
Formalized Elliptic Curve
Cryptography

Joe Hurd, Mike Gordon and Anthony Fox
University of Cambridge

Abstract

Formalizing a mathematical theory is a necessary first step to proving
the correctness of programs that refer to that theory in their specification.
This paper demonstrates how the mathematical theory of elliptic curves
and their application to cryptography can be formalized in higher order
logic. This formal development is mechanized using the HOL4 theorem
prover, resulting in a collection of higher order logic functions that cor-
rectly implement the primitive operations of elliptic curve cryptography.

1 Introduction

Elliptic curve cryptography was first proposed in 1985, and by 2005 had become
established enough for the National Security Agency (NSA) to include it as part
of the Suite B set of cryptographic algorithms [7], intended to secure a wide
range of US government data. The principal technical advantage of elliptic curve
cryptography over standard public key cryptography (based on multiplication
modulo large primes) is that the keys can be shorter for the same security [1],
saving on bandwidth and allowing more efficient cryptographic operations.

One disadvantage of elliptic curve cryptography instead of standard pub-
lic key cryptography is that elliptic curve operations are more complicated to
implement than modular multiplication. Consequently, it is not easy to verify
that a particular implementation is correct. The problem is exacerbated both
by the use of sophisticated data representations to speed up elliptic curve oper-
ations, and low level code designed to achieve maximum performance. This is
the motivation for the work described in this paper:

• formalizing elliptic curve cryptography in higher order logic;

• mechanizing the theory using the HOL4 theorem prover [4].

The end product of this work is a machine readable higher order logic theory
of elliptic curve cryptography, which can be used as a specification for imple-
mentations. If an implementation can be formalized in higher order logic (e.g.,
using Fox’s HOL4 theory of ARM machine code) then formal verification can
take place by interactive proof within the HOL4 theorem prover. Since formal
verification is the intended use of the HOL4 theory of elliptic curve cryptography,

1

it is of paramount importance that it is a faithful translation of the mathemati-
cal theory. Particularly close attention is paid to matching the formal versions of
the mathematical definitions as closely as possible to the versions in a standard
textbook [1]. Due to space limitations this paper can only contain an abridged
description of the formalized theory; a much more complete description can be
found in a report available on the web1.

The remainder of the paper is structured as follows: Sections 2–4 present the
formalized definition of elliptic curves, rational points, and elliptic curve arith-
metic, in which the main objective is for the resulting formalized theories to be as
faithful as possible to the standard mathematical definitions; Section 5 demon-
strates how the formalized theory of elliptic curve arithmetic can be executed
by proof in the HOL4 theorem prover; Section 6 uses a simple formalization of
ElGamal encryption to illustrate how the HOL4 theory of elliptic curves can
be used in the verification of a cryptographic implementation; finally, Section 7
summarizes the work completed to date, and looks at promising areas of future
research.

1.1 Research context

The work described in this paper is part of a larger project, in collaboration
with the University of Utah, whose goal is to provide effective methods for
creating implementations of cryptographic algorithms on ARM processors. The
Cambridge team is concentrating on two topics:

1. developing high level formal verification infrastructure for elliptic curve
cryptography;

2. providing a very high fidelity model of the ARM instruction set (derived
from a formally verified model of an ARM processor) and building a ver-
ification platform for assembly-level ARM software on top of this.

The Utah team is providing a correct-by-construction compiler from high
level mathematical models of cryptographic algorithms to low level ARM im-
plementations. This compiler will be used at Cambridge to create formally
verified implementations of elliptic curve cryptography running on the ARM
processor.

This paper describes the work done and future plans for the high level veri-
fication of elliptic curve cryptography (1 above). There is a report2 on the high
fidelity formalization of the ARM instruction set (2 above), and more details
can be found in previous publications [2, 3]3.

Professor Konrad Slind’s group (in Utah) are developing a compiler from
first order tail-recursive equations to machine code, all implemented within the
HOL4 theorem prover. The intention is to provide a verified path from higher
order logic definitions to execution on the Cambridge ARM processor model.

They have developed a custom assembly language, based on the ARM in-
struction set, that has been designed specifically as a target for compiling cryp-
tographic algorithms. This domain specific target has abstracted away from

1http://www.cl.cam.ac.uk/~jeh1004/research/papers/elliptic.html
2http://www.cl.cam.ac.uk/~mjcg/FoxReport.pdf
3The source code for the formalized ARM model is available with the HOL4 distribution

at http://hol.sf.net

2

Figure 1: Formally verified ARM implementations.

ARM features that are not needed to support the algorithms being compiled.
These simplifications have enabled a correct-by-construction compiler to be pro-
duced, and a number of guaranteed-correct implementations of cryptographic
algorithms have already been successfully generated.

Cambridge and Utah plan to develop a formal translator from the Utah
domain specific assembler to actual ARM instructions, thereby providing a route
for compiling high level specifications to software that can be run directly on
ARM processors. This verified path is illustrated in Figure 1.

Juliano Iyoda and Mike Gordon (Cambridge) have been working with the
Utah team on developing a compiler from tail-recursive functions to hardware
(Altera FPGAs at Cambridge and Xilinx FPGAs at Utah) – bypassing the need
for assembly code [5]. The goal is to explore a hybrid approach, i.e., some func-
tions are compiled into hardware and others are implemented in software (run
on a processor). The verified ARM model supports co-processor instructions,
which provide a standard way of linking hardware and software implementa-
tions.

2 Elliptic Curves

The definitions of elliptic curves, rational points and elliptic curve arithmetic
presented here all come from the source textbook for the formalization: Elliptic
Curves in Cryptography by Blake, Seroussi and Smart [1]. The purpose of this
paper is to demonstrate that the formalized definitions in the theorem prover
faithfully preserve the meaning of the mathematical definitions in the textbook,

3

and so to aid direct comparison the critical definitions are copied verbatim from
the textbook.

Firstly, here is the textbook definition of an elliptic curve:
Let K be a field [and] K its algebraic closure [. . .] An elliptic curve over
K will be defined as the set of solutions in the projective plane P2(K) of
a homogenous Weierstrass equation of the form

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

with a1, a2, a3, a4, a6 ∈ K.

Note that since every term in the elliptic curve equation has degree 3, one
solution (X,Y,Z) of the equation gives an entire line α(X,Y,Z) = (αX,αY, αZ)
of solutions. However, this is only part of the definition, because not every
equation of this form is a valid elliptic curve.

Such a curve should be non-singular [. . .] Given a curve defined [as above],
it is useful to define the following constants for use in later formulae:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4, [. . .]

The discriminant of the curve is defined as

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

[. . .] A curve is then non-singular if and only if ∆ #= 0.

Although this mathematical definition of an elliptic curve may seem compli-
cated, it is straightforward to formalize it using a standard two stage process.
In the first stage the syntax of elliptic curves is formalized as a new higher order
logic type, using the HOL4 datatype package. The command

Hol_datatype
‘curve =
<| field : ’a field; a1 : ’a; a2 : ’a;

a3 : ’a; a4 : ’a; a6 : ’a |>‘

creates a new (polymorphic) record type α curve together with record accessor
constants field, a1, . . . , a6. The polymorphism is present to allow the theory
of elliptic curves to be applied to any formalized elliptic curves, regardless of
the higher order logic type of the underlying field elements. In addition, the
standard properties that one would expect a record type to satisfy, such as

|- ∀f a1 a2 a3 a4 a6.
<| field = f; a1 = a1; a2 = a2;

a3 = a3; a4 = a4; a6 = a6 |>.field = f ,

are automatically proved as higher order logic theorems. In common with vir-
tually all HOL4 proof tools, the datatype package does not introduce any new
axioms. Instead, it reduces the construction of the record type and the proof
of all its properties to primitive inferences of higher order logic.4 Thus, no
unsoundness can creep in to a theory from defining new types and constants.

At this point it is often useful to define some syntax in terms of the record ac-
cessors in the type definition. In this case the elliptic curve constants b2, b4, b6, b8

are needed, and are defined in HOL4 like so:
4The primitive inferences of higher order logic contain two primitive definition principles:

one for new types, which is used to create the record type; and one for new constants, which
used to create the record accessors.

4

|- curve_b2 e = |- curve_b4 e =
let f = e.field in let f = e.field in
let $& = field_num f in let $& = field_num f in
let $+ = field_add f in let $+ = field_add f in
let $* = field_mult f in let $* = field_mult f in
let $** = field_exp f in let a1 = e.a1 in
let a1 = e.a1 in let a3 = e.a3 in
let a2 = e.a2 in let a4 = e.a4 in
a1 ** 2 + & 4 * a2 ; a1 * a3 + & 2 * a4 ;

|- curve_b8 e = |- curve_b6 e =
let f = e.field in let f = e.field in
... ...
let a3 = e.a3 in let a6 = e.a6 in
let a4 = e.a4 in a3 ** 2 + & 4 * a6 ;
let a6 = e.a6 in
a1 ** 2 * a6 + & 4 * a2 * a6 -
a1 * a3 * a4 + a2 * a3 ** 2 - a4 ** 2 .

The most noticeable aspect of these definitions is the use of lets to improve the
readability of the field operations. Using this shorthand, it is easy to see that
the formalized constants are a direct translation of the mathematical definitions.
In the definition of the b6 and b8 constants the lets for the field operations have
been elided, and this abbreviated form will be used from now on to improve the
presentation.5 Next to be formalized is the discriminant of an elliptic curve:

|- discriminant e =
let f = e.field in
...
let b8 = curve_b8 e in
& 9 * b2 * b4 * b6 - b2 * b2 * b8 -
& 8 * b4 ** 3 - & 27 * b6 ** 2 .

And the final piece of syntax is the definition of non-singularity:

|- non_singular e = ~(discriminant e = field_zero e.field)

The second stage of formalizing the mathematical definition of elliptic curves
is to define a new class Curve consisting of all elements of type α curve that
satisfy the elliptic curve axioms.6 This is a straightforward constant definition,
and results in the higher order logic theorem

|- Curve =
e |
e.field ∈ Field ∧ e.a1 ∈ e.field.carrier ∧
e.a2 ∈ e.field.carrier ∧ e.a3 ∈ e.field.carrier ∧
e.a4 ∈ e.field.carrier ∧ e.a6 ∈ e.field.carrier ∧
non_singular e .

This completes the formalization of the definition of elliptic curves.
5These lets could be eliminated by the use of locales (as used in the Isabelle theorem

prover), but locales are not currently implemented in HOL4.
6The word class is used here as an aid to the reader; to the theorem prover classes are just

higher order logic sets.

5

3 Rational Points

The set E(K̂) of K̂-rational points on the elliptic curve E are considered next:
Let K̂ be a field satisfying K ⊆ K̂ ⊆ K. A point (X, Y, Z) on the curve
is K̂-rational if (X, Y, Z) = α(X̂, Ŷ , Ẑ) for some α ∈ K, (X̂, Ŷ , Ẑ) ∈
K̂3 − {(0, 0, 0)}, i.e., up to projective equivalence, the coordinates of the
points are in K̂.

Note that if K ⊆ K̂ then the coefficients of the elliptic curve equation can
be considered to be from K̂. Thus the formalized definition of rational points
assumes that K̂ = K:

|- curve_points e =
let f = e.field in
...
let a6 = e.a6 in
project f [x; y; z] |
[x; y; z] ∈ nonorigin f ∧
(y ** 2 * z + a1 * x * y * z + a3 * y * z ** 2 =
x ** 3 + a2 * x ** 2 * z + a4 * x * z ** 2 + a6 * z ** 3) .

This is a case where the formalized definition significantly deviates from the
mathematical definition, in which the rational points over the field K̂ are a
subset of the rational points over the algebraic closure K. However, if the
rational points were formalized as a subset, then this would result in the field
elements of K̂ having the same higher order logic type as the field elements of
K. For many fields, especially the finite fields which are of principal interest in
cryptography, it would be difficult and unnatural to formalize them with this
constraint. Therefore, only the field K̂ is mentioned in the definition of rational
points: the reference to K is completely dropped; and K is not needed if the
coefficients are considered to come from K̂.

The above definition of rational points uses projective space, but it is usually
more convenient to use affine coordinates:

The curve has exactly one rational point with coordinate Z equal to zero,
namely (0, 1, 0). This is the point at infinity, which will be denoted by O.

For convenience, we will most often use the affine version of the Weier-
strass equation, given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

where ai ∈ K. The K̂-rational points in the affine case are the solutions
to E in K̂2, and the point at infinity O. [. . .] We will switch freely
between the projective and affine presentations of the curve, denoting the
equation in both cases by E. For Z #= 0, a projective point (X, Y, Z)
satisfying [the projective version of E] corresponds to the affine point
(X/Z, Y/Z) satisfying [the affine version of E].

For example, taking the underlying field to be R, the curves in Figure 2 depict
the solutions in R2 of different elliptic curve equations in affine coordinates.

The first step to formalizing the affine version of elliptic curves is to define
the point at infinity O:

|- curve_zero e =
project e.field
[field_zero e.field; field_one e.field; field_zero e.field] .

6

Figure 2: Example elliptic curves, clockwise from top left: y2 = x3 − x; y2 =
x3 − 1

2x + 1
2 ; y2 = x3; and y2 = x3 − 4

3x + 16
27 .

7

From the formalized definition of rational points on the projective version of
elliptic curves, it is possible to recover the affine version as a theorem:

|- ∀e ∈ Curve. curve_zero e ∈ curve_points e ;

|- ∀e ∈ Curve. ∀x y ∈ (e.field.carrier).
affine e.field [x; y] ∈ curve_points e =
let f = e.field in
...
let a6 = e.a6 in
y ** 2 + a1 * x * y + a3 * y =
x ** 3 + a2 * x ** 2 + a4 * x + a6 .

The mathematical definition of rational points in affine coordinates states ex-
plicitly that the every rational points is either O or is a solution of the elliptic
curve equation, and implicitly assumes the ‘obvious fact’ that the point at infin-
ity O is cannot be expressed in affine coordinates. Both these facts are proved
as theorems in the formalization:

|- ∀e ∈ Curve. ∀p ∈ curve_points e.
(p = curve_zero e) ∨
∃x y ∈ (e.field.carrier). p = affine e.field [x; y] ;

|- ∀e ∈ Curve. ∀x y.
~(curve_zero e = affine e.field [x; y]) .

4 Elliptic Curve Arithmetic

This section describes a formalization of elliptic curve arithmetic, again focusing
on the comparison with the mathematical definitions as given in [1]. This uses
the formalization of the affine version of the elliptic curve equation, because the
textbook presents elliptic curve arithmetic in affine coordinates. Thus before
tackling the definitions of elliptic curve arithmetic, a ‘case theorem’ is proved
that supports the definition of functions on elliptic curve points using affine
coordinates:

|- ∀e ∈ Curve. ∀z f.
(curve_case e z f (curve_zero e) = z) ∧
∀x y. curve_case e z f (affine e.field [x; y]) = f x y .

Although this looks like a theorem, it is actually a definition of the constant
curve case by new specification.7 The best way to see how curve case is used is
by example, and the operations of elliptic curve arithmetic will provide several.

The textbook defines all the operations of elliptic curve arithmetic in one
passage, reproduced here in full:

Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) and P2 = (x2, y2) denote points on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .

7Constants are defined by new specification by proving a ‘witness theorem’ of the form
! ∃x. φ(x), after which a new constant c is created with defining property ! φ(c).

8

The first and simplest operation to be formalized is negation, which can be
expressed using the new curve case constant:

|- curve_neg e =
let f = e.field in
...
let a3 = e.a3 in
curve_case e (curve_zero e)
(λx1 y1.

let x = x1 in
let y = ~y1 - a1 * x1 - a3 in
affine f [x; y]) .

How does this work, say to evaluate curve neg E P? Expanding the definition
of curve neg above (and the lets) will result in a term of the form

curve case E O (λx1, y1. . . .) P .

Now, using the definition of curve case, if the argument P is the point at infinity
O, then the result will be the second argument of curve case, which in this case
is O. If P is not the point at infinity then it must be a point on the curve that
can be expressed as affine K x1 y1 (where K is the underlying field of E), and
in this case the function in the third argument is called with arguments x1 and
y1. The end result is the two theorems

curve neg E O = O ,
curve neg E (affine K x1 y1) = affine K x1 (−y1 − a1x1 − a3) .

It is not much harder to formalize point addition in the same way, although
a careful reading is required to be sure of correctly catching and handling the
four special cases P = O, Q = O, P = Q and P = −Q.

5 Verified Execution

The definitions of elliptic curve arithmetic were formalized in terms of affine
coordinates, faithful to the presentation in the source textbook. However, there
is an additional benefit to this choice: the definitions of the elliptic curve op-
erations are sufficiently close to functional programs that they can be executed
directly in the HOL4 theorem prover.

A simple test of the elliptic curve operations is provided by formalizing a
simple exercise for the reader in [6].

The exercise uses the example curve Y 2+Y = X3−X over the field GF(751);
the HOL4 primality prover and simplifier together can prove that the field sat-
isfies the field laws and the elliptic curve is non-singular:

|- GF 751 IN Field ;
|- ec = curve (GF 751) 0 0 1 750 0 ;
|- ec IN Curve .

Note the use of 750 in the formalized version instead of −1 in the mathematics:
a typical example of representation choices during formalization resulting in a
loss of succintness.

The exercise next defines two points which the HOL4 simplifer can prove lie
on the curve:

9

|- affine (GF 751) [361; 383] IN curve_points ec ;
|- affine (GF 751) [241; 605] IN curve_points ec .

The exercise requires the reader to perform some elliptic curve arithmetic,
and check that the results lie on the curve. Again, this is no problem for the
HOL4 simplifier:

|- curve_neg ec (affine (GF 751) [361; 383]) =
affine (GF 751) [361; 367] ;

|- affine (GF 751) [361; 367] IN curve_points ec ;

|- curve_add ec (affine (GF 751) [361; 383])
(affine (GF 751) [241; 605]) =

affine (GF 751) [680; 469] ;
|- affine (GF 751) [680; 469] IN curve_points ec ;

|- curve_double ec (affine (GF 751) [361; 383]) =
affine (GF 751) [710; 395] ;

|- affine (GF 751) [710; 395] IN curve_points ec .

Together, the verified execution of these six theorems took 72 seconds and
961,068 primitive inference rules to complete: a performance that reflects the
highly abstract nature of the definitions involved.

6 Group Based Cryptography

6.1 Elliptic Curve Groups

Many useful cryptographic operations are based on the discrete logarithm prob-
lem, which in turn is based on an arbitrary group. The security of the cryp-
tographic operations thus depends on the precise group used, and (thus far)
elliptic curve groups have proved highly resistant to attack.

Given an elliptic curve E with underlying field K, then

(E(K), O, −, +)

is an Abelian group, where − is negation of elliptic curve points and + is addi-
tion. It is straightforward to formalize the definition of the elliptic curve group:

|- curve_group e =
<| carrier := curve_points e; id := curve_zero e;

inv := curve_neg e; mult := curve_add e |> .

6.2 ElGamal Encryption

ElGamal encryption demonstrates how the discrete logarithm problem based on
a group G can be used as a public key encryption algorithm. The presentation
of the algorithm given here is the standard one, and follows [8]. Bob generates
an instance gx = h of the discrete logarithm problem to create a new public
and private key. Bob publishes the public key (g, h) while keeping the private
key x secret. The following algorithm allows Alice to send a message m ∈ G
to Bob that cannot be read by a third party (this security property is called
confidentiality).

10

1. Alice obtains a copy of Bob’s public key (g, h).

2. Alice generates a randomly chosen natural number k ∈ {1, . . . , #G − 1}
and computes a = gk and b = hkm.

3. Alice sends the encrypted message (a, b) to Bob.

4. Bob receives the encrypted message (a, b). To recover the message m he
computes

ba−x = hkmg−kx = gxk−xkm = m .

The first step in formalizing ElGamal encryption is to define the packet that
Alice sends to Bob:

|- elgamal G g h m k =
(group_exp G g k, G.mult (group_exp G h k) m) .

This follows the algorithm precisely.
The following theorem demonstrates the correctness of ElGamal encryption,

i.e., that Bob can decrypt the ElGamal encryption packet to reveal Alice’s
message (assuming he knows his private key x):

|- ∀G ∈ Group. ∀g h m ∈ G.carrier. ∀k x.
(h = group_exp G g x) =⇒
(let (a,b) = elgamal G g h m k in
G.mult (G.inv (group_exp G a x)) b = m)

The formalized version diverges slightly from the standard algorithm by having
Bob compute a−xb instead of ba−x, but results in a stronger correctness theorem
since the underlying group G does not have to be Abelian.

Suppose an implementation of ElGamal encryption over an elliptic curve
group has been formalized, and verified to correctly implement the operations
of elliptic curve arithmetic. The above correctness theorem of ElGamal encryp-
tion is sufficient to guarantee that executing the implementation of encryption
followed by the implementation of decryption will always return the original
message.

7 Summary

This paper has presented a formalization of elliptic curve theory in higher order
logic, mechanized using the HOL4 theorem prover. The principal goal of the
project is for the formalization to ‘get close to the mathematics’, and this paper
has demonstrated that in the case of elliptic curve theory it is possible to get
very close indeed. In contrast to the more common approach of coding some
mathematical operations as programs and then justifying their correctness, the
approach described in this paper is to formalize the mathematics directly and
then implement proof tools to execute the definitions.

The most important contribution of this project is a ‘gold standard’ set of
elliptic curve operations mechanized in the HOL4 theorem prover. The stage
is now set for a verified path from these mathematical definitions of the elliptic
curve operations right down to an implementation in ARM machine code. In
addition, the tools are now available to support verified execution of the gold
standard definitions, which can provide test vectors for prototypes before a full
proof of correctness is attempted.

11

7.1 Future Work

At the moment the formalized definitions of elliptic curve operations are highly
abstract, and need sophisticated proof tools to execute them even inefficiently.
The compiler being developed for the next step of the verified path to ARM
machine code requires its input to be in the form of first order tail-recursive
equations, and so the elliptic curve operations must be ported to this language
and proved equivalent to the mathematical definitions. A concrete represen-
tation for elliptic curve points will need to be chosen: an inevitable trade-off
between the complexity of the equivalence proof and the efficiency of the final
implementation in ARM machine code.

Now that there is a mechanized ‘gold standard’ for elliptic curve operations,
other implementations of elliptic curve cryptography can be formally verified.
For example, one idea is to start with a µCryptol program implementing a
cryptographic operation based on an elliptic curve group, and make a shal-
low embedding of the program in higher order logic. A mechanized proof of
the group law for elliptic curves reduces the functional correctness of the em-
bedded µCryptol program to a proof that it correctly implements the elliptic
curve operations. The end result is a µCryptol program formally verified to be
functionally correct because it implements operations that happen to satisfy a
group law, and moreover the group is an elliptic curve group. The ‘moreover’
part where the ‘gold standard’ formalization plays a critical role in guaranteeing
the security of the µCryptol program.

References

[1] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptogra-
phy, volume 265 of London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 1999.

[2] Anthony Fox. Formal specification and verification of ARM6. In David
Basin and Burkhart Wolff, editors, 16th International Conference on The-
orem Proving in Higher Order Logics: TPHOLs 2003, volume 2758 of Lec-
ture Notes in Computer Science, pages 25–40, Rome, Italy, September 2003.
Springer.

[3] Anthony Fox. An algebraic framework for verifying the correctness of hard-
ware with input and output: A formalization in HOL. In J. L. Fiadeiro et al.,
editor, CALCO 2005, volume 3629 of Lecture Notes in Computer Science,
pages 157–174. Springer, 2005.

[4] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A
theorem-proving environment for higher order logic). Cambridge University
Press, 1993.

[5] Mike Gordon, Juliano Iyoda, Scott Owens, and Konrad Slind. A proof-
producing hardware compiler for a subset of higher order logic. In Joe Hurd,
Edward Smith, and Ashish Darbari, editors, Theorem Proving in Higher Or-
der Logics: Emerging Trends Proceedings, number PRG-RR-05-02 in Oxford
University Computing Laboratory Research Reports, pages 59–75, August
2005.

12

[6] Neal Koblitz. A Course in Number Theory and Cryptography. Number 114
in Graduate Texts in Mathematics. Springer, 1987.

[7] NSA. Fact sheet NSA Suite B cryptography. Published on the web at
http://www.nsa.gov/ia/industry/crypto_suite_b.cfm, 2005.

[8] Bruce Schneier. Applied Cryptography. Wiley, second edition, 1996.

13

