
Theoretical Computer Science 346 (2005) 96–112
www.elsevier.com/locate/tcs

Probabilistic guarded commands mechanized in
HOL

Joe Hurda,∗, Annabelle McIverb, Carroll Morganc
aComputing Laboratory, Oxford University, Oxford, UK

bDepartment of Computing, Macquarie University, Australia
cSchool of Computer Science, University of New SouthWales, Australia

Abstract

The probabilistic guarded-command language (pGCL) contains both demonic and probabilis-
tic non-determinism, which makes it suitable for reasoning about distributed random algorithms.
Proofs are based on weakest precondition semantics, using an underlying logic of real- (rather than
Boolean-)valued functions.

We present a mechanization of the quantitative logic forpGCL using theHOL theorem prover,
including a proof that allpGCL commands satisfy the new conditionsublinearity, the quantitative
generalization ofconjunctivityfor standardGCL.

The mechanized theory also supports the creation of an automatic proof tool which takes as input
an annotatedpGCLprogram and its partial correctness specification, and derives from that a sufficient
set of verification conditions. This is employed to verify the partial correctness of the probabilistic
voting stage in Rabin’smutual-exclusionalgorithm.
© 2005 Elsevier B.V. All rights reserved.

Keywords:pGCL; Formal verification; Probabilistic programs

1. Introduction

The probabilistic guarded-command language (pGCL) extends Dijkstra’s original
guarded-command language (GCL) [1] to includeprobabilistic choice[15]. The extension
allows the specification ofquantitativeproperties of programs, such as “the chance that the

∗ Corresponding author.
E-mail address:joe.hurd@comlab.ox.ac.uk(J. Hurd).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.08.005

http://www.elsevier.com/locate/tcs
mailto:joe.hurd@comlab.ox.ac.uk

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 97

program delivers the correct output is at least 0.95.” Demonic non-determinism, identified
by Dijkstra as the key notion underlyingabstractionand refinement, is retained. Within
pGCLthe combination of probability and non-determinism allows the realistic treatment of
imprecise behaviour, avoiding the problem that exact probabilities cannot be implemented.
For instance a program that behaves correctly (indicated by anok result) with probability
at least0.95 can be described inpGCLas

ok 0.95⊕ (¬ok � ok).
Here,0.95⊕ represents aprobabilistic choice of(0.95,0.05) between its left, right argu-
ments, respectively; the� on the other hand representsdemonicchoice, thought of as a
selection made arbitrarily. This combination of probabilistic and demonic choices means
that programs can exhibit arangeof behaviours, rather than exactly one: above, the “de-
mon” can affect the outcome only 5% of the time, and then might behave correctly in any
case. The most that can be said is that the probability that the output will beok lies in the
interval between 95% and 100%.1

We describe the quantitative properties of probabilistic programs usingpGCL’s quan-
titative program logic[16]. Programs are interpreted asreal- rather than Boolean-valued
functions of the state, and it is this generality which admits sound judgements concerning
probabilistic and demonic choices, as above.

In this paper, we present the following significant novelties:
• A mechanization ofpGCL programs (with weakest-precondition semantics) in higher-

order logic, using theHOL4 theorem prover[3]:
• An automatic proof tool that takes as input annotatedpGCL programs, and calculates

verification conditions sufficient for their partial correctness; and
• The application of this proof tool to the formal verification of the probabilistic voting

scheme in Rabin’smutual-exclusionalgorithm[10].
A mechanizedtheory is one with a machine-readable logical formalization; and there are

two main benefits to having a mechanized theory forpGCL. The first is the existence of
a logical formalization at all: if the theory is formalized in a consistent logic by making
definitions and then deriving consequences of them (instead of simply asserting axioms),
then the theory has a strong assurance of consistency. TheHOL4 theorem prover provides
tool support for this “definitional approach,” and as a result ourpGCL theories are as
consistent as the base higher-order logic.

The second benefit of mechanization is machine-readability: we can use the mechanized
pGCLtheories to support the creation of automatic proof tools that use weakest-precondition
semantics for reasoning. For example, verifyingpGCLprograms typically involves much
numerical calculation, and this can be formally carried out by rewriting with relevant the-
orems about real numbers. SinceHOL4 is a theorem prover in theLCF family, it provides
a full programming language (ML) for the user to write such tools [4]. Consistency is en-
forced by thelogical kernel, a small module that is solely empowered to create objects of
typetheorem, which it does by applying the inference rules of higher-order logic.

1 Another approach to the semantics of probabilistic programs[8] leaves out demonic non-determinism and
instead takes these probability intervals as primitive.

98 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

We created many small tools to speed up mechanization and program verification, in-
cluding the rewriting described above for real numbers. We also implemented a tool which
takes as input an annotated programC, preconditionP and postconditionQ, and generates
verification conditions that are sufficient for partial correctness (the Hoare triple{P }C{Q}).
It proves as many of these verification conditions as it can, simplifies the remainder and
then returns them to the user as subgoals to be proved interactively.

Finally, we apply the theory and proof tools to the formal verification of the probabilis-
tic module of Rabin’smutual-exclusionalgorithm. This uses probability as a symmetry-
breaking mechanism to elect a leader, and it is specified as having at least a2

3 chance of
electing a unique leader, independent of the number of processors. We formally verify a
sequential version of the algorithm, that is a data refinement of the original, establishing
that if the algorithm terminates then the2

3 lower bound holds.
In Section2, we present the formalization ofpGCL in higher-order logic, illustrated with

a simple worked example: theMonty Hall game. In Section 3, we describe the proof tool
for generating verification conditions; and in Section 4, we apply the theory and tools to
the verification of the probabilistic voting scheme in Rabin’smutual-exclusionalgorithm.

1.1. Notation

Higher-order logic types include the BooleansB, realsR, and integersZ. The notation
t : � means that the termt has type�. Applying the functionf to an argumentx is expressed
by juxtapositionf x, and multiplication uses an explicit operator× instead of juxtaposition.
We use the notationx ≡ t to meanx is defined to bet. Finally, we use the variablee to
range over real-valued expressions denoting random variables over the state,t to range over
transformers,s to range over states andc to range over commands.

2. Formalized pGCL

Fix a (possibly infinite) state space� and let� be the probabilitysubdistributionsover�,
that is functionsf : � → [0,1] such that

∑
x∈� f x�1.

We can then view a probabilistic commandc as a relation� × � → B between initial
states and probability subdistributions over final states. This is a relational (or operational)
semantics: a program evolves from a definite initial state yet produces not a definite final
state, but rather a probability distribution over final states that reflects the probabilistic
branching in its execution. Demonic branching is indicated by relating the initial state to
more than one final distribution. The following example shows both why we need relations
instead of functions, and probabilitysub-distributions.

Example 1. Consider the following probabilistic program

Ex1 ≡ (n := n+1 � n := n+2) 1/2⊕ Abort,

where� denotes demonic choice,1/2⊕ denotes symmetric probabilistic choice andAbort
means “go into an infinite loop” (see Section2.2 for precise definitions). The state space of
Ex1 is Z (the possible values of the program variablen); and applying the above semantics

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 99

toEx1 gives a relation that relates initial staten = 0 to these two subdistributions over final
states:

(· · · , −1 �→ 0.0, 0 �→ 0.0, 1 �→ 0.5, 2 �→ 0.0, 3 �→ 0.0, 4 �→ 0.0, · · ·)
(· · · , −1 �→ 0.0, 0 �→ 0.0, 1 �→ 0.0, 2 �→ 0.5, 3 �→ 0.0, 4 �→ 0.0, · · ·)

The logic forpGCLhas this relational semantics as a model: it is a quantitative weakest-
precondition formulation originally due to Kozen[9], but with demonic choice added [16].
A program’s final distributions are described by giving their expected values with respect
to arbitrary random variables which we think of as “reward functions” that quantify the
benefit of successful termination. The effect of this approach is to simplify the resulting
proof system, without conceding expressivity [14].

Given a probabilistic commandc, fix a reward functionQ: � → R+ from final states
to non-negative real numbers. Given an initial statex we can compute the average reward
from executingc repeatedly by taking theexpected valueof random variableQwith respect
to c’s output distribution. Ifc is also demonic, we average over all distributions separately
and take the least result (because adversaries act to minimize expected rewards). Lastly, if
c does not terminate the convention is to reward with zero.

Using this procedure, we can calculate the expected reward for each initial statex, and
thus end up with a reward functionP : � → R+ from initial states to non-negative real
numbers: the weakest precondition ofQ.

Example 2. Consider again the probabilistic programEx1, and suppose the reward function
Q on final states is defined as

Qn ≡ “2 if n is odd, and 3 ifn is even.”

What is the expected reward functionPon an initial statex? Half the time the program will
loop and the reward will be zero. The remaining half of the time the least expected value over
the demon’s choice will be due to whichever assignment delivers an odd result, because
the reward is only 2 for this, as opposed to 3 for the even outcome. Thus, the expected
reward is

P x ≡ 1/2 × 0 + 1/2 × 2,

that isone, for every initial statex.

Expected-reward functions such asP and reward functions such asQ are simply called
expectations. In pGCL, we view a probabilistic commandc as an expectationtransformer,
mapping expectations on final states to expectations on the initial states. It is an elementary
fact of probability theory that if the post-expectation is derived from a predicate—a charac-
teristic function that rewards one for states satisfying the predicate and zero otherwise—then
the pre-expectation gives the greatest guaranteed probability that the program terminates in
a state satisfying the predicate.

We spend the remainder of this section presenting a formalization of this weakest
precondition-style semantics of probabilistic programs.

100 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

2.1. Formalizing expectation transformers

In pGCL, expectations are functions from a state space� to the extended positive real
numbersR+ ≡ [0,+∞]. The real numbers have previously been mechanized in sev-
eral different theorem provers (for an example in Ergo see[18]), so we have a solid
basis on which to construct extended positive real numbers. Accordingly, we first cre-
ated a new higher-order logic-typeposreal to capture this domain, and lifted the usual
arithmetic operations to it. Naturally, we had to make some choices about how the lifted
arithmetic operations should behave on∞, and the following identities summarize our
decisions:

1/0 = ∞ 1/∞ = 0 ∀ x. ∞ + x = ∞
∀ x. x �= ∞ ⇒ ∞ − x = ∞ ∀ x. x �= ∞ ⇒ x − ∞ = 0

∀ x. 0 × x = 0 ∀ x. x �= 0 ⇒ ∞ × x = ∞.

Both addition and multiplication are defined to be commutative, so the above rules tell us
that∀x. x × 0 = 0, for example. Also, division is defined in terms of multiplication and
reciprocal, so from the above we can infer that∞/∞ = 0. In fact, the only operation not
covered by the above rules is∞ − ∞, which we deliberately leave unspecified.2

To support our later development we definemin andmax operations onposreal, and a
useful shorthand to enforce one-boundedness:[x]�1 ≡ min x 1.

We also prove a collection of theorems that can be used as rewrites to perform numer-
ical calculations on elements ofposreal, reducing the burden on the user in interactive
proof.

Example 3. Theposreal calculations

� (1/3 − 1/5) × 6 = 4/5

and

� ∞ − 53 = ∞
can be automatically carried out by theHOL4 simplifier.

Now, we have defined the type of positive real numbers, we focus our attention on the
type

(�)expect ≡ � → posreal,

of expectations on the state space�. Note that� is a type variable, able to be instantiated to
any higher-order logic type, and therefore the theorems that we prove about expectations do
not assume any properties of the state space.3 We define several operations on expectations,

2 In higher-order logic every function must be total, so∞ − ∞ must be some elementx of posreal, but there is
no theorem that gives any information aboutx.

3 In particular, the state space might be infinite.

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 101

which are just pointwise liftings of the corresponding operations on positive reals:

Zero ≡ �s. 0
Infty ≡ �s. ∞

e1 � e2 ≡ ∀ s. e1 s�e2 s

Min e1 e2 ≡ �s. min (e1 s) (e2 s)

Max e1 e2 ≡ �s. max (e1 s) (e2 s)

Cond b e1 e2 ≡ �s. if b s then e1 s else e2 s

Lin p e1 e2 ≡ �s. let x ← [p s]�1 in x × e1 s + (1 − x) × e2 s.

The type(�)expect forms a complete lattice, withMin andMax being the meet and join
operators, andZero andInfty being the bottom and top elements. Whereas theZero expec-
tation assigns every state a value of zero, theInfty expectation assigns every state a value
of ∞.

Finally, theLin operation constructs the linear interpolation between two expectations,
andCond switches between two expectations according to a predicate on the state space.

In pGCL, the semantics of a probabilistic program is an expectation transformer map-
ping postconditions on final states to weakest preconditions on initial states. Expectation
transformers thus have higher-order logic type

(�)transformer ≡ (�)expect → (�)expect.

To reason about expectation transformers, we borrow a few standard concepts from lattice
theory, in particular the existence of least and greatest fixed points of monotonic transform-
ers, which we refer to, respectively, asexpect_lfp andexpect_gfp.

Formalizing what it means to be a least or greatest fixed point of a expectation transformer
is an easy matter:

lfp t e ≡ (t e = e) ∧ ∀e′. t e′ � e′ ⇒ e � e′,
gfp t e ≡ (t e = e) ∧ ∀e′. e′ � t e′ ⇒ e′ � e.

The definitions ofexpect_lfp andexpect_gfp use Hilbert’s�-operator4 to pick any expec-
tation that is a fixed point:

expect_lfp t ≡ �e. lfp t e, expect_gfp t ≡ �e. gfp t e.

Of course, such a definition is only useful if we can prove that there exist fixed points
for a particular expectation transformer. That is why we also formalize the Knaster–Tarski
theorem for lattices, which guarantees the existence of least and greatest fixed points for
monotonic, up-continuous expectation transformers. Since these lattice theory concepts are
referred to later in the definition of healthy transformers, for completeness we list here the
formalized definitions:

monotonic t ≡ ∀e1, e2. e1 � e2 ⇒ t e1 � t e2,

lub S e ≡ (∀e′ ∈ S. e′ � e) ∧ ∀e1. (∀e′ ∈ S. e′ � e1) ⇒ e � e1,

chain C ≡ ∀e1, e2 ∈ C. e1 � e2 ∨ e2 � e1,

up_continuous t ≡ ∀C, e. chain C ∧ lub C e ⇒ lub {y | ∃z ∈ C. y = t z} (t e).

4 Hilbert’s �-operator is a form of the axiom of choice: the term�x. �(x) is equal to some element that satisfies
�, or some element of the type if nothing satisfies�.

102 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

2.2. Formalizing the weakest-precondition semantics

Next, we define thepGCLsemantics of a simple programming language. For concrete-
ness, we begin by defining a state space,state ≡ string → Z, representing a map from
variable names to integer values. The following definition creates a new state from an old
state by making a variable assignment off s to v:

assign v f s ≡ �w. if w = v then f s else s w

Next, we define a new higher-order datatype forpGCLcommands:

command ≡ Abort
| Skip
| Assign of string× (state → Z)

| Seq of command× command
| Demon of command× command
| Prob of (state → posreal) × command× command
| While of (state → B) × command.

TheAbort command represents non-termination of the program; in a technical sense it is
“the worst possible program.” The next three command are completely standard: theSkip
command does nothing;Assign v f evaluatesf on the current state and assigns the result
to variablev; and theSeq c1 c2 command is sequential composition, executing firstc1 and
thenc2.

TheDemon command uses demonic choice to decide which of the two argument com-
mands to execute, and theProb command uses probabilistic choice. Since the probability
argument ofProb is a functionstate → posreal, the choice probability is explicitly allowed
to depend on the state.

Finally, theWhile c b is a loop command that tests whether the state satisfies conditionc:
if so, the bodyb is executed and the loop is repeated, otherwise the command does nothing.

When writing commands, we enhance the readability with the following syntactic sugar:

v := f ≡ Assign v f,

c1; c2 ≡ Seq c1 c2,

c1 � c2 ≡ Demon c1 c2,

c1 p⊕ c2 ≡ Prob (�s. p) c1 c2,

If b c1 c2 ≡ Prob (�s. if b s then 1 else 0) c1 c2,

v := {e1, . . . , en} ≡ v := e1 � · · · � v := en,

v := 〈e1, . . . , en〉 ≡ v := e1 1/n⊕ v := 〈e2, . . . , en〉,
b1 → c1 | · · · | bn → cn

≡
{
Abort if none of thebi holds (on the current state)
�i∈I ci whereI ≡ {i | 1� i�n ∧ bi holds}.

In addition, we routinely suppress mention of the state in expressions and conditions, writing
for examplev := n + 1 instead ofv := �s. s n + 1.

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 103

We now define the weakest precondition semantic operatorwp, which is a higher-order
logic function of typecommand → (state)transformer and maps commands to their se-
mantic meaning as expectation transformers:

� (wp Abort = �e. Zero)
∧ (wp Skip = �e. e)

∧ (wp (Assign v f) = �e, s. e (assign v f s))

∧ (wp (Seq c1 c2) = �e. wp c1 (wp c2 e))

∧ (wp (Demon c1 c2) = �e.Min (wp c1 e) (wp c2 e))

∧ (wp (Prob p c1 c2) = �e. Lin p (wp c1 e) (wp c2 e))

∧ (wp (While b c) = �e. expect_lfp (�e′. Cond b (wp c e′) e)).

Example 4. In this example, the desired final state is one in which the variablesi and j
have the same value, and so we use the postcondition

post≡ if i = j then 1 else 0.

First, consider the program

pd ≡ i := 〈0,1〉; j := {0,1}.
The intuitive reading ofpd is that the variablei is first set to either 0 or 1 by tossing a fair
coin, and then the demon sets variablej to either 0 or 1. With this interpretation, it is no
surprise that we can never beat the demon, and indeed we can prove that in the weakest
precondition every initial state is mapped to zero:

� wp pd post= Zero.

Next, consider the program

dp ≡ j := {0,1}; i := 〈0,1〉,
which does the assignments the other way around. First, the demon must set variablej, and
then variablei is set using the fair coin. In this case, we can prove

� wp dp post= �s. 1/2,

which corresponds to our intuition that the demon does not know the outcome of the fair
coin before it is tossed, and therefore can be beaten half the time on average.

2.3. Healthiness conditions

For standardGCL, Dijkstra introduced several “healthiness conditions” that characterize
exactly the predicate transformers that correspond formally to an equivalent operational
(relational) semantics of programs[1]; the conditions are used to derive sound proof rules
for verification. Likewise, there is a correspondence between the expectation-transformer
semantics of probabilistic programs and the operational interpretation of probabilistic

104 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

programs—in fact an expectation transformer is healthy if it isfeasible, up_continuous
andsublinear [16], whereup_continuous is a property of lattice theory and

feasible t ≡ t Zero = Zero,
scaling t ≡ ∀ e, x. t (�s. x × e s) = �s. x × t e s,

subadditive t ≡ ∀ e1, e2. t (�s. e1 s + e2 s) � �s. t e1 s + t e2 s,

subtractive t ≡ ∀ e, x. c �= ∞ ⇒ �s. t e s − x � t (�s. e s − x),

sublinear t ≡ scaling t ∧ subadditive t ∧ subtractive t.

Feasibility is an intuitive property, corresponding to Dijkstra’sLawof theExcludedMiracle:
if the value of all final states is zero, then so must be the value of all the initial states.
Sublinearity inpGCL is the generalization of the conjunctivity healthiness condition in
standardGCL, and is in fact equivalent to the single formula

sublinear t
≡ ∀ e1, e2, x1, x2, x.

(�s. x1 × t e1 s + x2 × t e2 s − x) � t (�s. x1 × e1 s + x2 × e2 s − x).

Our present formalization does not include the proofs that connect expectation transformers
with the relational semantics (which was first demonstrated by Morgan et al.[16]). Instead,
we simply define a predicate

healthy t ≡ feasible t ∧ up_continuous t ∧ sublinear t
and restrict our attention tohealthy transformers. The propertiesmonotonic, scaling, linear,
subtractive are all logical consequences ofhealthy, as we check in the theorem prover.

As a point of interest, in finite state spaces the propertyup_continuous follows from
feasible andsublinear, but in infinite state spaces this is no longer the case. By instantiating
the state space toZ and using the transformer�e, s. infn{e n} as a witness, it is possible to
formally prove

� ∃ t. feasible t ∧ sublinear t ∧ ¬up_continuous t.
The main theorem of our formalization looks deceptively simple:

� ∀c. healthy (wp c).

It states that applying the weakest precondition semantic operatorwp to any command
yields a healthy transformer.

Our direct proof is a structural induction on the command, and required 800 lines of
HOL4 proof script for the main proof. (Dijkstra similarly used structural induction for the
correspondingGCL proof.) The hardest part was proving sublinearity of while loops; for
that we needed several lemmas, such as the monotonicity ofexpect_lfp and that subtraction
subdistributes through healthy transformers.

However, the importance of healthiness conditions cannot be overstated: for instance,
properties like these are what we use to deduce the simplifying rules for the verification
calculator described below.

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 105

2.4. TheMonty Hall game

An example is provided by the infamousMonty Hallgame, where the role of the demon
is played by the game show host.5 There are three curtains and the contestant hopes to
win a prize by guessing the curtain where it is hidden. The game begins with the demon
choosing a prize curtainpcbehind which to hide the prize. Next, the contestant chooses a
curtaincc uniformly at random. The demon then chooses an alternative curtainac that is
not equal to either ofpcandcc, and opens it. At this point, the contestant may either stick
with his original choice of curtain, or switch to the remaining closed curtain. Should the
contestant switch?

We code up theMonty Hallcontestant with the following definition:

contestant switch≡
pc := {1,2,3};
cc := 〈1,2,3〉;

pc �= 1 ∧ cc �= 1 → ac := 1
| pc �= 2 ∧ cc �= 2 → ac := 2
| pc �= 3 ∧ cc �= 3 → ac := 3;
if ¬switchthen Skip else

cc := (if cc �= 1 ∧ ac �= 1 then 1 else if cc �= 2 ∧ ac �= 2 then 2 else 3)

The left-hand side of the definition includesswitchas a parameter of the contestant; this is
used in the program on the right-hand side to determine whether to switch curtain in the
last step. The postcondition is the desired goal of the contestant, i.e.,

win ≡ if cc = pc then 1 else 0.

This example is small enough that we can verify it directly inHOL4 simply by rewriting
away all the syntactic sugar, expanding the definition ofwp and carrying out the numerical
calculations. This has the effect of pushing the postcondition back to the start of the program,
something that is not trivial to do by hand because the formulae become quite large. After
22 s and 250,536 primitive inferences in the logical kernel, the verification succeeds with
the following theorem:

� wp (contestant switch) win = �s. if switchthen 2/3 else 1/3.

In other words, by switching the contestant is twice as likely to win the prize.

3. A verification-condition generator

In general, programs are shown to have desirable properties by provinglower bounds—
for example, a programProgcan be shown to behave correctly with probability at least 0.95

5Monty Hallwas host of the game showLet’s Make a Dealfrom 1963 to 1976; ironically this game show was
notable for requiring absolutely no skill or intelligence from its contestants.

106 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

by proving the inequality

� (�s.0.95) � wp Prog (if ok then 1 else 0),

where the post-expectation encodes the characteristic function of the set of states in which
some Booleanok holds. Of course, if a stronger guarantee is required (a 0.99 level of
confidence, for example) then a stronger theorem would be required to establish it. In this
section, we show how to mechanize the proof of such lower bounds; in fact, we concentrate
on a generalization of theweakest liberal preconditionsemantics, a useful weakening of
weakest precondition semantics.6

3.1. Weakest-liberal-precondition semantics

The weakest-liberal-precondition operatorwlp is the partial correctness analogue ofwp.
Focussing onwlp and partial correctness greatly simplifies formal verification of looping
programs, since thewp least fixed-point semantics are “the wrong way around” for proving
lower bounds on preconditions.

In fact, the usual technique for proving total correctness for loops inpGCL is first to
prove partial correctness, and then to show thatwp andwlp agree on the while loop—this
amounts to proving that the loop terminates with probability 1. This is thepGCLanalogue
of the well-known rule

total correctness= partial correctness+ proof of termination

and has been proved elsewhere forpGCL [12]. Moreover, simple techniques based
on program variants have also been derived. However, for the remainder of this paper
we will be solely interested in partial correctness, and so questions of termination will not
concern us.

For partial correctness, if a program does not terminate then it satisfies every postcondi-
tion. Since the only places where a program may diverge are theAbortandWhile commands,
the weakest-liberal-precondition semantic operatorwlp differs fromwp onlyon those two
commands: they have semantics, respectively

wlp Abort ≡ �e. Infty,

and

wlp (While b c) ≡ �e. expect_gfp (�e′. Cond b (wlp c e′) e).

The fullHOL formalization is based on the partial correctness theory forpGCL [12]. 7

We cannot expectwlp to produce healthy transformers likewp, since the fact that
wlp Abort Zero = Infty trivially breaks feasibility, butwlp transformers are at least
monotonic:

� ∀c, e1, e2. e1 � e2 ⇒ wlp c e1 � wlp c e2.

6 In fact, for terminating programs there is no weakening.
7 In fact, only thewlp verification conditions(proved in Section3.2) are important here, and the most crucial

of these—monotonicity—is satisfied by both our formalization ofwlp and McIver and Morgan’s[12].

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 107

This is a useful sanity check, and means that (because of the lattice theory) the greatest
fixed point in thewlp semantics of theWhile command is always well-defined.

Example 5. We illustrate the difference betweenwp andwlp semantics on the simplest
infinite loop: loop ≡ While (�s. ") Skip.

For any postconditionpost: � wp loop post= Zero and� wlp loop post= Infty.
These correspond to the Hoare triples[⊥] loop [post] and{"} loop {post}, just what we

would expect from an infinite loop.

3.2. wlp verification conditions

In this section, we assume that we have apGCLcommandc and a postconditionq, and
we wish to derive a lower bound on the weakest-liberal precondition. If we think of this as
the first-order queryP � wlp c q, then we can use the following theorems together with a
Prolog interpreter to solve for the variableP.

� Infty � wlp Abort Q
� Q � wlp Skip Q

� (Q ◦ assign V F) � wlp (Assign V F) Q

� R � wlp C2 Q ∧ P � wlp C1 R ⇒ P � wlp (Seq C1 C2) Q

� P1 � wlp C1 Q ∧ P2 � wlp C2 Q ⇒ Min P1 P2 � wlp (Demon C1 C2) Q

� P1 � wlp C1 Q ∧ P2 � wlp C2 Q ⇒ Lin P P1 P2 � wlp (Prob P C1 C2) Q

� P1 � wlp C1 Q ∧ P2 � wlp C2 Q ⇒ Cond B P1 P2 � wlp (If B C1 C2) Q

The advantage of propagating conditions backward (implemented here with a Prolog inter-
preter) is that unnecessary annotations can be avoided. For example, consider the sequence
wlp (Seq c1 c2) q. There is no need for an annotation between the two commands, because
the Prolog interpreter uses the rules to solve for a lower-boundr onwlp c2 q, then solves for
a lower-boundp onwlp c1 r, and then returnsp as a lower bound on the whole command
wlp (Seq c1 c2) q.

However, annotations are required to deploy the following theorem about while loops:

� ∀P,Q, b, c. P � Cond b (wlp c P) Q ⇒ P � wlp (While b c) Q.

To insert annotations, we define an assertion command that simply ignores the formula
given as its first argument: thusAssert p c ≡ c. This is the precise rule we give to the
Prolog interpreter:

� R � wlp c P ∧ P � Cond b R Q ⇒ P � wlp (Assert P (While b c)) Q.

It is therefore left to the user to provide a useful loop invariantP in theAssert around
the while loop. Note that the Prolog tactic will succeed on the first subgoal, deriving a
lower bound for the body of the while loop, but the second subgoal will fail because there
are no applicable rules. In our tactic failed subgoals do not initiate backtracking, but are
instead turned into verification conditions. Therefore, in this way each while loop in the
program will generate one verification condition, in this case that the suppliedP is in fact a
correct invariant for establishingQ. Nested while loops work in exactly the same way: the

108 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

invariant for the outer loop will be propagated backwards through the body, and when it
meets the inner while loop a verification condition will be generated. It is usually impossible
to calculate the precise loop invariant, but the fact that the ability to provide a weaker loop
invariant that still satisfies the specification turns out to be a effective strategy.

Note that the rule for while loops is the only one where the presence of the� predicate
is necessary. In each of the rules for the other commands, all occurrences of� could be
replaced by= and the result would still be a valid rule. The reason that the� is necessary in
the rule for while loops is because of the user-provided loop invariant. If the loop invariant
provided was known to be the strongest possible, then every occurrence of� could be
replaced by= and the tool would calculate the exact value ofwlp. This is exactly the
approach taken in model checking.

The fullwlp tactic works as follows:
(1) Take as input a goal of the formp � wlp c q.
(2) Expand any syntactic sugar inc.
(3) Create the queryX � wlp c q and pass to the Prolog interpreter.
(4) The result will be a theorem

�
∧

1� i �n

Vi ⇒ r � wlp c q,

where theVi are verification conditions.
(5) Apply transitivity of� to reduce the initial goal to the subgoalsp � r andr � wlp c q.
(6) Use the theorem returned by Prolog to reduce the subgoalr � wlp c q to the subgoals

V1, . . . , Vn.
(7) Expand all the subgoals with the definitions of�,Min, Lin andCond.
(8) Try to prove all the subgoals by simplifying them and carrying out any numerical

calculations.
(9) Return all unproved subgoals to the user, to prove interactively.
Returning to the example of theMonty Hallgame, we can apply thewlp tactic to prove the
following partial correctness theorem completely automatically:

� (�s. if switchthen 2/3 else 1/3) � wlp (contestant switch) win.

Since there are no while loops in thecontestant program, there were no verification con-
ditions, and the only non-trivial subgoal was thep � r generated in Step 5 of the tactic.
However, this was proved automatically by the simplification and calculation in Step 8, and
so no subgoals were returned to the user.

This automatic verification of theMonty Hall game is obviously much less effort than
the interactive proof version described in Section2.4 which took 18 lines ofHOL4 proof
script, but the automatic version of the theorem is weaker: it only shows partial correctness.

4. Example: Rabin’s mutual-exclusionalgorithm

SupposeN processors are concurrently executing, and from time to time some of
them need to access a critical section of code. Rabin’smutual-exclusionalgorithm uses a

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 109

probabilistic voting scheme to elect a unique “leader processor” that is permitted to enter
the critical section[10].

The idea behind the voting scheme is beautifully simple: each processor tosses a fair coin
until the first head is shown,8 and the processor that required the largest number of tosses
wins the election.

Example 6. The following pGCL program sets the variablen according to the desired
distribution:

n := 0; b := 0;While (b = 0) (n := n + 1; b := 〈0,1〉).

In our verification, we do not modeli processors concurrently executing the above voting
scheme, but rather the equivalent formulation of that system used by Rabin[10]:
(1) Initialize i with the number of processors competing for exclusive access to the critical

section.
(2) If i = 1 then we have a unique winner: return SUCCESS.
(3) If i = 0 then the election has failed: return FAILURE.
(4) Toss the coins: since each toss of a fair coin produces a head with probability1

2, each
processor retires with that probability. We reducei by eliminating all these processors,
since certainly none of them won the election.

(5) Return to Step (2).
The followingpGCLprogram implements this algorithm:

rabin≡While (1 < i) (

n := i;
While (0 < n)

(d := 〈0,1〉; i := i − d; n := n − 1)

)

The desired postcondition, that there was a unique winner, is

post≡ if i = 1 then 1 else 0.

A surprising fact about this voting scheme is that the probability of its success isindependent
of the number of processors. To prove that, we need to be able to show

pre� wlp rabin post, (1)

wherepre≡ (if i = 1 then 1 else if 1 < i then 2/3 else 0), in which the2
3 does not depend

on i.
Recall the interpretation of a precondition with respect to a given postcondition. The

expression on the right at (1), evaluated at an initial states, gives the probability that
the postcondition will be established (namely, that there is a unique winner). This must
be at least the expression on the left, which isat least 23 for all initial states excepti = 0
(when the satisfaction of the postcondition would be impossible in any case).

8 In other words, each processor picks an integer from a Geometric(1
2) distribution.

110 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

As rabin contains twoWhile loops the invariant rule must be used twice. Thus, two loop
invariants are needed, one for the inner, and one for the outer loop, and the most challenging
part of the verification turned out to be finding them (of course). The correct invariant for
the outer loop is simplypreabove, but for the inner loop we used

if 0�n� i then (2/3) × invar1 i n + invar2 i n else 0,

where

invar1 i n ≡ 1 − (if i = n then (n + 1)/2n else if i = n + 1 then 1/2n else 0),

invar2 i n ≡ if i = n then n/2n else if i = n + 1 then 1/2n else 0.

Translating very roughly into English:invar1 corresponds to the probability that the inner
loop terminates withi > 1; andinvar2 to the probability that the inner loop terminates with
i = 1. Therefore, the probabilityp that theouter loop will terminate withi = 1 satisfies
p = p × invar1+ invar2, and we are proving that the voting algorithm works withp = 2

3.
To deploy thewlp tactic, an equivalent annotated version of the program is required,

constructed by usingAssert to annotaterabinwith the above invariants. Next, thewlp tactic
is applied to the annotated program, and three subgoals are produced (one as usual, plus two
verification conditions generated by the while loops). Thewlp tactic proves one of these
automatically, and simplifies the other two. We apply some custom simplifications, and are
left with three non-trivial subgoals which depend on properties of exponentials. These are
despatched by 58 lines of proof script, completing the verification of the specification (1)
of the behaviour ofrabin.

5. Conclusions and future work

We have shown how to formalize in higher-order logic the theory ofpGCL, a language for
reasoning about both demonic and probabilistic choice in a common framework; we have
implemented a verification-condition generator to assist with formally proving the partial
correctness of programs, and we have demonstrated it on some small examples.

In addition to mechanizing a direct proof that the weakest precondition semantics always
give healthy transformers, we have formalized the notion of weakest liberal preconditions
and implemented a verification condition generator to assist with formally proving the
partial correctness of programs. Finally, we applied the theory and tools to the verification
of the probabilistic voting scheme in Rabin’smutual-exclusionalgorithm.

This work demonstrates the benefits of mechanizing a theory of program semantics
using a theorem prover. In particular, the fact that the theorem prover was interactive fitted
very nicely with the verification-condition generator: if subgoals appeared that could not be
proved automatically, then instead of causing a failure they could be passed on to the user for
manual proof. Moreover we took advantage of theLCFdesign ofHOL4, which preserves the
consistency of user-defined tactics: the verification-condition generator is highly complex,
but nevertheless any theorems that it creates have a high assurance of soundness.

Future work will focus on formalizing the correspondence betweenwp andwlp se-
mantics, with the aim of implementing a total-correctness verification generator. This will

J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112 111

additionally require proofs of termination, and it will be interesting to provide tool support
for probabilistic variants and other termination arguments.

6. Related work

The first author has mechanized a semantics of probabilistic programs inHOL4 [7], but
this language did not support demonic choice. The third author has recently extended the
B tool (a proof assistant for program refinement) with a probabilistic choice construct [6].

Probabilistic model checkers such asPRISM[11] effectively calculate weakest precon-
ditions for finite-state machines incorporating both probabilistic and demonic choice, and
can also deal with loops without needing helpful annotations. On the other hand, the lim-
ited expressivity of the logic means that sometimes it cannot model algorithms in their full
generality, but instead must restrict to a fixed number of processors.

Harrison has previously mechanized Dijkstra’s weakest precondition semantics for stan-
dardGCL in theHOL Lighttheorem prover [5], and Nipkow has produced a comprehensive
mechanization of Hoare logics in the Isabelle theorem prover [17]. Finally, there have been
several verification condition generators for while languages created for use with theHOL
theorem prover, beginning with Gordon’s in 1989 [2].

Acknowledgements

This work was completed while Hurd was on leave from the Computer Laboratory at
Cambridge, visiting McIver with the support of a Fellowship at Macquarie University in
Sydney. He is currently a Junior Research Fellow at Magdalen College in Oxford. Morgan
holds an Australian Professorial Fellowship at the University of New South Wales, and is
associated withNICTA.

References

[1] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[2] M.J.C. Gordon, Mechanizing programming logics in higher order logic, in: G. Birtwistle, P.A. Subrahmanyam

(Eds.), Current Trends in Hardware Verification and Automated Theorem Proving, Springer, Berlin, 1989,
pp. 387–439.

[3] M.J.C. Gordon, T.F. Melham, Introduction to HOL (A theorem-proving environment for higher order logic),
Cambridge University Press, Cambridge, 1993.

[4] M. Gordon, R. Milner, C. Wadsworth, Edinburgh LCF, Lecture Notes in Computer Science, Vol. 78, Springer,
Berlin, 1979.

[5] J. Harrison, Formalizing Dijkstra, in: J. Grundy, M. Newey (Eds.), Theorem Proving in Higher Order Logics,
11th Internat. Conf., TPHOLs ’98, Lecture Notes in Computer Science, Vol. 1497, Canberra, Australia,
Springer, Berlin, September 1998, pp. 171–188.

[6] T.S. Hoang, Z. Jin, K. Robinsion, A.K. McIver, C.C. Morgan, Probabilistic invariants for probabilistic
machines, in: Proc. third Internat. Conf. ofB and Z Users 2003, Lecture Notes in Computer Science,
Vol. 2651, Springer, Berlin, pp. 240–159.

[7] J. Hurd, Formal verification of probabilistic algorithms, Ph.D. Thesis, University of Cambridge, 2002.

112 J. Hurd et al. / Theoretical Computer Science 346 (2005) 96–112

[8] M. Huth, The interval domain: a matchmaker for aCTL and aPCTL, in: R. Cleaveland, M. Mislove, P. Mulry
(Eds.), US–Brazil Joint Workshops on the Formal Foundations of Software Systems, Electronic Notes in
Theoretical Computer Science, Vol. 14, Elsevier, Amsterdam, 2000.

[9] D. Kozen. A probabilistic PDL, Proc. 15th ACM Symp. on Theory of Computing, 1983.
[10] E. Kushilevitz, M.O. Rabin, Randomized mutual exclusion algorithms revisited, in: M. Herlihy (Ed.), Proc.

11th Ann. Symp. on Principles of Distributed Computing, Vancouver, BC, Canada, ACM Press, New york,
August 1992, pp. 275–283.

[11] M. Kwiatkowska, G. Norman, D. Parker, Prism: probabilistic symbolic model checker, in: Proc. of
PAPM/PROBMIV 2001 Tools Session, September 2001.

[12] A.K. McIver, C.C. Morgan, Partial correctness for probabilistic programs, Theoret. Comput. Sci. 266 (1–2)
(2001) 513–541.

[14] C. Morgan, Proof rules for probabilistic loops, in: H. Jifeng, J. Cooke, P. Wallis (Eds.), Proc. BCS-FACS 7th
Refinement Workshop, Workshops in Computing, Springer, Berlin, 1996.

[15] C. Morgan, A. McIver, pGCL: formal reasoning for random algorithms, South African Comput. J. 22 (1999)
14–27.

[16] C. Morgan, A. McIver, K. Seidel, Probabilistic predicate transformers, ACM Trans. Programming Languages
Systems 18 (3) (1996) 325–353 See also [12].

[17] T. Nipkow, Hoare logics in Isabelle/HOL, in: H. Schwichtenberg, R. Steinbrüggen (Eds.), Proof and System-
Reliability, Kluwer, Dordrecht, 2002, pp. 341–367.

[18] J. Shield, I.J. Hayes, D.A. Carrington, Using theory interpretation to mechanise the reals in a theorem prover,
in: C. Fidge (Ed.), Electronic Notes in Theoretical Computer Science, Vol. 42, Elsevier, Amsterdam, 2001.

