
Fast Normalization in the HOL Theorem Prover

Joe Hurd∗

Computer Laboratory
University of Cambridge
joe.hurd@cl.cam.ac.uk

1 March 2002

1 Introduction

The ‘LCF design’ inherited by the HOL theorem prover [1] allows users to
write ML functions encoding arbitrary patterns of logical deduction. Such ML
functions are called derived rules,1 because the only way that they can create
theorems is by composing a sequence of existing rules. The initial rules, imple-
mented in a small logical kernel, are the primitive inference rules of higher-order
logic. This design philosophy is called fully-expansive proof, because every de-
rived rule can be ‘fully expanded’ to a (long) sequence of primitive inferences.

Example: Harrison’s HOL implementation of the model elimination procedure
is a derived rule. It takes a goal term, performs a proof search, and then executes
the successful proof as a sequence of primitive inferences. 2

We are interested in creating efficient derived rules for normalizing terms.
Converting terms to conjunctive normal form (CNF) is necessary to apply many
first-order proof procedures, and some decision procedures for Presburger arith-
metic transform terms to disjunctive normal form as part of their operation.
Our present focus is on converting terms to definitional CNF: a normal form
similar to CNF in which the result formulas are only linearly larger than the
input formulas. An upper bound on the result size is essential when normalizing
large propositional formulas (such as those generated by hardware verification)
for input to satisfiability (SAT) solvers. In our experiments, we use Gordon’s
HolSatLib2 library for hol98. It provides a harness for invoking SAT solvers on
HOL terms, and currently supports SATO, GRASP and zCHAFF.

Example: To prove that the boolean ‘exclusive or’ operation is associative, we
∗Supported by EPSRC project GR/R27105/01.
1Or tactics, depending on the context in which they are used.
2http://www.cl.cam.ac.uk/users/mjcg/HolSatLib/

1



first convert the negation of the goal to definitional CNF:

` ¬((¬(p = ¬(q = r)) = ¬(¬(p = q) = r))) =

∃ v0, v1, v2, v3, v4.

(v4 ∨ v1 ∨ v3) ∧ (v4 ∨ ¬v1 ∨ ¬v3) ∧ (v1 ∨ ¬v3 ∨ ¬v4) ∧ (v3 ∨ ¬v1 ∨ ¬v4) ∧
(v3 ∨ v2 ∨ r) ∧ (v3 ∨ ¬v2 ∨ ¬r) ∧ (v2 ∨ ¬r ∨ ¬v3) ∧ (r ∨ ¬v2 ∨ ¬v3) ∧
(v2 ∨ p ∨ ¬q) ∧ (v2 ∨ ¬p ∨ q) ∧ (p ∨ q ∨ ¬v2) ∧ (¬q ∨ ¬p ∨ ¬v2) ∧
(v1 ∨ p ∨ v0) ∧ (v1 ∨ ¬p ∨ ¬v0) ∧ (p ∨ ¬v0 ∨ ¬v1) ∧ (v0 ∨ ¬p ∨ ¬v1) ∧
(v0 ∨ q ∨ r) ∧ (v0 ∨ ¬q ∨ ¬r) ∧ (q ∨ ¬r ∨ ¬v0) ∧ (r ∨ ¬q ∨ ¬v0) ∧ v4

Next we strip off the existential quantifiers (the ‘definitions’ of definitional
CNF) from the RHS of this equation, and invoke HolSatLib on the resulting
term. The HOL term is then converted to DIMACS format, sent to a SAT
solver, and, if no satisfiable assignments are found, the negation of the term is
asserted as a HOL theorem (with a ‘SAT solver’ oracle tag3). Finally, a couple
more primitive inferences suffice to derive our original goal as a theorem. 2

As can be observed, the above method of proving propositional formulas
involves a conversion to definitional CNF. It is relatively easy to generate the
desired term, and so we can simply create the conversion theorem with a ‘nor-
malization’ oracle tag. However, it is interesting to see how efficiently we can
construct the fully-expansive proof of the conversion theorem. We could naively
try to mirror the definitional CNF algorithm using primitive inferences, but
large intermediate terms make this algorithm is quadratic in the size of the in-
put term. Instead, we use a technique of Harrison [2] using variable vectors to
create a novel algorithm that runs in (nearly) linear time. On our ADD4 exam-
ple term,4 this uses more primitive inferences than the naive method, but small
terms at each intermediate point mean that the overall time taken is lower.

Operation on the ADD4 Term Time (s) Infs.
Definitional NNF 10.610 7677
Oracle version of definitional CNF 0.390 0
Naive definitional CNF 122.620 12034
Definitional CNF using variable vectors 28.800 238258
Applying the zCHAFF solver 4.680 0

References

[1] M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-
proving environment for higher order logic). Cambridge University Press,
1993.

[2] John Harrison. Binary decision diagrams as a HOL derived rule. The Com-
puter Journal, 38:162–170, 1995.

3Theorem tags are propagated by the primitive inferences, and so for each theorem it is
easy to discover the tools that were used as oracles in the proof.

4The ADD4 term arose from hardware verification, and contains 1111 atoms.

2


