=
∑
h,j,k

(
(d− 1)3 − (d− 1)3 + xhyjzk

)
dh+j+k

= xyz

The natural choice of τ0, τ1, . . . (for either direction of bounding) is one that
orders terms with higher powers of d first. In other words, whenever h+ j+ k >

h′+j′+k′, the triple (h, j, k) comes before (h′, j′, k′) and triples with equal sums
are ordered arbitrarily. Fig 2 gives the <-bounding variant of the algorithm; >-
bounding is similar, but uses (7) instead of (6). In particular, line 3 is replaced
with a := (dr+1− 1)3, and line 6 is replaced with a := a− ((d− 1)3−xhyjzk)dσ;
lines 7 and 11 are modified in the obvious way. Similar to Fig. 1, lines 11 and 12
are the optional optimizations Tr and SSR, respectively.

1: function Poly Expansion Bound Lower(B, x, y, z)
2: sat := False
3: a := 0
4: for σ := 3r downto 0 do
5: for all (h, j, k) ∈ N3 such that h+ j + k = σ do
6: a := a+ xhyjzkd

σ

7: sat := sat ∨B < a
8: if sat = True then
9: return True

10: end if
11: a := truncLt(a)
12: a := ite(sat , 0, a)
13: end for
14: end for
15: return sat
16: end function

Fig. 2: The polynomial expansion algorithm (<-bounding)

5 Case Studies

Our method has been implemented in reFLect, the lazy functional language used
to program Intel’s Forte tool suite [14], and sits as a specification layer on top of
the Relational STE [10] symbolic simulator. The design under verification was
from a next-generation many-core CPU under development at Intel R©. The RCP

and RSQRT instructions analyzed in the paper are used as initial approximations
in the implementation of division and squareroot computations; it is therefore
crucial that they satisfy the specified relative error for the final result to be
correct. Each core on the CPU is equipped with a SIMD unit that implements a
fused-multiply-add (FMA) datapath, which computes x+ yz with only a single
rounding for floats x, y, and z, as well as special-purpose hardware for our three
approximate instruction families. The instruction classes RCP and RSQRT have
instances for the three relative errors 2−11, 2−14 and 2−28; most of which are
supported for both single precision (SP) and double-precision (DP) floats, while
EXP2 has only relative error 2−23, but has an instance that produce each of SP
and DP results. The input for the SP (resp. DP) EXP2 flavor is a fixed-point
integer with precision 24 and an 8-bit (resp. 11-bit) integer part, i.e. they fall in

the range [−27, 27) (resp. [−210, 210)). All instructions in our three classes are
implemented using a similar method. Roughly, a selection of bits from the input
are used to map into a instruction-specific ROM to obtain coefficients to use
in a quadratic approximation. The FMA hardware is then used to perform the
operations (multiplication, addition, normalization and rounding) necessary for
evaluating the quadratic formula into a floating point result.

Op. Tot. Time Spec. Time. Mem. Alg. Case split

RCP 11S 58 3 1.8 P No
RCP 14S 103 49 1.8 P No
RCP 14D 135 51 1.8 P No
RCP 28S 14,972 7,038 17.4 E(4,0) No
RCP 28D 2.7 days 1.3 days 3.6 E(5,0) 512-way

RSQRT 11S 68 4 1.8 P No
RSQRT 14S 124 69 1.8 P No
RSQRT 14D 139 55 1.8 P No
RSQRT 28S 18,301 13,173 6.0 E(5,0) 16-way
RSQRT 28D 22.7 days 16.7 days 9.0 E(5,110) 1,024-way

EXP2 23S 72,759 63,428 2.9 B(30) 128-way
EXP2 23D 59,706 51,152 2.8 B(30) 128-way

Table 1: Verification Results

Table 1 gives the verification results.8 The Op column gives the instruction
type, along with the value of p and an indication of single precision (S) or double
precision (D) floats.9 The Tot Time column gives the total (wall clock) run time
for the proof; the units are seconds except for the entries measured in days. Spec
Time is the time for just computing the relative error specification; the time for
symbolic simulation is not included.10 Mem is the maximum virtual memory, in
GB, the Forte process used during execution. Alg indicated which of the decision
procedures from Sect. 4 was used: B(t) is the brute force algorithm from Sect. 4.1
with parameter t, P is the partial product approach from Sect. 4.2 with SSR
enabled, while E(b,t) is the algorithm of Sect. 4.3 with SSR and parameters b
and t. Some instructions require case splitting [1], which partitions the input
space into a number of cases; the Case split column indicates if this was used,
and if so how many cases. The case splits were obvious and involved holding

8 All runs used the BDD variable order of sign, exponent, and then mantissa source
variables.

9 The instructions RCP28S and RSQRT28S are oddities since the minimum relative error
allowed by the single precision format is 2−23. The specification says to do the
computation in the double precision domain, and then round to the nearest single
precision. We were able to verify that the relative error bound was 2−22 and 2−23,
respectively, for these instructions.

10 The time accounted to symbolic simulation also involves a non-negligible component
for a cone-of-influence reduction.

constant some of the input bits used to index into the coefficient ROMs in the
circuit. It is important to note that the multi-day runs were in reality performed
by grouping the cases into 10 buckets and running them on different machines
concurrently—case splits are embarrassingly parallelizable—so the real time used
for even RSQRT 28D was just over 2 days.

The 2−14 flavors of RCP and RSQRT are interesting in that, unlike the others,
they support denormal inputs and outputs. Denormal floats are very small values
that have the minimum possible exponent, and have m(x) < 2`. Though our
theory assumes normal floats, it is still applicable to denormals since we have
not assumed any lower bound on the exponent. Our specification code simply
“normalizes” the float before doing the relative error check, this means that we
map the denormal float (s, e,m) to (s, e − j,m2j), where j ∈ N is selected so
that 2` ≤ m2j < 2`+1. This operation clearly preserves the value represented by
the float. This step did not introduce any significant verification complexity.

6 Summary

This paper has presented a novel technique for verifying relative error specifica-
tions using symbolic simulation, demonstrated on three operations taken from
an industrial case study. For each of the three operations, the relative error spec-
ification is reduced to inequalities between products of integers, which is then
symbolically evaluated using a custom procedure to avoid BDD blow-up. In addi-
tion to verifying an industry hardware design, this technique delivered additional
benefits when applied in an industrial setting. We found that the ability of sym-
bolic simulation to deliver counter-examples greatly improved communication
between the verification and design teams, and as a consequence the debugging
cycle was shortened.

7 Related Work

The most relevant existing work is a paper by Sawada [13] which presents a tech-
nique for verifying the relative error of approximate RCP and RSQRT instructions.
The technique relies on the manual construction of a high level model of the hard-
ware implementation, expressed in terms of bounded polynomial functions. The
high level model is proved to satisfy the relative error bounds by using custom
proof strategies in the ACL2 theorem prover. The advantage of this approach is
that it mechanizes the high level reasoning needed to reduce the relative error
specification to a form suitable for automatic analysis. Our approach currently
relies on pen-and-paper meta-theorems to support this reduction, although we
are confident they could be mechanized using the Goaled theorem prover inte-
grated with Forte [10]. However, the advantage of our approach is that it works
directly on the register transfer level (RTL)—there is no need to construct a high
level model of its behaviour—and it can also be applied to verify the relative
error bounds of EXP2. Sawada’s paper reports results for precisions only up to
p = 14, at which level a relative error verification of reciprocal required 13,953

seconds on a 2.93GHz processor. Our verification of RCP14 for DP float inputs
required only 133 seconds (on a 3.07 GHz machine).

Another related work is a paper by Harrison [6] presenting a verification of
relative error bounds for trigonometric functions implemented using software
floating point operations. Although this was an interactive proof carried out us-
ing the HOL Light theorem prover, it made essential use of a custom automatic
proof tactic for proving that the operations implementing the range reduction
step are sufficiently accurate for every possible floating point input. This is sim-
ilar to our relative error verification, although the technique presented in the
paper of encoding a tailored real analysis argument as an automatic proof tac-
tic is very different from our technique of reducing floating point numbers to
integers followed by symbolic simulation using BDDs.

Our verification approach relies on performing symbolic arithmetic opera-
tions on integers represented by lists of BDDs, using a technique introduced by
Minato and Somenzi [9]. The chief difficulty of performing symbolic arithmetic
in this way is that the representing BDDs tend to blow up in size. For example, it
was shown by Bryant [3] that any BDD representing the middle bit of a product
of two symbolic integers is necessarily exponential in the number of bits of the
multiplicands (regardless of the ordering of the variables). Thatchachar [18] also
proves exponential bounds for RCP and square root (but does not cover RSQRT)
for a general class of representations that includes BDDs. Hence a possible alter-
native approach that computes the “exact” RCP result and then shows that the
hardware output is within the relative error would be infeasible, and our more
sophisticated methods are justified.

Acknowledgement

We extend gratitude to Professor Alan Hu for agreeing to present this paper on
our behalf.

References

1. M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Formal verification using para-
metric representations of Boolean constraints. In Design Automation Conference
(DAC 1999), July 1999.

2. R. E. Bryant. Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on, C-35(8):677–691, 1986.

3. R. E. Bryant. On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Trans.
Comput., 40(2):205–213, 1991.

4. J. A. Darringer. The application of program verification techniques to hardware
verification. In Proceedings of the 16th Design Automation Conference, DAC ’79,
pages 375–381, Piscataway, NJ, USA, 1979. IEEE Press.

5. D. Goldberg. What every computer scientist should know about floating point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

6. J. Harrison. Formal verification of floating point trigonometric functions. In W. A.
Hunt Jr. and S. D. Johnson, editors, Formal Methods in Computer-Aided Design
(FMCAD 2000), volume 1954 of Lecture Notes in Computer Science, pages 254–
270. Springer Berlin Heidelberg, 2000.

7. IEEE. Standard for binary floating-point arithmetic. ANSI/IEEE Standard 754-
1985. The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY 10017, USA, 1985.

8. R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav,
A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik. Replacing testing
with formal verification in IntelR© CoreTM i7 processor execution engine validation.
In A. Bouajjani and O. Maler, editors, CAV, volume 5643 of Lecture Notes in
Computer Science, pages 414–429. Springer, 2009.

9. S.-I. Minato and F. Somenzi. Arithmetic Boolean expression manipulator using
BDDs. Formal Methods in System Design, 10(2-3):221–242, 1997.

10. J. O’Leary, R. Kaivola, and T. Melham. Relational STE and theorem proving
for formal verification of industrial circuit designs. In B. Jobstmann and S. Ray,
editors, Formal Methods in Computer-Aided Design (FMCAD 2013), pages 97–104.
IEEE, Oct. 2013.

11. M. Parks. Number-theoretic test generation for directed rounding. IEEE Trans.
Comput., 49(7):651–658, July 2000.

12. V. Paruthi. Large-scale application of formal verification: From fiction to fact. In
Formal Methods in Computer-Aided Design (FMCAD 2010), pages 175–180, 2010.

13. J. Sawada. Automatic verification of estimate functions with polynomials of
bounded functions. In Formal Methods in Computer-Aided Design (FMCAD 2010),
pages 151–158, 2010.

14. C. J. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aagaard, C. Barrett, and
D. Syme. An industrially effective environment for formal hardware verification.
Trans. Comp.-Aided Des. Integ. Cir. Sys., 24(9):1381–1405, 2006.

15. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. Formal Methods in System Design, 6(2):147–189,
1995.

16. A. Slobodová, J. Davis, S. Swords, and W. A. Hunt. A flexible formal veri-
fication framework for industrial scale validation. In S. Singh, B. Jobstmann,
M. Kishinevsky, and J. Brandt, editors, MEMOCODE, pages 89–97. IEEE, 2011.

17. D. Stewart. Formal for everyone - Challenges in achievable multicore de-
sign and verification. In G. Cabodi and S. Singh, editors, Formal Methods in
Computer-Aided Design (FMCAD 2012), page 186. IEEE, Oct. 2012. Slides avail-
able at http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/FormalForEveryone_

DStewart_ARM.pdf.
18. J. Thathachar. On the limitations of ordered representations of functions. In A. Hu

and M. Vardi, editors, Computer Aided Verification, volume 1427 of Lecture Notes
in Computer Science, pages 232–243. Springer Berlin Heidelberg, 1998.

