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Abstract

Formalizing a mathematical theory using a theorem prover is a necessary
first step to proving the correctness of programs that refer to that theory in
their specification. This report demonstrates how the mathematical theory
of elliptic curves and their application to cryptography can be formalized in
higher order logic. This formal development is mechanized using the HOL4
theorem prover, resulting in a collection of formally verified functional pro-
grams (expressed as higher order logic functions) that correctly implement
the primitive operations of elliptic curve cryptography.
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Chapter 1

Introduction

There are many cryptographic operations, including ElGamal encryption,
the Digital Signature Algorithm, and Diffie-Hellman key exchange, that rely
on the discrete logarithm problem for their security. The discrete logarithm
problem is based on an arbitrary group, and given two group elements g and
h a would-be attacker must find an integer k such that gk = h. Clearly
the security of the discrete logarithm problem depends on which group it is
based on, and the standard approach is to use a multiplicative group (i.e.,
multiplication modulo a large prime).

In 1985, Neal Koblitz and Victor Miller independently proposed basing
the discrete logarithm problem on elliptic curve groups. Elliptic curves have
been studied by mathematicians for over a hundred years, and have proved to
be an effective tool in advanced number theory.1 The elements of an elliptic
curve group are the points on the curve, and the group operation is a way of
‘adding’ two points on the curve to get a third.

Taking into account the best known algorithms, Blake et al. (1999) present
a correspondence between the key sizes of equal security discrete logarithm
problems based on multiplicative and elliptic curve groups:

Multiplicative Elliptic curve
1024 bits 173 bits
4096 bits 313 bits

As can be seen, elliptic curve groups require shorter keys than multiplicative
groups, which make them an attractive choice in security applications with
constraints on bandwidth or computation power (e.g., smart cards).

1The most famous example of this is the essential role played by elliptic curves in Wiles’
1995 proof of Fermat’s Last Theorem.
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One disadvantage of using elliptic curve groups instead of multiplicative
groups is that the group operation is more complicated to implement. Conse-
quently, even if the correctness of the basic arithmetic operations is assumed,
it is not obvious that a particular program is a correct implementation of a
group operation on elliptic curve points. The problem is exacerbated by the
use of clever point representations that speed up elliptic curve operations.
This is the problem addressed in the present project to formalize elliptic
curve cryptography. The starting point is the mathematical definitions in
the textbook Elliptic Curves in Cryptography by Blake, Seroussi, and Smart
(1999), which are directly mechanized in higher order logic using the HOL4
theorem prover (Gordon and Melham, 1993). From these a set of programs
are derived which can be formally verified to satisfy the mathematical defi-
nitions of the arithmetic operations on elliptic curve points. These programs
are expressed as higher order logic functions, and can be both reasoned about
and directly executed by the theorem prover.

In the initial stage of the project (which is the work described in this
report), instead of verifying a separate set of higher order logic functions
that implement the elliptic curve operations, a proof tool was developed that
supports direct execution of the mathematical definitions in the theorem
prover. This route was chosen for two reasons: the same proof tools could
also be used to automate many of the routine proofs in the formalization;
and it was important to be able to execute the mathematical definitions on
some simple examples to check that no transcription errors occurred when
typing them in from the textbook.

The next stage of the project will involve picking a clever point rep-
resentation that has efficient algorithms for elliptic curve operations, and
formalizing this in higher order logic. The mathematical definitions formal-
ized in the initial stage will form the specification for a formal verification of
this Formalized Algorithm, which is a component in the larger project enti-
tled Formal synthesis and verification of ARM software with applications to
cryptography (see Figure 1.1). The rest of the project will create a formally
verified path from the elliptic curve operations formalized as higher order
logic functions all the way to an ARM implementation. The end result will
be a library of ARM machine code that is formally verified to execute the
mathematical definitions of the elliptic curve operations, as formalized in this
report.

There are other applications for a set of formally verified elliptic curve
operations in higher order logic, besides creating a verified compilation to
ARM machine code. Firstly, there is another project underway by Gordon
et al. (2005) to build a verifying hardware compiler from a subset of higher
order logic, allowing the elliptic curve operations to be implemented with
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Figure 1.1: Formal synthesis and verification of ARM software with applica-
tions to cryptography : project overview.

9



high assurance in an FPGA. In addition, elliptic curve operations written in
another programming language could be embedded in higher order logic and
formally verified to satisfy their mathematical specification; it is likely that
much effort would be saved by using the existing formally verified elliptic
curve operations as a stepping stone in the proof. Some preliminary investi-
gation of this approach has taken place for programs written in µCryptol, a
domain specific language for cryptography developed at Galois Connections,
Inc.

As stated above, this report describes the work completed in the initial
stage of the project: the formalization of the mathematical definitions of
elliptic curves into higher order logic; and the proof tools that were devel-
oped to prove the main results inside the theorem prover. Particularly close
attention is paid to matching the formal versions of the mathematical defi-
nitions as closely as possible to the textbook versions, in order to minimize
the semantic gap in the specification of programs that purport to implement
elliptic curve operations. Chapter 2 introduces the mathematical definition
of elliptic curves, and lays out the details of how the abstract algebra was for-
malized. In parallel with this activity some HOL4 proof tools were developed
to reduce the amount of human guidance necessary to complete the formal-
ized proofs. These proof tools are described in Chapter 3, together with the
details of how the mathematical definitions were tested by executing them
in the theorem prover.

Chapter 4 summarizes the work completed to date and looks at the next
steps to take and promising areas of future research. All notation used in the
report is defined in Appendix A: both the mathematical and HOL4 symbols.
In addition, the author recognizes that few readers will have expertise in both
elliptic curve cryptography and higher order logic theorem proving, and so
two primers are included with this report: Appendix B introduces elliptic
curves and their use in cryptography; and Appendix C introduces higher
order logic and the HOL4 theorem prover.
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Chapter 2

Formalized Mathematics

The precise nature of formalized mathematics is pinned down neatly in a
survey article written by Harrison (1996).

By formalization we mean expressing mathematics, both statements
and proofs, in a (usually small and simple) formal language with strict
rules of grammar and unambiguous semantics. [. . . ] We can split the
project of formalization into two parts:

1. Formalizing the statements of theorems, and the implicit context
(definitions, etc.) on which they depend.

2. Formalizing the proofs of the results and subjecting them to
precise checking.

For the purposes of this report the “small and simple formal language” is
higher order logic, and the “precise checking of proofs” is achieved by ex-
panding them to primitive inferences inside the HOL4 theorem prover.

The purpose of this chapter is to spell out the details of the formalized
theories of elliptic curves, to convince the reader that there is no semantic gap
between the standard mathematical definitions and the versions formalized
in the HOL4 theorem prover. Thus when a theorem is eventually proved
that an ARM machine code program implements an elliptic curve operation,
there will be no doubt that the program is mathematically correct.

The mathematical theory of elliptic curves is built on top of abstract al-
gebra, and so the formalization project begins with the well known concepts
of groups, fields, polynomials and so on up to projective space. This initial
formalization is described in Section 2.1, and serves as a useful introduction
to how mathematics is formalized in the HOL4 theorem prover. The reader
comfortable with abstract algebra may wish to skip this section on a first
reading. In Section 2.2 there follows a description of the elliptic curve for-
malization, in which the main objective is for the formalized theories to be as
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faithful as possible to the source textbook (Blake et al., 1999). To finish the
chapter, Section 2.3 describes a formalization of Galois fields, elliptic curve
groups and ElGamal encryption, showing exactly how cryptography connects
up with mathematics inside the theorem prover.

2.1 Abstract Algebra

Different mathematics textbooks offer different presentations of basic ab-
stract algebra concepts such as groups and fields. Therefore, the following
sections first fix the terminology used by introducing the mathematics at an
informal level, and then show how it is formalized in higher order logic using
the HOL4 theorem prover.

2.1.1 Groups

A group G is a quadruple

G = (G, e, ·−1, ·)

consisting of a carrier set G, an identity element e ∈ G, an inverse function
·−1 : G→ G, and a binary function · : G×G→ G called the group operation.
A group must satisfy the following axioms:

∀x ∈ G. ex = x (Left identity) ;
∀x ∈ G. x−1x = e (Left inverse) ;
∀x, y, z ∈ G. (xy)z = x(yz) (Associativity) .

Examples of groups: (Z,0,−,+); (Q6=0,1,1/·,∗). Non-examples: (N, 0,−,+);
(Q, 1, 1/·, ∗).

This definition of groups is formalized in higher order logic in a two stage
process that occurs many times in this report. In the first stage the syntax
of groups is formalized as a new higher order logic type, using the HOL4
datatype package. The command

Hol_datatype
‘group = <| carrier : ’a -> bool;

id : ’a;
inv : ’a -> ’a;
mult : ’a -> ’a -> ’a |>‘;

creates a new (polymorphic) record type α group together with record acces-
sor constants carrier, id, inv and mult. The polymorphism is present to allow
the theory of groups to be applied to any formalized groups, regardless of
the higher order logic type of the group elements. In addition, the standard
properties that one would expect a record type to satisfy, such as
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|- !c e i m.
<| carrier = c; id = e; inv = i; mult = m |>.carrier = c ,

are automatically proved as higher order logic theorems.1 In common with
all the HOL4 proof tools described in this report, the datatype package does
not introduce any new axioms. Instead, it reduces the construction of the
record type and the proof of all its properties to primitive inferences of higher
order logic.2 Thus, no unsoundness can creep in to a theory from defining
new types and constants.

At this point it is often useful to define some group operations in terms
of the record accessors in the type definition. In this case only group ex-
ponentiation needs to be defined (since it is used in the discrete logarithm
problem):

|- (group_exp G g 0 = G.id) /\
(group_exp G g (SUC n) = G.mult g (group_exp G g n)) .

The second stage of formalizing the mathematical definition of groups is
to define a new Group class consisting of all elements of type α group that
satisfy the group axioms.3 This is a straightforward constant definition, and
results in the higher order logic theorem

|- Group =
{ g |

g.id IN g.carrier /\
(!x y :: (g.carrier). g.mult x y IN g.carrier) /\
(!x :: (g.carrier). g.inv x IN g.carrier) /\
(!x :: (g.carrier). g.mult g.id x = x) /\
(!x :: (g.carrier). g.mult (g.inv x) x = g.id) /\
(!x y z :: (g.carrier).

g.mult (g.mult x y) z = g.mult x (g.mult y z)) } .

There are a few points to note about the formalized version of the definition
of groups:

• Firstly, the mathematical definition required the inverse to be a func-
tion G → G, but in the formalized version there can be elements of
type α group for which this is not the case. Therefore this closure

1Please refer to Appendix A for a glossary of HOL4 logical symbols.
2The primitive inferences of higher order logic contain two primitive definition princi-

ples: one for new types, which is used to create the record type; and one for new constants,
which used to create the record accessors.

3The word class is used here as an aid to the reader; to the theorem prover classes are
just higher order logic sets.
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property is listed as an explicit membership requirement of the Group
set (along with similar closure properties for the identity element and
group operation).

• Secondly, the group axioms have not been translated to new axioms of
higher order logic. Instead all that has occurred is the definition of a
new constant, which preserves soundness.

• Lastly, the formalized version of the definition of groups is bulkier than
the mathematical one. Partly this is due to increased precision, such
as different syntax for the carrier set of the group and the group itself,
but partly this is a natural consequence of formalizing mathematics
into logic.

This concludes the formalization of the definition of groups as presented
above, but one final step is needed to formalize the standard set of group
axioms. The group axioms as presented are a minimal set, resulting in a
simple definition of Group containing a minimal number of conjuncts. Using
a minimal set of axioms has the advantage that it is easier in future to prove
that a given element of α group is indeed a group. However, the disadvantage
is that a one-off proof is required to show that all of the standard group
axioms follow from the minimal set. For example, the statement ‘multiplying
a group element by its inverse on the right results in the group identity’ is
usually given as a standard axiom of group theory, and the following theorem
shows that it can be proved from the minimal set of axioms presented here:

|- !g :: Group. !x :: (g.carrier). g.mult x (g.inv x) = g.id .

Note how the outermost quantifier guarantees both that g is an element
of type α group and satisfies the minimal set of group axioms. Deriving
standard axioms from minimal sets can sometimes be tricky, and formalizing
the proof of the right inverse axiom required guiding the theorem prover
through the following steps of equality reasoning:

xx−1 = exx−1

= (x−1)−1x−1xx−1

= (x−1)−1ex−1

= (x−1)−1x−1

= e .

In a similar way all the standard group axioms can be formalized in the
theorem prover.

After formalizing the definition of groups, there are many useful group
laws that need to be proved, such as this alternative definition of the identity
element as the unique group element that is equal to its square:
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|- !g :: Group. !x :: (g.carrier). (g.mult x x = x) = (x = g.id) .

So far the only group laws that have been needed are ‘first order’ conse-
quences of the group axioms, and are easily formalized using the proof tools
described in Chapter 3 plus some manual guidance. However, it is not the
purpose of this chapter to go through each theorem proved in the formal-
ized theories, but rather to demonstrate that the formalized definitions are
faithful to standard mathematics.

It is useful to consider two subclasses of groups: finite groups and Abelian
groups. Finite groups are simply groups with a finite carrier set, and a group
G is Abelian if it satisfies the additional property

∀x, y ∈ G. xy = yx (Commutativity) .

Examples of Abelian groups: (Z, 0,−,+), (Q 6=0, 1, 1/·, ∗). Examples of non-
Abelian groups: (invertible n × n matrices over R, identity matrix, matrix
inverse, matrix multiplication); (permutations of n objects, leave everything
alone, inverse permutation, perform one permutation and then the next).

These subclasses of groups are easily formalized in higher order logic with
the following definitions:

|- AbelianGroup =
{ g |

g IN Group /\
!x y :: (g.carrier). g.mult x y = g.mult y x } ;

|- FiniteGroup = { g | g IN Group /\ FINITE g.carrier } ;

|- FiniteAbelianGroup =
{ g | g IN FiniteGroup /\ g IN AbelianGroup } .

From these definitions it easily follows that the class of Abelian groups is a
subclass of all groups, as expected.

2.1.2 Fields

The next step in formalizing abstract algebra is fields, where a field is a
7-tuple

K = (K, 0, 1,−, ·−1,+, ·)

consisting of: a carrier set K; two elements 0, 1 ∈ K; one unary function
− : K → K; one unary function ·−1 : K∗ → K∗ (where K∗ = K − {0}); and
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two binary functions +, · : K×K → K. A field K must satisfy the following
axioms:

(K, 0,−,+) is an Abelian group (Addition)
(K∗, 1, ·−1, ·) is an Abelian group (Multiplication)
∀x ∈ K. 0x = 0 (Left zero)
∀x, y, z ∈ K. x(y + z) = xy + xz (Distributivity)

Examples of fields are: Q; R; C. Non-examples are: Z; the set of polynomials
with real coefficients.

Fields are formalized in two phases, following exactly the same procedure
as for groups. The first phase defines the syntax, starting by creating a new
type called α field:

Hol_datatype
‘field = <| carrier : ’a -> bool;

sum : ’a group;
prod : ’a group |>‘ .

Note how the additive (sum) and multiplicative (prod) groups are explicitly
formalized in the type definition, while the primitive field operations are
defined in terms of the record accessors:

|- field_zero f = f.sum.id ;

|- field_one f = f.prod.id ;

|- field_neg f = f.sum.inv ;

|- field_inv f = f.prod.inv ;

|- field_add f = f.sum.mult ;

|- field_mult f = f.prod.mult .

And the field syntax is completed with the rest of the standard field opera-
tions, which are in turn defined in terms of the primitives above:

|- field_sub f x y = field_add f x (field_neg f y) ;

|- field_div f x y = field_mult f x (field_inv f y) ;

|- field_nonzero f = f.carrier DIFF {field_zero f} ;

|- (field_num f 0 = field_zero f) /\
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(field_num f (SUC n) =
field_add f (field_num f n) (field_one f)) ;

|- (field_exp f x 0 = field_one f) /\
(field_exp f x (SUC n) =
field_mult f x (field_exp f x n)) .

The second phase of formalizing fields concerns itself with the field ax-
ioms. Just as for groups, a new Field class is defined, which consists of all
the elements of type α field that satisfy the field axioms:

|- Field =
{ f |

f.sum IN AbelianGroup /\
f.prod IN AbelianGroup /\
(f.sum.carrier = f.carrier) /\
(f.prod.carrier = field_nonzero f) /\
(!x :: (f.carrier).

field_mult f (field_zero f) x = field_zero f) /\
(!x y z :: (f.carrier).

field_mult f x (field_add f y z) =
field_add f (field_mult f x y) (field_mult f x z)) } .

The final step requires that all the standard field axioms be proved from the
minimal set presented here. The only one to cause any difficulty is the axiom
that multiplying any field element by zero on the right always gives zero:

|- !f :: Field. !x :: (f.carrier).
field_mult f x (field_zero f) = field_zero f .

The proof first establishes that x0 is indeed a field element, by expanding it
as

x0 = x(1 +−1) = x1 + x(−1)

and using the closure laws from the additive and multiplicative groups. Next
the equation

x0 = x(0 + 0) = x0 + x0

is derived, in which an element of the additive group is seen to be equal to
its square. Therefore by the group law in Section 2.1.1 that element must be
the identity, giving

x0 = 0

as required.
A subclass of fields that frequently appears in cryptography is the class

of finite fields, in which the carrier set is finite:
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|- FiniteField = { f | f IN Field /\ FINITE f.carrier } .

The ring of polynomials K[X] over a field K consists of all expressions

a0 + a1X + · · ·+ anX
n

where a0, . . . , an ∈ K. The degree of a polynomial is the largest n such that
an is non-zero, or zero if all coefficients are zero.

A field K is algebraically closed if the fundamental theorem of algebra
holds in the field: i.e., given a polynomial p(x) of degree at least one, there
is an element t ∈ K satisfying p(t) = 0. By adding extra elements it is
possible to algebraically close a field K, and this is written K. For example,
algebraically closing R results in C, but algebraically closing Q gives the
(countable) field of algebraic numbers.

No new type is defined to formalize polynomials; instead the ring of poly-
nomials over a field of type α field are represented as elements of type α list.
In this scheme, the zero polynomial is represented by the empty list:

|- poly_zero = [] .

Not every list is a valid polynomial, so a new class Poly(K) is defined which
consists of all the polynomials with coefficients from K and non-zero last
coefficient (or the zero polynomial):

|- Poly f =
{ p |

(p = poly_zero) \/
(EVERY (\c. c IN f.carrier) p /\ ~(LAST p = field_zero f)) } .

The degree of a polynomial is very nearly the length of the representing list:

|- poly_degree p = if (p = poly_zero) then 0 else LENGTH p - 1 .

Finally, evaluating a polynomial at a field element is formalized like so:

|- (poly_eval f [] x = field_zero f) /\
(poly_eval f (c :: cs) x =
field_add f c (field_mult f x (poly_eval f cs x))) .

This is all the polynomial syntax necessary to formalize the class of alge-
braically closed fields:

|- AlgebraicallyClosedField =
{ f |

f IN Field /\
!p :: Poly f.
(poly_degree p = 0) \/
?z :: (f.carrier). poly_eval f p z = field_zero f } .

18



2.1.3 Projective Space

As will be shortly seen in Section 2.2, elliptic curves are defined over pro-
jective space, and this is the last remaining concept of abstract algebra that
is needed to support their formalization. The first step is a formalization of
vector spaces.

The vector space Kn of dimension n over a field K consists of all n-tuples

(a1, . . . , an)

where the coordinates a1, . . . , an are field elements of K. The origin in di-
mension n is the unique point where all coordinates are zero.

As for polynomials, vector space points over a field of type α field are
formalized as elements of type α list.4 In this representation the dimension
function is simply the list length function, and the coordinate function is the
function that picks out the nth element from a list. Also, the dimension n
origin over a field K is a function that explicitly constructs the required list.

|- dimension = LENGTH ;

|- coord = EL ;

|- (origin f 0 = []) /\
(origin f (SUC n) = field_zero f :: origin f n) .

Using these primitive definitions as an interface with the underlying list rep-
resentation, the remaining vector space definitions need not refer to lists at
all:

|- coords v = { i | i < dimension v } ;

|- vector_space f n =
{ v |

(dimension v = n) /\
!i :: coords v. coord i v IN f.carrier } .

Projective space Pn(K) of dimension n over the field K is the set of lines

{(αx1, . . . , αxn+1) | α ∈ K}

where (x1, . . . , xn+1) ∈ Kn+1 − {(0, . . . , 0)}. Assuming xn+1 6= 0, lines can
be written in affine coordinates as

(x1/xn+1, . . . , xn/xn+1) .

4Recent work by Harrison (2005) demonstrates an alternative approach to formalizing
vector spaces, in which higher order logic types can be used to enforce dimensionality
constraints.
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Before getting started on the formalization of projective space, it is useful
to define the set of all points in a vector space except the origin:

|- nonorigin f =
{ v |

v IN vector_space f (dimension v) /\
~(v = origin f (dimension v)) } .

As can be seen from the mathematical definition, projective space of dimen-
sion n is actually a quotient of a vector space of dimension n+1. Two points
are equal in the quotient space if they lie on the same line through the ori-
gin. Here is one way to formalize this as a relation between points in a vector
space:

|- project f v1 v2 =
(v1 = v2) \/
(v1 IN nonorigin f /\ v2 IN nonorigin f /\
(dimension v1 = dimension v2) /\
?c :: (f.carrier). !i :: coords v1.
field_mult f c (coord i v1) = coord i v2)

This relation is carefully constructed to always be an equivalence relation
(regardless of the first argument). As can be easily formalized in higher
order logic, every equivalence relation R satisfies the property

∀x, y. R x y ⇐⇒ (R x = R y) .

Note that the R x and R y here are functions from elements to booleans,
and thus are uniquely determined by the set of elements that are mapped
to true. In the case of project f v, that set consists of all the points on
the straight line through the origin and the vector v. This motivates the
following formalization of projective space:

|- projective_space f n =
{project f v | v IN vector_space f (n + 1) INTER nonorigin f}

From the preceding discussion, two lines project f v1 and project f v2 are
equal if and only if the relation project f v1 v2 holds. This property greatly
simplifies reasoning about projective space.

A line in affine coordinates is also formalized in terms of the project rela-
tion:

|- affine f v = project f (v ++ [field_one f])

Two lines affine f v1 and affine f v2 are equal if and only if v1 = v2. It is
this property that makes affine coordinates much easier to work with than
projective space, in higher order logic as well as mathematics.
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2.2 Elliptic Curves

This section defines the points and operations on elliptic curves over an
arbitrary field. An algebraic approach is used, which is more suitable for
formalization in a theorem prover than the geometric approach taken in the
elliptic curve primer in Appendix B.

The definitions of elliptic curves, rational points and elliptic curve arith-
metic presented here all come from the source textbook for the formalization:
Elliptic Curves in Cryptography by Blake, Seroussi, and Smart (1999). The
purpose of this chapter is to demonstrate that the formalized definitions in
the theorem prover faithfully preserve the meaning of the mathematical defi-
nitions in the textbook, and so to aid direct comparison the critical definitions
are copied verbatim from the textbook.

2.2.1 Rational Points

Firstly, here is the textbook definition of an elliptic curve:

Let K be a field [and] K its algebraic closure [. . . ] An elliptic curve
over K will be defined as the set of solutions in the projective plane
P2(K) of a homogenous Weierstrass equation of the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with a1, a2, a3, a4, a6 ∈ K.

Note that since every term in the elliptic curve equation has degree 3, one so-
lution (X, Y, Z) of the equation gives an entire line α(X, Y, Z) = (αX,αY, αZ)
of solutions. However, this is only part of the definition, because not every
equation of this form is a valid elliptic curve.

Such a curve should be non-singular [. . . ] Given a curve defined [as
above], it is useful to define the following constants for use in later
formulae:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4, [. . .]

The discriminant of the curve is defined as

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

[. . . ] A curve is then non-singular if and only if ∆ 6= 0.
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Although this mathematical definition of an elliptic curve may seem com-
plicated, it is quite straightforward to formalize it using the techniques and
theories of Section 2.1. The only parameters of the elliptic curve equation
are the underlying field and the coefficients a1, . . . , a6, so these form the
components of a new type called α curve:

Hol_datatype
‘curve =
<| field : ’a field;

a1 : ’a;
a2 : ’a;
a3 : ’a;
a4 : ’a;
a6 : ’a |>‘ .

Following the type definition comes the definition of the elliptic curve oper-
ations, beginning with the constants b2, b4, b6, b8:

|- curve_b2 e = |- curve_b4 e =
let f = e.field in let f = e.field in
let $& = field_num f in let $& = field_num f in
let $+ = field_add f in let $+ = field_add f in
let $* = field_mult f in let $* = field_mult f in
let $** = field_exp f in let a1 = e.a1 in
let a1 = e.a1 in let a3 = e.a3 in
let a2 = e.a2 in let a4 = e.a4 in
a1 ** 2 + & 4 * a2 ; a1 * a3 + & 2 * a4 ;

|- curve_b8 e = |- curve_b6 e =
let f = e.field in let f = e.field in
... ...
let a1 = e.a1 in let a3 = e.a3 in
let a2 = e.a2 in let a6 = e.a6 in
let a3 = e.a3 in a3 ** 2 + & 4 * a6 ;
let a4 = e.a4 in
let a6 = e.a6 in
a1 ** 2 * a6 + & 4 * a2 * a6 -
a1 * a3 * a4 + a2 * a3 ** 2 - a4 ** 2 .

The most noticeable aspect of these definitions is the use of lets to improve
the readability of the field operations. Using this shorthand, it is easy to see
that the formalized constants are a direct translation of the mathematical
definitions. In the definition of the b6 and b8 constants the lets for the field
operations have been elided, and this abbreviated form will be used from now
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on to improve the presentation.5 Next to be formalized is the discriminant
of an elliptic curve:

|- discriminant e =
let f = e.field in
...
let b2 = curve_b2 e in
let b4 = curve_b4 e in
let b6 = curve_b6 e in
let b8 = curve_b8 e in
& 9 * b2 * b4 * b6 - b2 * b2 * b8 -
& 8 * b4 ** 3 - & 27 * b6 ** 2 .

And the final piece of syntax is the definition of non-singularity:

|- non_singular e = ~(discriminant e = field_zero e.field)

The formalization of elliptic curve equations is completed by defining a class
Curve consisting of every element of type α curve satisfying all the require-
ments in the mathematical definition:

|- Curve =
{ e |

e.field IN Field /\
e.a1 IN e.field.carrier /\
e.a2 IN e.field.carrier /\
e.a3 IN e.field.carrier /\
e.a4 IN e.field.carrier /\
e.a6 IN e.field.carrier /\
non_singular e } .

The set E(K̂) of rational points on the elliptic curve are considered next:

Let K̂ be a field satisfying K ⊆ K̂ ⊆ K. A point (X,Y, Z) on the curve
is K̂-rational if (X,Y, Z) = α(X̂, Ŷ , Ẑ) for some α ∈ K, (X̂, Ŷ , Ẑ) ∈
K̂3 − {(0, 0, 0)}, i.e., up to projective equivalence, the coordinates of
the points are in K̂.

Note that if K ⊆ K̂ then the coefficients of the elliptic curve equation can be
considered to be from K̂. Thus the formalized definition of rational points
assumes that K̂ = K:

5These lets could be eliminated by the use of locales (as used in the Isabelle theorem
prover), but locales are not currently implemented in HOL4.
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|- curve_points e =
let f = e.field in
...
let a6 = e.a6 in
{ project f [x; y; z] |

[x; y; z] IN nonorigin f /\
(y ** 2 * z + a1 * x * y * z + a3 * y * z ** 2 =
x ** 3 + a2 * x ** 2 * z + a4 * x * z ** 2 + a6 * z ** 3) } .

This is a case where the formalized definition significant deviates from the
mathematical definition, in which the rational points over the field K̂ are a
subset of the rational points over the algebraic closure K. However, if the
rational points were formalized as a subset, then this would result in the field
elements of K̂ having the same higher order logic type as the field elements of
K. For many fields, especially the finite fields which are of principal interest
in cryptography, it would be difficult and unnatural to formalize them with
this constraint. Therefore, only the field K̂ is mentioned in the definition
of rational points: the reference to K is completely dropped; and K is not
needed if the coefficients are considered to come from K̂.

The above definition of rational points uses projective space, but it is
usually more convenient to use affine coordinates:

The curve has exactly one rational point with coordinate Z equal
to zero, namely (0, 1, 0). This is the point at infinity, which will be
denoted by O.

For convenience, we will most often use the affine version of the
Weierstrass equation, given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

where ai ∈ K. The K̂-rational points in the affine case are the solu-
tions to E in K̂2, and the point at infinity O. [. . . ] We will switch
freely between the projective and affine presentations of the curve,
denoting the equation in both cases by E. For Z 6= 0, a projective
point (X,Y, Z) satisfying [the projective version of E] corresponds to
the affine point (X/Z, Y/Z) satisfying [the affine version of E].

For example, taking the underlying field to be R, the curves in Figure 2.1
depict the solutions in R2 of different elliptic curve equations in affine coor-
dinates.

The first step to formalizing the affine version of elliptic curves is to define
the point at infinity O:

|- curve_zero e =
project e.field

[field_zero e.field; field_one e.field; field_zero e.field] .
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Figure 2.1: Example elliptic curves, clockwise from top left: y2 = x3 − x;
y2 = x3 − 1

2
x+ 1

2
; y2 = x3; and y2 = x3 − 4

3
x+ 16

27
.
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From the formalized definition of rational points on the projective version of
elliptic curves, it is possible to recover the affine version as a theorem:

|- !e :: Curve. curve_zero e IN curve_points e ;

|- !e :: Curve. !x y :: (e.field.carrier).
affine e.field [x; y] IN curve_points e =
let f = e.field in
...
let a6 = e.a6 in
y ** 2 + a1 * x * y + a3 * y =
x ** 3 + a2 * x ** 2 + a4 * x + a6 .

The mathematical definition of rational points in affine coordinates states
explicitly that the every rational points is either O or is a solution of the
elliptic curve equation, and implicitly assumes the ‘obvious fact’ that the
point at infinity O is cannot be expressed in affine coordinates. Both these
facts are proved as theorems in the formalization:

|- !e :: Curve. !p :: curve_points e.
(p = curve_zero e) \/
?x y :: (e.field.carrier). p = affine e.field [x; y] ;

|- !e :: Curve. !x y.
~(curve_zero e = affine e.field [x; y]) .

Note: When the characteristic of the underlying field K of an elliptic curve
is not equal to either 2 or 3, it is possible to perform a change of variable
transformation to the affine version of the elliptic curve equation which results
in an isomorphic curve with the simpler equation

E : Y 2 = X3 + aX + b .

This justifies the intuitive presentation in Appendix B where the underlying
field was assumed to be C (which has characteristic 0).

2.2.2 Elliptic Curve Arithmetic

This section describes a formalization of elliptic curve arithmetic, again fo-
cusing on the comparison with the mathematical definitions as given in Blake
et al. (1999). This uses the formalization of the affine version of the ellip-
tic curve equation, because the textbook presents elliptic curve arithmetic in
affine coordinates. Thus before tackling the definitions of elliptic curve arith-
metic, a ‘case theorem’ is proved that supports the definition of functions on
elliptic curve points using affine coordinates:
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|- !e :: Curve. !z f.
(curve_case e z f (curve_zero e) = z) /\
!x y. curve_case e z f (affine e.field [x; y]) = f x y .

Although this looks like a theorem, it is actually a definition of the constant
curve case by new specification.6 The best way to see how curve case is used
is by example, and the operations of elliptic curve arithmetic will provide
several.

The textbook defines all the operations of elliptic curve arithmetic in one
passage, reproduced here in full:

Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) and P2 = (x2, y2) denote points on the curve.
Then

−P1 = (x1,−y1 − a1x1 − a3) .

Set
λ =

y2 − y1

x2 − x1
, µ =

y1x2 − y2x1

x2 − x1

when x1 6= x2, and set

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
, µ =

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

when x1 = x2 and P2 6= −P1. If

P3 = (x3, y3) = P1 + P2 6= O

then x3 and y3 are given by the formulae

x3 = λ2 + a1λ− a2 − x1 − x2 ,
y3 = −(λ+ a1)x3 − µ− a3 .

The first and simplest operation to be formalized is negation, which can
be expressed using the new curve case constant:

|- curve_neg e =
let f = e.field in
...
let a3 = e.a3 in
curve_case e (curve_zero e)

(\x1 y1.
let x = x1 in
let y = ~y1 - a1 * x1 - a3 in
affine f [x; y]) .

6Constants are defined by new specification by proving a ‘witness theorem’ of the form
` ∃x. φ(x), after which a new constant c is created with defining property ` φ(c).
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How does this work, say to evaluate curve neg E P? Expanding the definition
of curve neg above (and the lets) will result in a term of the form

curve case E O (λx1, y1. . . .) P .

Now, using the definition of curve case, if the argument P is the point at
infinity O, then the result will be the second argument of curve case, which
in this case is O. If P is not the point at infinity then it must be a point on
the curve that can be expressed as affine K x1 y1 (where K is the underlying
field of E), and in this case the function in the third argument is called with
arguments x1 and y1. The end result is the two theorems

` curve neg E O = O ,
` curve neg E (affine K x1 y1) = affine K x1 (−y1 − a1x1 − a3) .

It is not much harder to formalize point doubling in the same way, al-
though a careful reading is required to be sure of correctly catching and
handling the two special cases P = O and P = −P :

|- curve_double e =
let f = e.field in
...
let a6 = e.a6 in
curve_case e (curve_zero e)
(\x1 y1.
let d = & 2 * y1 + a1 * x1 + a3 in
if d = field_zero f then curve_zero e
else
let l = (& 3 * x1 ** 2 + & 2 * a2 * x1 + a4 - a1 * y1) / d in
let m = (~(x1 ** 3) + a4 * x1 + & 2 * a6 - a3 * y1) / d in
let x = l ** 2 + a1 * l - a2 - &2 * x1 in
let y = ~(l + a1) * x - m - a3 in
affine e.field [x; y]) .

The final operation of adding two points on the curve requires two nested
occurrences of curve case, one for each of the argument points:

|- curve_add e p1 p2 =
if p1 = p2 then curve_double e p1
else

let f = e.field in
...
let a6 = e.a6 in
curve_case e p2
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(\x1 y1.
curve_case e p1
(\x2 y2.

if x1 = x2 then curve_zero e
else
let d = x2 - x1 in
let l = (y2 - y1) / d in
let m = (y1 * x2 - y2 * x1) / d in
let x = l ** 2 + a1 * l - a2 - x1 - x2 in
let y = ~(l + a1) * x - m - a3 in
affine e.field [x; y]) p2) p1 .

Again, after some thought that all the special cases have been correctly
taken care of, it is easy to see that the formulas in the definition are directly
translated from the textbook.

2.3 Cryptography

At this point all of the key definitions have been covered, and hopefully the
reader is convinced that the higher order logic theory of elliptic curves is
faithful to the mathematics. The rest of this chapter will focus on applica-
tions of the formalized theory to cryptography.

2.3.1 Galois Fields

So far the formalization has treated fields abstractly, and no concrete fields
have yet been introduced. Applying the theory to cryptography will require
formalizing a concrete finite field. It is a fact that for each prime power
q = pn, there is (up to isomorphism) only one finite field having a carrier set
of size q. This field is called the Galois field of size q, and written GF(q).
Furthermore, there are no other finite fields. For cryptographic applications,
the finite fields of greatest interest are GF(p) (where p is a large prime) and
GF(2n).

So far in this project only the finite fields of the form GF(p) have been
formalized, in which all arithmetic is performed modulo p. The formalized
definition is

|- GF p =
<| carrier := { n | n < p };

sum := add_mod p;
prod := mult_mod p |>
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where the additive and multiplication groups are defined in the obvious way.7

The main result is that GF(p) is a finite field whenever p is a prime:

|- !p :: Prime. GF p IN FiniteField .

2.3.2 Elliptic Curve Groups

As mentioned in the introduction and expanded on in Appendix B, many
useful cryptographic operations are based on the discrete logarithm prob-
lem, which in turn is based on an arbitrary group. The security of the
cryptographic operations thus depends on the precise group used, and (thus
far) elliptic curve groups have proved highly resistant to attack.

Given an elliptic curve E with underlying field K, then

(E(K), O, −, +)

is an Abelian group, where − is negation of elliptic curve points and + is
addition. If K is a finite field, then the number ]E(K) of K-rational (affine)
points is trivially bounded by

]E(K) ≤ (]K)2 + 1

and so the elliptic curve group is a finite Abelian group.
It is straightforward to formalize the definition of the elliptic curve group:

|- curve_group e =
<| carrier := curve_points e;

id := curve_zero e;
inv := curve_neg e;
mult := curve_add e |> .

However, a formal proof of the statement

!e :: Curve. curve_group e IN AbelianGroup

has not yet been constructed. Work on this is ongoing, and several lemmas
such as the closure of elliptic curve negation have now been proved:

|- !e :: Curve. !p :: curve_points e.
curve_neg e p IN curve_points e .

7The only tricky part is the definition of multiplicative inverse as λx. xp−2 mod p,
which is verified using Fermat’s Little Theorem.
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2.3.3 ElGamal Encryption

ElGamal encryption demonstrates how the discrete logarithm problem based
on a group G can be used as a public key encryption algorithm. The presen-
tation of the algorithm given here is the standard one, and follows Schneier
(1996). Bob generates an instance gx = h of the discrete logarithm problem
to create a new public and private key. Bob publishes the public key (g, h)
while keeping the private key x secret. The following algorithm allows Alice
to send a message m ∈ G to Bob that cannot be read by a third party (this
security property is called confidentiality).

1. Alice obtains a copy of Bob’s public key (g, h).

2. Alice generates a randomly chosen natural number k ∈ {1, . . . , ]G− 1}
and computes a = gk and b = hkm.

3. Alice sends the encrypted message (a, b) to Bob.

4. Bob receives the encrypted message (a, b). To recover the message m
he computes

ba−x = hkmg−kx = gxk−xkm = m .

The first step in formalizing ElGamal encryption is to define the packet
that Alice sends to Bob:

|- elgamal G g h m k =
(group_exp G g k, G.mult (group_exp G h k) m) .

This follows the algorithm precisely.
The following theorem demonstrates the correctness of ElGamal encryp-

tion, i.e., that Bob can decrypt the ElGamal encryption packet to reveal
Alice’s message (assuming he knows his private key x):

|- !G :: Group. !g h m :: G.carrier. !k x.
(h = group_exp G g x) ==>
(let (a,b) = elgamal G g h m k in
G.mult (G.inv (group_exp G a x)) b = m)

The formalized version diverges slightly from the standard algorithm by hav-
ing Bob compute a−xb instead of ba−x, but results in a stronger correctness
theorem since the underlying group G does not have to be Abelian.

Suppose an implementation of ElGamal encryption over an elliptic curve
group has been formalized, and verified to correctly implement the opera-
tions of elliptic curve arithmetic. The above correctness theorem of ElGamal
encryption is sufficient to guarantee that executing the implementation of
encryption followed by the implementation of decryption will always return
the original message.
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Chapter 3

Proof Tools

The previous chapter showed that higher order logic is expressive enough to
formalize the theory of elliptic curves in a natural way, and this chapter ad-
dresses the problem of mechanizing proofs in this theory. The HOL4 theorem
prover comes equipped with many proof tools that help to automate proof
mechanization, but there are some features of the elliptic curve formalization
that require special reasoning not covered by the standard tools. However,
the LCF style design of the HOL4 theorem prover makes it straightforward
to add new proof tools without compromising the soundness of the system.
Theorems are elements of an abstract ML type and can only be created by
the ML functions implementing the primitive inferences of higher order logic.
This makes it impossible for a user proof tool to create a theorem in any other
way than by expanding the proof to primitive inferences.

Section 3.1 describes a method for simulating ‘predicate subtypes’ in
higher order logic, and the corresponding proof tool solves many goals in
the formalization of abstract algebra. Section 3.2 describes a naive primality
prover that is useful for proving that concrete finite fields satisfy the field
axioms, and Section 3.3 demonstrates how HOL4 is used to test the mathe-
matical definitions of elliptic curve operations by executing them within the
theorem prover.

3.1 Predicate Subtype Prover

Predicate subtyping allows the creation of a new subtype corresponding to
an arbitrary predicate, where elements of the new type are also elements of
the containing type. This is impossible in the higher order logic type system,
where all types are assumed to be disjoint. However, it is possible to simulate
the reasoning of predicate subtypes at the term level using higher order logic
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sets, and this section presents a proof tool that implements this.
The theory behind this proof tool and a prototype implementation are

described in Hurd (2001); the novelty of the proof tool described here is
that it is simpler and also that it is integrated into the HOL4 simplifier as a
decision procedure.

3.1.1 Predicate Subtypes in PVS

As stated above, predicate subtyping is impossible in the type system of
higher order logic: Church’s simple type theory extended with Hindley-
Milner polymorphism. However, predicate subtyping has been integrated
into the type system of the PVS theorem prover (Owre et al., 1999), and the
aim of the proof tool described here is to provide the same reasoning power
as the type checker in PVS.

As a simple illustration of predicate subtypes, the type of real division
(/) in HOL4 is

R→ R→ R ,

and in PVS is
R→ R6=0 → R ,

where R is the type of real numbers and R6=0 is the predicate subtype of
non-zero real numbers (generated from the predicate λx. x 6= 0). As a
consequence of this, the term 1/0 type checks in HOL4, but causes a type
error in PVS.

Type checking in the presence of predicate subtypes is an undecidable
problem, so the PVS type checker may pass extra proof obligations onto
the user to complete type checking. Therefore, the predicate subtype prover
is not designed to be complete for a class of ‘predicate subtype goals’, but
rather to prove as many subgoals as it can within a reasonable time limit.

3.1.2 Simulating Predicate Subtypes in HOL4

The key idea in the design of the predicate subtype prover is to reason with
sets instead of using types. Instead of a type checker producing type judge-
ments of the form

x : τ ,

for some predicate subtype τ , the prover is designed to prove theorems of the
form

` x ∈ S .
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The intuition is that if τ is a predicate subtype, then the set S contains
precisely the elements of τ . The prover is integrated as a decision procedure
in the HOL4 simplifier for proving side conditions. A brief glance at the
formalization of elliptic curve theory in Chapter 2 reveals many theorems of
the form

∀x ∈ S. f(x) = g(x) .

Before the simplifier can apply such a theorem to rewrite a term f(t) the
side condition t ∈ S must be proved, and this is where the predicate subtype
prover is used.

For example, consider the right identity law of groups:

|- !g :: Group. !x :: (g.carrier). g.mult x g.id = x .

Before this theorem can be applied to simplify the term

G.mult (G.inv c) G.id ,

the two side conditions

G ∈ Group and G.inv c ∈ G.carrier .

must be proved. These two subgoals will introduce the two inference steps
implemented in the predicate subtype prover: subtype reductions and sub-
type judgements.

Subtype Reductions: Given a subtype reduction theorem of the form

` ∀x. f1(x) ∈ S1(x) ∧ · · · ∧ fn(x) ∈ Sn(x) =⇒ f(x) ∈ S(x) ,

whenever the predicate subtype prover is met with a goal matched by f(x) ∈
S(x) it will reduce it to the subgoals in the antecedent.

For example, suppose the goal is

G.inv c ∈ G.carrier

and the subtype reduction theorem

` ∀g ∈ Group. ∀x ∈ g.carrier. g.inv x ∈ g.carrier

is available. The predicate subtype prover will reduce the goal to the subgoals

G ∈ Group and c ∈ G.carrier .
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Subtype reductions are useful when there is no other way to reduce the goal
to subgoals. In this case it doesn’t make sense to write G.inv x in the goal
unless x ∈ G.carrier, and so reducing it according to the subtype reduction
theorem can never be wrong.

Subtype Judgements: A subtype judgement theorem has exactly the same
form as a subtype reduction theorem:

` ∀x. f1(x) ∈ S1(x) ∧ · · · ∧ fn(x) ∈ Sn(x) =⇒ f(x) ∈ S(x) .

The difference is the way it is applied: if the predicate subtype prover is met
with a goal matching f(x) ∈ S(x) it will save the current state, try reducing
the goal to the subgoals in the antecedent, but if this doesn’t result in a proof
will restore the saved state and try the other matching subtype judgements.

For example, suppose the goal is

G ∈ Group

and the subtype judgement theorems

` ∀g ∈ AbelianGroup. g ∈ Group
` ∀g ∈ FiniteGroup. g ∈ Group

are available. The predicate subtype prover will first reduce the goal to the
subgoal

G ∈ AbelianGroup ,

but if this cannot be proved it will go back to the original goal and reduce it
to

G ∈ FiniteGroup .

If this also cannot be proved it will give up. Subtype judgements are use-
ful whenever there are multiple paths possible that could potentially lead
to a proof. In this case either of the two facts G ∈ AbelianGroup and
G ∈ FiniteGroup may be available in the current logical context, and so
the predicate subtype prover must try both judgements.

Given a goal G, the complete procedure of the predicate subtype prover
is as follows:

1. Check whether there is anything in the logical context that matches G.
If so, prove G directly.
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2. Look for a matching subtype reductions. If any are available, then
reduce the goal to subgoals G1, . . . , Gn and call the prover recursively
on each subgoal. If any of these recursive calls return failure then return
failure for this call.

3. Look for matching subtype judgements. If any are available, then re-
duce the goal to subgoals G1, . . . , Gn and call the prover recursively on
each subgoal. If any of these recursive calls return failure then move
on to the next matching subtype judgement.

4. Return failure.

Integrating the predicate subtype prover into the simplifier results in a
powerful proof tool for formalized mathematics. For example, the following
goal can be completely solved by this proof tool, although it requires 102
distinct calls to the predicate subtype prover to achieve this.

(field_add e.field (field_add e.field (field_exp e.field y 2)
(field_mult e.field (field_mult e.field e.a1 x) y)) (field_mult
e.field e.a3 y) =
field_add e.field (field_add e.field (field_add e.field (field_exp
e.field x 3) (field_mult e.field e.a2 (field_exp e.field x 2)))
(field_mult e.field e.a4 x)) e.a6)
==>

(field_add e.field (field_add e.field (field_exp e.field
(field_sub e.field (field_sub e.field (field_neg e.field y)
(field_mult e.field e.a1 x)) e.a3) 2) (field_mult e.field
(field_mult e.field e.a1 x) (field_sub e.field (field_sub e.field
(field_neg e.field y) (field_mult e.field e.a1 x)) e.a3)))
(field_mult e.field e.a3 (field_sub e.field (field_sub e.field
(field_neg e.field y) (field_mult e.field e.a1 x)) e.a3)) =
field_add e.field (field_add e.field (field_add e.field (field_exp
e.field x 3) (field_mult e.field e.a2 (field_exp e.field x 2)))
(field_mult e.field e.a4 x)) e.a6)
------------------------------------
0. e IN Curve
1. x IN e.field.carrier
2. y IN e.field.carrier

3.2 Primality Prover

The second proof tool developed for the elliptic curve formalization is a naive
primality prover that operates on a number n by checking all potential factors
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from 2 up to
√
n. The motivation for this tool comes from the examples in

Section 3.3 where the elliptic curve operations over an example curve are
executed by the HOL4 theorem prover. Some of the theorems used by the
simplifier to accomplish this assume that the underlying field satisfied the
field axioms, expressed as the side condition

GF(751) ∈ Field .

The predicate subtype prover of Section 3.1 used the field theorems to reduce
this goal to the subgoal

751 ∈ Prime ,

but now the execution stalls without a proof that 751 is a prime.
The naive primality prover is implemented as a higher order logic function

which is verified to return true if and only if the input is a prime number.1

First, a square root function over the natural numbers is defined

|- nat_sqrt n k = if n < k * k then k - 1 else nat_sqrt n (k + 1)

and verified to return the smallest natural number at least as large as the
square root of its first argument:

|- !n k. k * k <= n = k <= nat_sqrt n 0 .

Note that the second argument of the square root function is an accumulator
that counts upwards from 0, a feature that meant the function required a
special termination proof to be accepted by HOL4.

Next the primality checker is defined in terms of the square root function:

|- prime_checker n i =
if i <= 1 then T
else if n MOD i = 0 then F
else prime_checker n (i - 1) .

This function also has an accumulator as its second parameter, but this
one counts downwards and so termination is trivial. The final correctness
theorem of the primality checker is the following:

|- !p. prime p = 1 < p /\ prime_checker p (nat_sqrt p 0) .

Given a term prime n (where n is a concrete natural number), the pri-
mality prover works as follows:

1The author is grateful to Michael Compton for suggesting this approach.
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1. Note that the correctness theorem of the primality checker is expressed
as a rewrite: this is applied to the input term to give the new term

1 < n ∧ prime checker n (nat sqrt n 0) .

2. The new term is rewritten with the definitions of nat sqrt, prime checker
and all the standard arithmetic operations. This will eventually reduce
the new term to either > or ⊥.

3. Combine the first two steps to return either the theorem ` prime n = >
or the theorem ` prime n = ⊥.

For example, here are the theorems resulting from the application of the
primality prover to a prime and non-prime, respectively:

|- prime 751 = T ;
|- prime 91 = F .

In addition to the present application, it is occasionally useful to prove
the primality of small numbers during a verification. For example, a recent
paper required the primality of 65537 (which is 216 + 1) to verify the func-
tional correctness of the IDEA encryption algorithm (Zhang and Slind, 2005).
Using this primality prover might have simplified the proof, although such a
‘large’ number takes the primality prover 12 seconds and 717,360 primitive
inferences to prove the required theorem:2

|- prime 65537 = T .

3.3 Verified Execution

The definitions of the elliptic curve operations in Section 2.2 were formalized
in terms of affine coordinates, using the curve case constant. This was done
to be faithful to the presentation in the source textbook, but this section will
describe an additional benefit: the elliptic curve operations can be executed
by the HOL4 theorem prover on example elliptic curves.

3.3.1 Verified Execution of Elliptic Curve Operations

Execution in the HOL4 theorem prover is just a form of simplification: given
an initial term t and a collection ∆ of rewrite theorems, the theorem prover

2All timings in this report are for the Kananaskis 3 version of HOL4 running on Moscow
ML 2.01 with a Pentium IV 3.2Ghz CPU.
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rewrites t to a normal form u (w.r.t. ∆) and returns the theorem ` t = u.
When ∆ contains only simple rewrites of the form ` x = y (as is often the
case when using HOL4 to perform execution) then there is an efficient proof
tool available to perform the simplification (Barras, 2000).

However, if ∆ contains conditional rewrites or other advanced simplifica-
tion features such as decision procedures then the HOL4 simplifier should be
used instead. Almost every theorem in the elliptic curve theory is a condi-
tional rewrite of the form

` ∀x ∈ S. f(x) = g(x) ,

and so the simplifier (equipped with the predicate subtype prover as a de-
cision procedure) must be used for verified execution of the elliptic curve
operations.

All the elliptic curve operations are defined in terms of the curve case
constant, which has the following definition:

|- !e :: Curve. !z f.
(curve_case e z f (curve_zero e) = z) /\
!x y. curve_case e z f (affine e.field [x; y]) = f x y .

The form of this definition requires that curve zero E and affine K [x; y] be
treated as primitive during execution (i.e., the definitions of curve zero and
affine must not be expanded).

This reduces the execution of elliptic curve operations to the execution
of field operations, and the field operations of GF(p) are all defined in terms
of arithmetic operations, which in theory the simplifier can handle itself.
However, field inverse in GF(p) is defined as the function

λk. kp−2 mod p ,

which requires some care to evaluate. By default the HOL4 simplifier will
first evaluate the exponentiation by primitive recursion on the exponent (i.e.,
O(p) multiplications) and then reduce (the very large result) modulo p at the
very end. As it stands the operation is completely impractical to execute,
but it can be made efficient by proving its equivalence to a repeated squaring
implementation of modular exponentiation. The modexp function is a higher
order logic implementation of repeated squaring to compute an mod m:

|- modexp a n m =
if n = 0 then 1
else if n MOD 2 = 0 then modexp ((a * a) MOD m) (n DIV 2) m
else (a * modexp ((a * a) MOD m) (n DIV 2) m) MOD m .
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This version requires only O(log p) multiplications, and moreover all interme-
diate calculations are kept small by reducing them modulo p. The correctness
theorem for this optimized version of modular exponentiaton is

|- !a n m. 1 < m ==> (modexp a n m = (a ** n) MOD m) ,

which justifies using modexp to perform all GF(p) field inverses.
All the techniques necessary to execute elliptic curve operations over

GF(p) have now been covered, and all that remains is to carefully select
the rewrite theorems that the HOL4 simplifier will use. Care is required be-
cause not enough rewrite theorems may cause the execution to ‘get stuck’ and
return a result that has not been evaluated to the normal form of an elliptic
curve point. However, too many rewrite theorems may cause definitions to
be expanded that are either assumed to be primitive for the execution (such
as curve zero), or are inefficient to execute (such as the original version of
field inverse in GF(p)).

3.3.2 Examples

A test of the elliptic curve operations is provided by formalizing a simple
exercise for the reader in Koblitz (1987).

The exercise uses the example curve Y 2 + Y = X3 − X over the field
GF(751); the primality prover and the simplifier together can prove that the
field satisfies the field laws and the elliptic curve is non-singular:

|- GF 751 IN Field ;
|- ec = curve (GF 751) 0 0 1 750 0 ;
|- ec IN Curve .

Note the use of 750 in the formalized version instead of −1 in the mathemat-
ics: a typical example of representation choices during formalization resulting
in a loss of succintness.

The exercise next defines two points which the HOL4 simplifer can prove
lie on the curve:

|- affine (GF 751) [361; 383] IN curve_points ec ;
|- affine (GF 751) [241; 605] IN curve_points ec .

The exercise requires the reader to perform some elliptic curve arithmetic,
and check that the results lie on the curve. Again, this is no problem for the
HOL4 simplifier:

|- curve_neg ec (affine (GF 751) [361; 383]) =
affine (GF 751) [361; 367] ;
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|- affine (GF 751) [361; 367] IN curve_points ec ;

|- curve_add ec (affine (GF 751) [361; 383])
(affine (GF 751) [241; 605]) =

affine (GF 751) [680; 469] ;
|- affine (GF 751) [680; 469] IN curve_points ec ;

|- curve_double ec (affine (GF 751) [361; 383]) =
affine (GF 751) [710; 395] ;

|- affine (GF 751) [710; 395] IN curve_points ec .

Together, the verified execution of these six theorems took 72 seconds and
961,068 primitive inferences to complete: a performance that reflects the
abstract nature of the definitions involved.
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Chapter 4

Summary

This report has presented a formalization of elliptic curve theory in higher
order logic, mechanized using the HOL4 theorem prover. The proof of the
group law for elliptic curves is not yet complete, but enough theory and proofs
have now been mechanized to demonstrate the feasibility of the project.

The main research contributions of this work are as follows:

• the development of a practical approach for formalizing abstract alge-
bra in higher order logic;

• a formalization of the mathematical theory of elliptic curves;

• the integration of a proof tool for reasoning about subtypes into the
standard HOL4 toolset;

• the development of a bespoke execution tool for elliptic curve opera-
tions; and

• an implementation of a tool for primality-checking-by-proof.

The principal goal of the project is for the formalization to ‘get close to the
mathematics’, and in the case of elliptic curve theory it is possible for higher
order logic to get very close indeed to the textbook mathematics. In contrast
to the more common approach of coding some mathematics operations as
programs and then justifying their correctness, the approach described in
this report is to formalize the mathematics directly and then implement
proof tools to execute the definitions.

Developing tailor-made proof tools to help automate the mechanization
of new theories was an important part of this project, and the LCF style
design of the HOL4 theorem prover made it straightforward to extend the
system proof tools. There has been much work by the HOL4 developers on
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supporting the use of the theorem prover as a verified execution environment,
and this greatly simplified the implementation of the verified execution proof
tool. It also simplified the implementation of the other proof tools, which
all use verified execution internally to some degree. This is most apparent
in the primality prover, which is implemented as a verified higher order logic
function that is executed on potential primes.

In addition to its intrinsic interest, this project is also a component of
the larger project Formal synthesis and verification of ARM software with
applications to cryptography. The most important contribution of this project
is a ‘gold standard’ set of elliptic curve operations mechanized with HOL4.
The stage is now set for a verified path from these mathematical definitions
of the elliptic curve operations right down to an implementation in ARM
machine code. In addition, the tool support described in this report is now
available to perform verified execution of the gold standard definitions, which
can provide test vectors for prototypes before a full proof of correctness is
attempted.

4.1 Future Work

The immediate next step, already underway, is to complete the mechaniza-
tion of the group law for elliptic curves. Two parallel approaches are being
investigated for this: applying mathematical ideas to break the proof into
more tractable subproofs that can be handled with the existing proof tools;
and improving the HOL4 proof tools (particularly the simplifier) to deal with
the large formulas that emerge in a naive proof. It is likely that a combina-
tion of these two approaches will lead to a mechanized proof with the least
effort. One idea for improving the proof tools to handle large formulas is
to link HOL4 with a computer algebra system (a similar link-up of theorem
prover and computer algebra system was tried in Analytica (Bauer et al.,
1998), but using Mathematica as the starting point).

At the moment the formalized definitions of elliptic curve operations are
highly abstract, and need sophisticated proof tools to execute them even
inefficiently. The compiler being developed for the next step of the verified
path to ARM machine code requires a restricted class of higher order logic
functions as input, and so the elliptic curve operations will have to be ported
to this language and proved equivalent to the mathematical definitions. A
concrete representation for elliptic curve points will need to be chosen: an
inevitable trade-off between the complexity of the equivalence proof and the
efficiency of the final implementation in ARM machine code.

Now that there is a mechanized ‘gold standard’ for elliptic curve opera-
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tions, other implementations of elliptic curve cryptography can be formally
verified. For example, one idea is to start with a µCryptol program imple-
menting a cryptographic operation based on an elliptic curve group, and make
a shallow embedding of the program in higher order logic. A mechanized
proof of the group law for elliptic curves reduces the functional correctness
of the embedded µCryptol program to a proof that it correctly implements
the elliptic curve operations. The end result is a µCryptol program formally
verified to be functionally correct because it implements operations that hap-
pen to satisfy a group law, and moreover the group is an elliptic curve group.
This latter point is where the ‘gold standard’ formalization plays a critical
role in guaranteeing the security of the µCryptol program.
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Appendix A

Notation

To help read the mathematics and the HOL4 theorems in this report, the
following table gives a description of some standard logical and mathematical
symbols, together with the way the symbol is printed in the HOL4 theorem
prover. A symbol with no HOL4 entry means that it does not occur in this
report.

Mathematics HOL4 Description

` |- Syntactic entailment.
= = Equality.
⇐⇒ = If and only if.
> T True.
⊥ F False.
B or 2 bool The booleans {>,⊥}.
∧ /\ Conjunction.
∨ \/ Disjunction.
=⇒ ==> Implication.
¬ ~ Logical negation.
− ~ Numerical negation.
∀ ! Universal quantification.
∃ ? Existential quantification.
λ \ Lambda abstraction.
∈ IN Set membership.
∀x ∈ S. M !x :: S. M Restricted universal quantification.
∃x ∈ S. M ?x :: S. M Restricted existential quantification.
∅ {} Empty set.
∪ UNION Set union.
∩ INTER Set intersection.
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Mathematics HOL4 Description

{f(x) | P (x)} { f x | P x } Set comprehension.
]S CARD S The cardinality of the set S.
]S <∞ FINITE S S is a finite set.
N num The natural numbers {0, 1, 2, . . .}.
suc SUC The successor function.
Z The integers.
Q The rational numbers.
R real The real numbers.
R6=0 The nonzero real numbers.
(a, b) The real numbers {x | a < x < b}.
[a, b] The real numbers {x | a ≤ x ≤ b}.
C The complex numbers.
τ ∗ τ list Lists with elements of type τ .
[a1; · · · ; an] [a1; ...; an] List syntax.
[ ] [] The empty list.
length LENGTH The list length function.
el n l EL n l Picks element n from the list l.
K An arbitrary field.
K∗ field_nonzero The nonzero elements of K.
E(K) An arbitrary elliptic curve over K.
O curve_zero e The point at infinity.
α, β, . . . ’a, ’b, . . . Type variables.
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Appendix B

Elliptic Curves and
Cryptography

B.1 Elliptic Curves

This appendix provides a geometric introduction to elliptic curves over the
complex numbers, with the aim of building up some useful intuition about
them.

B.1.1 Points

An elliptic curve E over the complex numbers is the set of points (x, y) ∈
C× C satisfying the equation

E : y2 = x3 + ax+ b ,

plus a special point O that lies ‘infinitely far up the y-axis’. (Note that
both x and y are complex numbers: they are not the real and imaginary
components of a single complex number.)

Some example elliptic curves over the real numbers (i.e., where both x
and y are real numbers) are shown in Figure B.1. The first example curve
y2 = x3 − x is disconnected because its equation can be written as y =
±
√
x(x+ 1)(x− 1), and the square root only exists in the intervals [−1, 0]

and [1,∞).
An important property of an elliptic curve is the subset of rational points:

points on the curve where both the x and y coordinates are rational numbers
(plus O).1 (This means that the real parts of both x and y are rational
numbers, and the imaginary parts are zero.) Elliptic curves are interesting

1This only makes sense if both a, b ∈ Q in the elliptic curve equation.
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Figure B.1: Example elliptic curves, clockwise from top left: y2 = x3 − x;
y2 = x3 − 1

2
x+ 1

2
; y2 = x3; and y2 = x3 − 4

3
x+ 16

27
.
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in number theory because many questions about integers can be recast as
questions about rational points on an elliptic curve. For example, Wiles’
proof of Fermat’s Last Theorem relied on Frey’s epsilon conjecture (proved
by Ribet in 1986) that every counterexample an + bn = cn would yield an
elliptic curve

y2 = x(x− an)(x+ bn)

contradicting the Taniyama-Shimura conjecture.2 In 1995 Wiles and Tay-
lor proved that the Taniyama-Shimura conjecture was true for semi-stable
elliptic curves, which was enough to prove Fermat’s Last Theorem.3

B.1.2 Etymology

As may be readily observed, elliptic curves are not ellipses! The following
explanation of their name comes from Blake et al. (1999).

Just as the arc lengths on a circle give rise to the trigonometric func-
tions sin, cos and tan, a similar study for ellipses leads one to consider
elliptic integrals. These are integrals of the form∫

dx√
4x3 − g2x− g3

.

Such integrals are multi-valued on the complex numbers and are only
well defined modulo a period lattice. [. . . ] The ‘inverse’ function of an
elliptic integral is a doubly periodic function called an elliptic function.
[. . . ]

It turns out that every doubly periodic function ℘ with periods
that are independent over R satisfies an equation of the form

℘′2 = 4℘3 − g2℘− g3

[. . . ] If we consider the pair (℘′, ℘) as being a point in space, then the
solutions to [the above equation] provide a mapping from a torus (as
℘ is doubly periodic) to the curve

Y 2 = 4X3 − g2X − g3 .

This is an example of an elliptic curve (the 4 in front of the X3 term
is traditional in analytic circles—it can clearly be scaled away).

2The Taniyama-Shimura conjecture connects an elliptic curve to its corresponding mod-
ular form, by asserting that “all elliptic curves over Q are modular”. This means that the
sequence of numbers np − p obtained by reducing the elliptic curve modulo all primes p
is the same as the sequence of numbers obtained by applying a Fourier transform to the
modular form.

3By 1999 a team of mathematicians, including Taylor, had proved that the Taniyama-
Shimura conjecture held for every elliptic curve.
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B.1.3 Elliptic curve arithmetic

Given three points P , Q and R lying on the curve E, define a ternary relation
R as

R(P,Q,R) ⇐⇒ P,Q,R lie on a straight line.

This relation behaves like a binary function from its first two arguments to
its third argument, as the following lemma proves.

Lemma 1 Given two distinct points P and Q lying on the curve E, there
is a unique point R that lies both on E and on the straight line between P
and Q.
Proof: Let P = (x1, y1) and Q = (x2, y2). If x1 = x2 then R is uniquely
O, else if x1 6= x2 then the straight line through P and Q is defined by the
equation

L : y =

(
y2 − y1

x2 − x1

)
x+

[
y1 − x1

(
y2 − y1

x2 − x1

)]
Substituting the equation L into E for the variable y leaves a cubic equation
in x. By the fundamental theorem of algebra, this cubic equation has three
roots (counting multiplicity): two of them are known to be x1 and x2; the
third one is the x-coordinate of the point R. Equation L gives the value for
the y-coordinate of R, which has been shown to be the unique point lying on
both E and L. 2

Using the previous lemma, an addition operation on elliptic curve points
can be defined as

P +Q = −R

where R is found by drawing a chord through P and Q, and −R is the point
R reflected in the x-axis (and −O = O). See Figure B.2 for an illustration
of adding two points together using a chord.

The only case not covered by the above is adding a point P to itself,
because two distinct points are needed to draw a chord between them. When
there is just one point P , a tangent to the curve E through P is drawn
instead.4 Similarly to the chord case, the tangent line will intersect the curve
E at precisely one point R,5 and this is reflected in the x-axis to give the
result

2P = −R .

4Intuitively, the tangent method is the limit of the chord process of adding P to Q,
where Q is moved closer and closer to P .

5In the proof the resulting cubic has a double root at x1; the other root x3 is the
x-coordinate of R.
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Figure B.2: Adding two points on the elliptic curve y2 = x3 − x using a
chord.

See Figure B.3 for an illustration of adding two points together using a
tangent. This geometric definition of the addition operation is called the
tangent-chord method.

Theorem 2 Elliptic curve points form an Abelian group, with identity ele-
ment O, inverse function −, and group operation +.
Proof: Omitted. The interested reader is referred to Silverman (1986),
which provides a rigorous introduction to elliptic curves. 2

IfK is the finite field GF(q), then the number ]E(K) ofK-rational (affine)
points is trivially bounded by

]E(K) ≤ q2 + 1

and so the elliptic curve group is a finite Abelian group.
In fact, ]E(K) is usually around q+ 1, although it is not a simple matter

to determine it precisely. Define the trace t of E as

t = q + 1− ]E(K) .
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Figure B.3: Doubling a point on the elliptic curve y2 = x3−x using a tangent.

Theorem 3 (Hasse) The trace of an elliptic curve satisfies |t| ≤ 2
√
q , and

every value permitted by this inequality occurs.
Proof: Omitted. 2

B.2 Elliptic Curve Cryptography

Given their utility in advanced number theory, it should come as no surprise
that elliptic curves also feature in many aspects of cryptography.

B.2.1 Crytography Based on Groups

Many cryptographic primitives make use of a form of the discrete logarithm
problem based on a group G, in which a potential attacker is given g, h ∈ G
and must find a k such that gk = h. Clearly, the difficulty of this problem
depends on the group G. For some groups, such as integer addition modulo
n, the problem is easy. For some groups, such as the multiplicative group
GF(p)∗ of the finite field GF(p), the problem is difficult. However, even in
this case, the number field sieve provides a sub-exponential algorithm to solve
the problem.
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In 1985, Neal Koblitz and Victor Miller independently proposed basing
the discrete logarithm problem on an elliptic curve group E(GF(q)) over a
finite field GF(q). There are no known sub-exponential algorithms to solve
this version of the discrete logarithm problem. Taking into account the best
known algorithms, Blake et al. (1999) present a correspondence between the
key sizes of equal security discrete logarithm problems based on multiplicative
and elliptic curve groups:

GF(p)∗ E(GF(q))
1024 bits 173 bits
4096 bits 313 bits

As can be seen, elliptic curve groups require shorter keys than multiplicative
groups, which make them an attractive choice in security applications with
constraints on bandwidth or computation power (e.g., smart cards).

It should be noted that an argument advanced against using elliptic curve
groups is that the conventional discrete logarithm problem based on the
multiplicative group has been more intensively studied. It may indeed be
the case that a sub-exponential algorithm for the discrete logarithm problem
based on elliptic curve groups is waiting to be discoverd.

B.2.2 ElGamal Encryption

ElGamal encryption demonstrates how the discrete logarithm problem based
on a groupG can be used as a public key encryption algorithm. Bob generates
an instance gx = h of the discrete logarithm problem to create a new public
and private key. Bob publishes the public key (g, h) and keeps the private
key x secret. The following algorithm allows Alice to send a message m ∈ G
to Bob that cannot be read by a third party (this security property is called
confidentiality).

1. Alice obtains a copy of Bob’s public key (g, h).

2. Alice generates a randomly chosen natural number k ∈ {1, . . . , ]G− 1}
and computes a = gk and b = hkm.

3. Alice sends the encrypted message (a, b) to Bob.

4. Bob receives the encrypted message (a, b). To recover the message m
he computes

ba−x = hkmg−kx = gxk−xkm = m .
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B.2.3 Digital Signature Algorithm

The digital signature algorithm is a N.I.S.T. standard (FIPS, 1994), and the
elliptic curve version is part of the Suite B set of cryptographic algorithms
recommended by NSA. Using the same public and private key as for ElGamal
encryption,6 Bob can use the digital signature algorithm to digitally sign a
message m ∈ G to Alice, ensuring: Alice knows that only Bob could have
sent the message (authenticity); Alice knows that the message has not been
tampered with in transit (integrity); and it is impossible for Bob to turn
around later and say he did not send the message (non-repudiation). The
following algorithm implements the digital signature algorithm, and requires
an additional bijective function

f : G→ {0, . . . , ]G− 1}

to be publically known.

1. Bob generates a random natural number k ∈ {1, . . . , ]G − 1}, and
computes a = gk.

2. Bob also computes the solution b to the congruence

f(m) = −xf(a) + kb (mod ]G)

3. Bob sends the message m and the signature (a, b) to Alice.

4. Alice receives the message m and the signature (a, b), and obtains a
copy of Bob’s public key (g, h).

5. Alice computes
u = f(m)b−1 (mod ]G) ,
v = f(a)b−1 (mod ]G) ,
w = guhv .

6. Alice verifies that the signature matches the message by checking that

w = guhv = gf(m)b−1
gvx = gf(m)b−1+xf(a)b−1

= g(f(m)+xf(a))b−1
= gkbb−1

= gk = a .

6It is considered bad cryptographic hygiene to use precisely the same key for signature
and encryption, so in practice Bob will probably generate a new key to create digital
signatures.
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B.2.4 Elliptic Curve Factorization Algorithm

Although the main use of elliptic curves in cryptography is in providing an
alternative group for the discrete logarithm problem, it would be remiss to
ignore their cryptanalytical use in the form of the elliptic curve factorization
algorithm (Lenstra, 1987). It is no longer the best known algorithm for fac-
toring a huge RSA modulus into the product of two primes: the more recent
general number field sieve is currently the best for this problem. However,
the elliptic curve factorization method is still the fastest for factoring out
divisors less than 20 digits long, because its running time depends on the
size of the factor rather than the size of the number to be factored.

It is an extension of Pollard’s p− 1 method, which operates as follows on
a number n which is the product of two primes p and q. A base a is chosen
at random, and raised to a power B modulo n.7 If

p− 1 | B and q − 1 6 | B

then
aB = 1 (mod p) and aB 6= 1 (mod q) .

Therefore
gcd(aB mod n− 1, n) = q .

Pollard’s p− 1 method is effective when p− 1 is a smooth number: all its
prime factors are small. Unfortunately, precisely to prevent this factorization
algorithm from working (and another similar one using p+ 1), primes p and
q to be used in an RSA modulus are chosen to be strong primes, where p is
a strong prime if both p± 1 are non-smooth.

Lenstra’s idea was to replace the multiplicative group GF(p)∗ used in
Pollard’s p− 1 method with a random elliptic curve group E(GF(p)). Since
the size ]E(GF(p)) of the group is a random number in the range p± 2

√
p,

then only one of these numbers needs to be smooth for the attack to succeed.
For the full details of the elliptic curve factorization algorithm see Blake et al.
(1999) or Koblitz (1987).

Using the same ideas, elliptic curves are also used for primality proving.
In the key generation phase of an encryption scheme such as RSA, it is useful
to check that the probable primes found by a fast algorithm such as Miller-
Rabin are bone fide primes. An elliptic curve primality prover (such as the
Q function in Mathematica) can routinely prove the primality of numbers
with thousands of digits.

7B is chosen to be a number with many small prime factors, such as k!.
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Appendix C

Higher Order Logic and the
HOL4 Theorem Prover

HOL41 is an interactive theorem prover implementing higher order logic. It
has an LCF style design, which means that there is a small logical kernel
that is solely empowered to create theorems using the primitive inference
rules of higher order logic, and the ML programming language is provided to
implement inference rules in terms of the primitives.

This appendix contains a brief overview of higher order logic and its
implementation in the HOL4 theorem prover, containing no more than is
necessary for a reader wishing to understand the basis on which the formal-
ization of elliptic curve cryptography is built. A detailed introduction to the
design of the HOL4 theorem prover can be found in the book Introduction
to HOL (A theorem proving environment for higher order logic) by Gordon
and Melham (1993), and information on the current version of the HOL4
theorem prover is provided in the system documentation (Slind and Norrish,
2001).

C.1 Terms and Types

Terms in higher order logic are typed, and the syntax t : τ means that the
term t has type τ . It is helpful to identify types with the set of their elements,
so for example the type of booleans is bool = {>,⊥} and the type of natural
numbers is N = {0, 1, 2, . . .}. Compound types may be created by using type
operators. An important example is the function space type operator · → ·,
where for example the type N→ bool is the set of functions mapping natural
numbers to either > or ⊥. Another example is the list type operator · list,

1HOL4 can be downloaded from http://hol.sf.net.
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where for example the type of boolean lists is

bool list = {[ ], [>], [⊥], [>,>], . . .} .

Finally, there is an infinite set {α, β, . . .} of type variables, which may in-
stantiate to any higher order logic type. Type variables can occur at any
position in a compound type, for example the type α list of lists containing
elements of type α. This polymorphism mechanism means that list theorems
need be proved only once for the type α list, and thereafter the type variable
α can be instantiated on demand to give the same theorems for the types
N list, N→ bool, β list list etc.

The terms of higher order logic are terms of the simply typed λ-calculus
(Church, 1940), where the syntax λx. t[x] should be read as ‘the function that
takes an x and returns t[x].’ The λ binds x, so for example the application
of the function term λx. λx. x to the argument term y yields the result λx. x
(and not λx. y). The restriction to typed terms of λ-calculus means that
every term must be well-typed (or inconsistencies emerge in the form of the
Russell paradox), where the type relation is calculated as follows:

Variables: All variables v : τ are well-typed.

Constants: Constants are given a type when they are defined, for example
> : bool, [ ] : α list, = : α→ α→ bool and prime : N→ bool. Any type
variables that they contain may be specialized when they are used in
terms, so for example the term [ ] : N list is well-typed.

Function applications: A function term f : α → β is well-typed when
applied to any argument term x : α, and the result is (f x) : β.

λ-abstractions: Given a variable v : α and a term t[v] : β, the λ-
abstraction (λ v. t[v]) : α→ β is well-typed.

Using a type-inference algorithm of Milner (1978), it is possible to take a
term t that does not contain any type information at all and deduce a most
general type for the term (or raise an error if it is not well-typed). Therefore,
a well-typed term t : τ of higher order logic can usually be written as t
without any ambiguity.

C.2 Theorems

Theorems in higher order logic are sequents Γ ` t where the term t is the
conclusion of the theorem, and the set of terms Γ are the hypotheses of the

62



theorem. The HOL4 theorem prover has an LCF design, which means that
theorems are only created in a small logical kernel which faithfully executes
the primitive rules of inference of higher order logic. For example, the follow-
ing four primitive rules of inference assert that the equality relation is both
reflexive (REFL) and transitive (TRANS), that type variables in a theorem
may be instantiated to any higher order logic type (INST TYPE), and that
the usual λ-calculus β-conversion is valid in higher order logic (BETA CONV):

` t = t
REFL

Γ ` s = t ∆ ` t = u

Γ ∪∆ ` s = u
TRANS

Γ[α] ` t[α]

Γ[σ] ` t[σ]
INST TYPE

` (λx. t[x]) u = t[u]
BETA CONV

These primitive rules of inference appear in the ML signature of the logical
kernel as follows:

REFL : term→ thm

TRANS : thm→ thm→ thm

INST TYPE : hol type× hol type→ thm→ thm

BETA CONV : term→ thm

Since the ML type thm is abstract, the type security of ML ensures that the
functions in the logical kernel represent the only way that theorems may be
created.

A principle of definition implemented as a function in the logical kernel
allows new constants to be defined. Given a theorem ` v : τ = M , it makes
a new constant c : τ and returns the characterizing theorem ` c = M .2 The
logical kernel also has a primitive definition principle for new types: the user
supplies a predicate over an existing type, and the theorem prover returns a
new type in which the elements are in one-to-one correspondence with the
user’s predicate.3

2For this to be valid, we must insist that M contains no free variables and no type
variables other than those in τ .

3In higher order logic there are no empty types, so for this type definition principle to
be valid the user must supply a theorem that the predicate is not empty.
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